CHAPTER 50
GUAM UNDERGROUND STORAGE TANK REGULATIONS

Article 3. Notification, Permits, and Variances.
Article 4. General Operating Requirements.
Article 5. Release Detection.
Article 10. Field Citations.
Article 13. Appendices.

ARTICLE 1
SCOPE AND PROHIBITION

§ 50101. Applicability.
§ 50103. Definitions.
§ 50104. Entry and Inspection of UST Facilities.
§ 50105. Delivery Prohibition.
§ 50106. [Reserved.]
§ 50107. [Reserved.]
§ 50108. [Reserved.]
§ 50109. [Reserved.]

§ 50101. Applicability.

(a) The requirements of this chapter apply to all owners and operators of underground storage tank systems as defined in § 50103 except as otherwise provided in subsections (b) and (c) of this section.

(1) UST systems that store fuel solely for emergency power generators, wastewater treatment tank systems, airport hydrant fuel distribution systems, and UST systems with field-constructed tanks must begin meeting the requirements of this Chapter as follows:
22 GAR GUAM ENVIRONMENTAL PROTECTION AGENCY
CH. 50 GUAM UNDERGROUND STORAGE TANK REGULATIONS

(A) UST systems installed on or before October 13, 2015, must meet the schedule in the following table.

<table>
<thead>
<tr>
<th>Type of UST system</th>
<th>Article(s)</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UST systems that store fuel solely for emergency power generators</td>
<td>5</td>
<td>October 13, 2018</td>
</tr>
<tr>
<td></td>
<td>2, 3, 4, 6, 7, 8, 9</td>
<td>October 13, 2018</td>
</tr>
<tr>
<td>Airport hydrant fuel distribution systems and UST systems with field-constructed tanks.</td>
<td>2 and 4</td>
<td>October 13, 2015</td>
</tr>
<tr>
<td></td>
<td>3, 6, 7, 8, 9</td>
<td>October 13, 2015</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>See phase in schedule in § 50151(c)</td>
</tr>
</tbody>
</table>

(B) UST systems installed after October 13, 2015, must meet all requirements at installation. Any UST system listed in subsection (c) of this section must meet the requirements of § 50102.

(b) The following UST systems are excluded from the requirements of this chapter:

(1) Any UST system holding hazardous wastes listed or identified under Guam Hazardous Waste Management Regulations or Subtitle C of the federal Resource Conservation and Recovery Act (RCRA) as amended the Solid Waste Disposal Act (SWDA), or a mixture of such hazardous waste and other regulated substances.

(2) Any wastewater treatment UST system that is part of a wastewater treatment facility regulated under section 402 or 307(b) of the federal Clean Water Act.

(3) Equipment or machinery that contains regulated substances for operational purposes such as hydraulic lift tanks and electrical equipment tanks.

(4) Any UST system that contains a de minimis concentration of regulated substances.

(5) Any emergency spills or overflows containment UST system that is expeditiously emptied after use.
(c) Articles 2, 3, 4, 5, 8, and 9 of this chapter do not apply to:

 (1) Any UST systems containing radioactive material that are regulated under the federal Atomic Energy Act of 1954 (42 U.S.C. section 2011 and following); and

 (2) Any UST system that is part of an emergency generator system at nuclear power generation facilities regulated by the Federal Nuclear Regulatory Commission under 10 C.F.R. Part 50.

(d) Articles 2, 3, 4, 5, 9, and 11 of this chapter do not apply to owners and operators of wastewater treatment tank systems, including oil-water separators, and decontamination tanks except for the following:

 (1) Owners and operators of wastewater treatment tanks systems and decontamination tanks must notify the Agency and obtain a permit to install a new flow-through process or decontamination tank in accordance with Article 2, as applicable. Owners and operators of flow-through process tanks and decontamination tanks are not required to obtain, renew, or pay for an annual permit fee to operate the tank;

 (2) Owners and operators of wastewater treatment tank systems or decontamination tanks shall pay for a fee to install and close the system; and to conduct site assessment upon closure in accordance with §§ 50182 and 50183 of Article 8; and

 (3) Owners and operators of wastewater treatment tank systems and decontamination tanks that are installed after October 13, 2015, must be designed, constructed, and installed in accordance with §§ 50112 through 50113 and §§ 50115 through 50116 of Article 2, unless directed otherwise by the Agency.

(a) No person may install an UST system listed in § 50101(c) for the purpose of storing regulated substances unless the UST system (whether of single-wall or double-wall construction):
(1) Will prevent releases due to corrosion or structural failure for the operational life of the UST system;

(2) Is cathodically protected against corrosion, constructed of non-corrodible material, steel clad with a non-corrodible material, or designed in a manner to prevent the release or threatened release of any stored substance; and

(3) Is constructed or lined with material that is compatible with the stored substance.

(b) Notwithstanding subsection (a) of this section, an UST system without corrosion protection may be installed at a site that is determined by a corrosion expert not to be corrosive enough to cause it to have a release due to corrosion during its operating life. Owners and operators must maintain records that demonstrate compliance with the requirements of this subsection for the remaining life of the UST system.

NOTE: The following codes of practice may be used as guidance for complying with subsection (a) and (b) of this section:

(A) NACE International Recommended Practice RP-02-85, “Corrosion Control of Underground Storage Systems by Cathodic Protection”;

(B) NACE International Standard Practice SP 0169, “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”;

(C) American Petroleum Institute Recommended Practice 1632, “Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems;” or

(D) Steel Tank Institute Recommended Practice R892, “Recommended Practice for Corrosion Protection of Underground Piping Networks Associated with Liquid Petroleum Storage and Dispensing Systems”.

§ 50103. Definitions.

(a) “Aboveground release" means any release to the surface of the land or to surface water. This includes, but is not limited to, releases from the aboveground portion of an UST system and aboveground releases associated with overfills and
transfer operations as the regulated substance moves to or from an UST system.

(b) “Administrator” means the Administrator of Guam Environmental Protection Agency.

(c) “Agency” means the Guam Environmental Protection Agency.

(d) “Airport hydrant fuel distribution system” means an UST system that is a combination of one or more tanks directly connected to underground hydrant piping used to fuel aircraft. These systems do not have a dispenser at the end of the piping run, but rather have a hydrant (fill stand). If an aboveground storage tank (AST) is feeding an intermediary tank or tanks, this definition does not include the AST, but does include all underground piping entering and leaving the intermediary tank(s). Intermediary tanks are those tanks directly connected to the hydrant piping.

(e) “Ancillary equipment” means any devices including, but not limited to, such devices as piping, fittings, flanges, valves, and pumps used to distribute, meter, or control the flow of regulated substances to and from an UST.

(f) “Belowground release” means any release to the subsurface of the land or to ground water. This includes, but is not limited to, releases from the below ground portions of an UST system and belowground releases associated with overfills and transfer operations as the regulated substance moves to or from an UST.

(g) “Beneath the surface of the ground” means beneath the ground surface or otherwise covered with earthen materials.

(h) “Beneath the surface of the water” means beneath the water surface or otherwise covered with water or an aqueous solution.

(i) “Cathodic protection” is a technique to prevent corrosion of a metal surface by making that surface the cathode of an electrochemical cell. For example, a tank system can be cathodically protected through the application of either galvanic anodes or impressed current.
(j) “Cathodic protection tester” means a person who can demonstrate an understanding of the principles and measurements of all common types of cathodic protection systems as applied to buried or submerged metal piping and tank systems. At a minimum, such persons must have education and experience in soil resistivity, stray current, structure-to-soil potential, and component electrical isolation measurements of buried metal piping and tank systems.

(l) “Class A Operator” means the individual who has primary responsibility to operate and maintain the UST system in accordance with applicable requirements and standards established by the Agency. The Class A operator typically manages resources and personnel, such as establishing work assignments, to achieve and maintain compliance with regulatory requirements.

(m) “Class B Operator” means the individual who has day-to-day responsibility for implementing applicable regulatory requirements and standards established by the Agency. The Class B operator typically implements in-field aspects of operation, maintenance, and associated recordkeeping for the UST system.

(n) “Class C Operator” means the employee responsible for initially addressing emergencies presented by a spill or release from an UST system. The Class C operator typically controls or monitors the dispensing or sale of regulated substances.

(o) “Compatible” means the ability of two or more substances to maintain their respective physical and chemical properties upon contact with one another for the design life of the tank system under conditions likely to be encountered in the UST.

(p) “Complaint” means any written charge filed with or by the Agency that a person is violating or has violated any provision of Chapter 76, Title 10, Guam Code Annotated, as
amended, this chapter, or a permit, variance, order, or field citation issued pursuant to this chapter.

(q) “Connected piping” means all underground and aboveground piping including valves, elbows, joints, flanges, and flexible connectors attached to an UST system through which regulated substances flow. For the purpose of determining how much piping is connected to any individual UST system, the piping that joins two UST systems should be allocated equally between them.

(r) “Consumptive use” with respect to heating oil means consumed on the premises where stored.

(s) "Corrective action" means those activities carried out in response to any release from an underground storage tank system to minimize or mitigate the impact of the release of regulated substances in order to protect human health and the environment. The term may be used interchangeably with "release response action."

(t) “Corrosion expert” means a person who, by reason of thorough knowledge of the physical sciences and the principles of engineering and mathematics acquired by a professional education and related practical experience, is qualified to engage in the practice of corrosion control on buried or submerged metal piping systems and metal UST systems. Such a person must be accredited or certified as being qualified by the National Association of Corrosion Engineers or be a registered professional engineer who has certification or licensing that includes education and experience in corrosion control of buried or submerged metal piping systems and metal UST systems.

(u) “Decontamination tank” means a tank that is used to collect regulated substances washed-off from a person or a piece of equipment.

(v) “Dielectric material” means a material that does not conduct direct electrical current. Dielectric coatings are used to electrically isolate UST systems from the surrounding soils. Dielectric bushings are used to electrically isolate portions of the UST system (e.g., tank from piping).

(w) “Dispenser system” means equipment located aboveground that meters the amount of regulated substances
transferred to a point of use outside of the UST system, such as a motor vehicle. This system includes the equipment necessary to connect the dispenser to the underground storage tank system.

(x) “Electrical equipment” means underground equipment that contains dielectric fluid that is necessary for the operation of equipment such as transformers and buried electrical cable.

(y) “Excavation zone” means the volume containing the UST system and backfill material bounded by the ground surface, walls, and floor of the pit and trenches into which the UST system is placed at the time of installation.

(z) “Existing UST system” means an UST system for which installation commenced on or before December 22, 1988.

(aa) “Exposure assessment” means a determination regarding the extent of exposure of, or potential for exposure of, individuals to regulated substances from a release from an UST system. An exposure assessment shall be based on factors such as the nature and extent of contamination, the existence of or potential for pathways of human exposure (including ground or surface water contamination, air emissions, dermal exposure, soil ingestion, and food chain contamination), the size of the community or communities within the likely pathways of exposure, an analysis of expected human exposure levels with respect to short-term and long-term health effects associated with identified contaminants, and any available recommended exposure or tolerance limits for the contaminants.

(bb) “Farm” includes fish hatcheries, rangeland, and nurseries with growing operations.

(cc) “Farm tank” is a tank or tank system located on a tract of land devoted to the production of crops or raising animals, including fish, and associated residences and improvements. A farm tank must be located on the farm property and must be used only for farm related purposes.

(dd) “Field citation” as used in this chapter is a “Field Citation” as referred to in Article 10, which includes a Notice of Citation and Field Citation Order, and is valid after an authorized employee of the Agency signs and issues it to an owner or operator. A field citation is an offer to settle an administrative
case involving a violation of this chapter and is not an administrative order.

(ee) “Field-constructed tank” means a tank constructed in the field. For example, a tank constructed of concrete that is poured in the field, or a steel or fiberglass tank primarily fabricated in the field is considered field-constructed.

(ff) “Flow-through process tank” is a tank that forms an integral part of a production process through which there is a steady, variable, recurring, or intermittent flow of materials during the operation of the process. Flow-through process tanks do not include tanks used for the storage of materials prior to their introduction into the production process or for the storage of finished products or by-products from the production process. An oil-water separator or OWS is considered a flow-through process tank.

(gg) “Free product” refers to a regulated substance that is present as a non-aqueous phase liquid (e.g., liquid not dissolved in water.)

(hh) “Gathering lines” means any pipeline, equipment, facility, or building used in the transportation of oil or gas during oil or gas production or gathering operations.

(ii) “Hazardous substance UST system” means an UST system that contains a hazardous substance defined in section 101(14) of the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended, (but not including any substance regulated as a hazardous waste under Subtitle C of the federal Resource Conservation and Recovery Act, as amended) or any mixture of such substances and petroleum, and which is not a petroleum UST system.

(jj) “Heating oil” means petroleum that is No. 1, No. 2, No. 4-light, No. 4-heavy, No. 5-light, No. 5-heavy, and No. 6 technical grades of fuel oil; other residual fuel oils (including Navy Special Fuel Oil and Bunker C); and other fuels when used as substitutes for one of these fuel oils. Heating oil is typically used in the operation of heating equipment, boilers, or furnaces.

(kk) “Hydraulic lift tank” means a tank holding hydraulic fluid for a closed-loop mechanical system that uses compressed
air or hydraulic fluid to operate lifts, elevators, and other similar devices.

(II) “Installation” means the act of installing a UST system. Installation is considered to have commenced if:

(1) The owner or operator has obtained all federal approvals, Agency approvals, or permits necessary to begin physical construction of the site or installation of the UST system; and if,

(2) (A) Either a continuous on-site physical construction or installation program has begun; or

(B) The owner or operator has entered into contractual obligations—which cannot be canceled or modified without substantial loss—for physical construction at the site or installation of the UST system to be completed within a reasonable time as determined by the Agency.

(mm) “Liquid trap” means sumps, well cellars, and other traps used in association with oil and gas production, gathering, and extraction operations (including gas production plants), for the purpose of collecting oil, water, and other liquids. These liquid traps may temporarily collect liquids for subsequent disposition or reinjection into a production or pipeline stream, or may collect and separate liquids from a gas stream.

(nn) “Maintenance” means the normal operational upkeep to prevent an UST system from releasing product.

(oo) “Motor fuel” means petroleum or a petroleum-based substance that is typically used in the operation of a motor engine, such as motor gasoline, aviation gasoline, No. 1 or No. 2 diesel fuel, or any blend containing one or more of these substances (for example: motor gasoline blended with alcohol).

(pp) “On the premises where stored” with respect to heating oil means UST systems located on the same property where the stored heating oil is used.

(qq) “Operate” means to place or deposit a regulated substance into an UST system, to dispense a regulated substance from an UST system, to close an UST system, to maintain an
UST system, or to exercise control of or responsibility for an UST system on a daily basis regardless of whether a regulated substance is being actively managed on a daily basis.

(rr) “Operational life” refers to the period beginning when installation of the UST system has commenced until the time the UST system is properly closed under Article 8.

(ss) “Operator” means any person in control of, or having responsibility for, the daily operation of the UST system.

(tt) “Overfill” is a release that occurs when an UST is filled beyond its capacity, resulting in a discharge of the regulated substance to the environment.

(uu) “Owner” means:

(1) In the case of an UST system in use on November 8, 1984, or brought into use on or after that date, any person who owns an UST system; and

(2) In the case of any UST system in use before November 8, 1984, but no longer in use on or after that date, any person who owned such an UST system immediately before the discontinuation of its use. A UST system shall be considered in use if it stores regulated substances.

(vv) “Permit” means written authorization from the administrator to install or operate an UST system. A permit authorizes owners or operators to install and operate an UST system in a manner, or to do an act, not forbidden by this chapter, but requiring review by the Agency.

(ww) “Person” means an individual, trust, estate, firm, joint stock company, corporation (including a government corporation), partnership, association, commission, consortium, joint venture, commercial entity, the state, a county, political subdivision of a state, municipality, the United States government, federal agency, interstate body, or any other legal entity.

(xx) “Petroleum” means petroleum, including crude oil or any fraction thereof, that is liquid at standard conditions of temperature and pressure (60 degrees Fahrenheit and 14.7 pounds per square inch absolute). The term includes but is not
limited to petroleum and petroleum-based substances comprised of a complex blend of hydrocarbons, such as motor fuels, jet fuels, distillate fuel oils, residual fuel oils, lubricants, petroleum solvents, and used oils.

(yyyy) “Petroleum UST system” means an underground storage tank system that contains petroleum or a mixture of petroleum with de minimis quantities of other regulated substances. Such tanks or tank systems include those containing motor fuels, jet fuels, distillate fuel oils, residual fuel oils, lubricants, petroleum solvents, and used oils.

(zzz) “Pipe” or “piping” means a hollow cylinder or tubular conduit that is constructed of non-earthen materials.

(aaaa) “Pipeline facilities” are new and existing pipe rights-of-way (including gathering lines) and any associated equipment, facilities, or buildings.

(bbbb) “Provider of financial assurance” means a person that provides evidence of financial responsibility for one or more UST systems.

(cccc) “Regulated substance” means an element, compound, mixture, solution, or substance that, when released into the environment, may present danger to human health, welfare, or the environment. The term includes:

(1) Any substance defined in Section 101(14) of CERCLA (but not including any substance regulated as a hazardous waste under Subtitle C of the federal Resource Conservation and Recovery Act, as amended), and

(2) Petroleum, including crude oil or any fraction thereof that is liquid at standard conditions of temperature and pressure (60 degrees Fahrenheit and 14.7 pounds per square inch absolute). The term “regulated substance” includes but is not limited to petroleum and petroleum-based substances comprised of a complex blend of hydrocarbons, such as motor fuels, jet fuels, distillate fuel oils, residual fuel oils, lubricants, petroleum solvents, and used oils; and
(3) Liquefied petroleum gas (LPG), including but not limited to propane and other gases which are not liquid at standard conditions of temperature and pressure; and

(4) Any other substance as designated by the Agency.

(ddd) “Release” includes, but is not limited to, any spilling, leaking, emitting, discharging, escaping, leaching, or disposing from an UST system or UST.

(eee) “Release detection” means determining whether a release of a regulated substance has occurred from the UST system into the environment or into the interstitial space between the UST system and its secondary barrier or secondary containment around it.

(fff) “Release response action” means those activities carried out in response to any release to minimize or mitigate the impact of the release of regulated substances in order to protect human health and environment. The term “release response action” may be used interchangeably with “corrective action”.

(ggg) “Repair” means to restore a tank, pipe, spill prevention equipment, overfill prevention equipment, corrosion protection equipment, release detection equipment, or other UST system component that has caused a release or a suspected release of product from the UST system or has failed to function properly.

(hhh) “Replaced” means

(1) For an underground storage tank – to remove an underground storage tank and install another underground storage tank

(2) For connected piping – to remove 50 percent or more of connected piping and install other piping, excluding connectors, connected to a single underground storage tank. For underground storage tanks with multiple piping runs, this definition applies independently to each piping run.

(iii) “Reportable quantity” means the quantities of regulated substances that must be reported to the Agency when released to the environment.
“Residential tank” is an UST located on property used primarily for dwelling purposes.

“Secondary Containment” or “Secondarily Contained” means a release prevention and release detection system for an underground storage tank and/or piping. These systems have an inner and outer barrier with an interstitial space that is monitored for leaks.

“Septic tank” is a watertight covered receptacle designed to receive or process, through liquid separation or biological digestion, the sewage discharged from a building sewer. The effluent from such receptacle is distributed for disposal through the soil and settled solids and scum from the tank are pumped out periodically and hauled to a treatment facility.

“State” is Guam.

“Storm-water collection system” or “wastewater collection system” means piping, pumps, conduits, and any other equipment necessary to collect and transport the flow of surface water run-off resulting from precipitation, or domestic, commercial, or industrial wastewater to and from retention areas or any areas where treatment is designated to occur. The collection of storm water and wastewater does not include treatment except where incidental to conveyance.

“Surface impoundment” is a natural topographic depression, man-made excavation, or diked area formed primarily of earthen materials (although it may be lined with man-made materials) that are not an injection well.

“Tank” is a stationary device designed to contain an accumulation of regulated substances and constructed of non-earthen materials (e.g., concrete, steel, plastic) that provide structural support.

“Training program” means any program that provides information to and evaluates the knowledge of a Class A, Class B, or Class C operator regarding requirements and standards for UST systems established by the Agency. The evaluation of operator knowledge must be performed through testing, a practical demonstration, or other tools deemed acceptable to the Agency.
22 GAR Guam Environmental Protection Agency
CH. 50 Guam UnderGround Storage Tank Regulations

(rrr) “Under-dispenser containment” or “UDC” means containment underneath a dispenser system designed to prevent system leaks from reaching the soil or groundwater.

(sss) “Underground area” means an underground room, such as a basement, cellar, shaft or vault, providing enough space for physical inspection of the exterior of the tank situated on or above the surface of the floor.

(ttt) “Underground release” means any belowground or below water release.

(uuu) “Underground storage tank” or “UST” means any one or combination of tanks (including pipes connected thereto) used to contain an accumulation of regulated substances, and the volume of which (including the volume of the underground or under water pipes connected thereto) is 10 percent or more beneath the surface of the ground or water. This term does not include any:

1. Septic tank;
2. Pipeline facility (including gathering lines):
 A. Which is regulated under United States Code 49 Chapters 601 and 603, or
 B. Which is an intrastate pipeline facility regulated under state laws as provided in United States Code 49 Chapters 601 and 603, and which is determined by the United States Secretary of Transportation to be connected to a pipeline, or to be operated or intended to be capable of operating at pipeline pressure, or as an integral part of a pipeline;
3. Surface impoundment, pit, pond, or lagoon;
4. Storm-water or wastewater collection system; or
5. Liquid trap or associated gathering lines directly related to oil or gas production and gathering operations.

The term “underground storage tank” or “UST” does not include any pipes connected to any tank, which is described in subsections (1) through (5) of this definition.
(vvv) “Underground storage tank system” or “UST system” or “tank system” means an underground storage tank, connected piping, ancillary equipment, and containment system, if any.

(www) “Upgrade” means the addition or retrofit of some systems such as cathodic protection, lining, or spill and overfill controls to improve the ability of an UST system to prevent the release of product.

(xxx) “Variance” means a special written authorization from the administrator to own, install, or operate an UST system in a manner deviating from, or to do an act that deviates from, the requirements of this chapter that are more stringent or broader in scope than 40 CFR Part 280.

(yyy) “Wastewater treatment tank” means a tank that is designed to receive and treat an influent wastewater through physical, chemical, or biological methods.

§ 50104. Entry and Inspection of UST Facilities.

Any owner and operator of a UST system shall, upon request of a duly authorized representative of the Agency, permit the representative to enter the property at all reasonable times as determined by the Agency and including normal operating business hours, to inspect the facilities and equipment or to conduct monitoring or sampling activities.

§ 50105. Delivery Prohibition.

(a) It shall be unlawful to deliver to, deposit into, or accept a regulated substance into an underground storage tank at a facility that has been identified by the Agency as ineligible for fuel delivery or deposit.

(b) (1) In order to prevent the delivery of a regulated substance into an underground storage tank that has been identified by the Agency as ineligible for fuel delivery or deposit, a tamper-proof red tag shall be affixed to the fill pipe of the ineligible underground storage tank.

(2) This affixed red tag shall serve as written notification to the owner, operator, and the product delivery industry of the delivery prohibition to the underground storage tank.
(c) No owner or operator shall receive any regulated substance into any underground storage tank to which written notification of delivery prohibition (red tag) has been made.

(d) No person selling any regulated substance shall deliver or cause to be delivered a regulated substance into any underground storage tank to which notification of delivery prohibition (red tag) has been made.

(e) It shall be unlawful for any person, other than an authorized representative of the Agency, to remove, tamper with, destroy, or damage a red tag affixed to the fill pipe of any underground storage tank.

(f) (1) Pursuant to this section, a red tag shall immediately be affixed upon finding by the Agency of any of the following:

 (A) Required spill prevention equipment is not installed;

 (B) Required overfill protection equipment is not installed;

 (C) Required release detection equipment is not installed; or

 (D) Required corrosion protection equipment is not installed.

(2) The Agency, in its sole discretion, may delay the affixing of a red tag to an underground storage tank for up to one hundred eighty (180) days upon determination that:

 (A) No urgent threat to public health exists; and

 (B) Such an action would jeopardize the availability of, or access to, fuel for the local community.

(g) Pursuant to this section, a red tag shall be affixed to the fill pipe of an underground storage tank upon finding by the Agency of any of the following if the owner or operator has been provided a written notice of noncompliance and the owner or operator has failed to comply within the time frame given in the notice:
(1) Failure to properly operate or maintain release detection equipment;

(2) Failure to properly operate or maintain spill, overfill, or corrosion protection equipment;

(3) Failure to protect a buried metal flexible connector from corrosion; or

(4) Failure to maintain financial responsibility.

(h) (1) In order for an owner or operator of an underground storage tank that has received a delivery prohibition (red tag) to have the tank reclassified by the Agency as eligible to receive delivery of a regulated substance, he or she must provide a written statement to the Agency that the deficiencies listed in the notice of noncompliance have been corrected.

(2) The Agency will determine whether the deficiencies have been corrected as soon as practicable, but no longer than five (5) business days after receipt of the owner’s written statement of compliance.

(3) Upon verification of compliance, Agency personnel will reclassify the tank as eligible to receive product by removing the red tag.

NOTE: See § 50121.

§ 50106. [Reserved.]
§ 50107. [Reserved.]
§ 50108. [Reserved.]
§ 50109. [Reserved.]
§ 50110. [Reserved.]

ARTICLE 2
DESIGN, CONSTRUCTION, AND INSTALLATION

§ 50112. Tank Requirements.
§ 50113. Piping Requirements.
§ 50114. Spill and Overfill Prevention Equipment.
§ 50115. Installation.
§ 50116. Certification of Installation.
§ 50117. Under-Dispenser Containment.
§ 50118. Upgrading of Existing UST Systems.
§ 50119. [Reserved.]
§ 50120. [Reserved.]

In order to prevent releases due to structural failure, corrosion, or spills and overfills for as long as the UST system is used to store regulated substances, all owners and operators of UST systems must meet the requirements of this article.

§ 50112. Tank Requirements.

Each UST must be properly designed, constructed, and installed, and any portion underground or underwater that routinely contains product must be protected from corrosion, in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory, as specified in subsections (a) through (e) of this section. In addition, all new or replaced tanks or UST systems where installation began after October 13, 2015, must be secondarily contained in accordance with subsection (f) of this section.

(a) The UST is constructed of fiberglass-reinforced plastic; or

[NOTE: The following codes of practice may be helpful in complying with subsection (a) of this section:

A. Underwriters Laboratories Standard 1316, “Glass Fiber Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures”; or

(b) The UST is constructed of steel and cathodically protected in the following manner:

(1) The UST is coated with a suitable dielectric material;

(2) Field-installed cathodic protection systems are designed by a corrosion expert;
(3) Impressed current systems are designed to allow determination of current operating status as required in § 50142; and

(4) Cathodic protection systems are operated and maintained in accordance with § 50142 or according to guidelines established by the Agency; or

NOTE: The following codes and standards may be helpful in complying with subsection (b) of this section:

A. Steel Tank Institute Specification “sti-P3® Specification and Manual for External Corrosion Protection of Underground Steel Storage Tanks”;

D. Steel Tank Institute Standard F841, “Standard for Dual Wall Underground Steel Storage Tanks”; or

(c) The UST is constructed of steel and clad or jacketed with a non-corrodible material; or

NOTE: The following codes of practice may be helpful in complying with subsection (c) of this section:

B. Steel Tank Institute Specification F894, “ACT-100® Specification for External Corrosion Protection of FRP Composite Steel USTs”;

C. Steel Tank Institute Specification F961, “ACT-100-U® Specification for External Corrosion Protection of Composite Steel Underground Storage Tanks”; or
D. Steel Tank Institute Specification F922, “Steel Tank Institute Specification for Permatank®.”]

(d) The UST is constructed of metal without additional corrosion protection measures provided that:

(1) The UST is installed at a site that is determined by a corrosion expert not to be corrosive enough to cause it to have a release due to corrosion during its operating life; and

(2) The owners and operators maintain records that document and demonstrate compliance with the requirements of subsection (d)(1) of this section for the remaining life of the UST; or

(e) The Agency may determine that the UST construction and corrosion protection are designed to prevent the release or threatened release of any stored regulated substance in a manner that is no less protective of human health and the environment than the standards provided in subsections (a) through (d); or

(f) The tank is secondarily contained. Secondary containment must be periodically tested in accordance with § 50147. Secondarily contained tanks must meet the following:

(1) Be able to contain regulated substances leaked from the primary containment until they are detected and removed; and

(2) Be able to prevent the release of regulated substances to the environment at any time during the operational life of the UST system.

[NOTE: the following codes of practice may be used to comply with subsection (f) of this section:

§ 50113. Piping Requirements.

The piping that routinely contains regulated substances and is in contact with the ground or water must be properly designed, constructed, and protected from corrosion in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory as specified in subsections (a) through (d) of this section. In addition, except for suction piping that meets the requirements of § 50152(b)(1)(B)(i) through (v) and piping associated with field-constructed tanks and airport hydrant fuel distribution systems, all new or replaced piping where installation began after October 13, 2015, must be secondarily contained in accordance with subsection (5) of this section. When fifty percent (50%) or more of a piping run is replaced, the entire piping run must meet the secondary containment requirement.

(a) The piping is constructed of a non-corrodible material; or

NOTE: The following codes of practice may be helpful in complying with subsection (a) of this section:

A. Underwriters Laboratories Standard 971, “Standard for Non-Metallic Underground Piping for Flammable Liquids”; or

(b) The piping is constructed of steel and cathodically protected in the following manner:

(1) The piping is coated with a suitable dielectric material;

(2) Field-installed cathodic protection systems are designed by a corrosion expert;
(3) Impressed current systems are designed to allow determination of current operating status as required in § 50142; and

(4) Cathodic protection systems are operated and maintained in accordance with § 50142 or guidelines established by the Agency; or

[NOTE: The following codes of practice may be helpful in complying with subsection (b) of this section:

A. American Petroleum Institute Recommended Practice 1632, “Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems”;

C. Steel Tank Institute recommended Practice R892, “Recommended Practice for Corrosion Protection of Underground Piping Networks Associated with Liquid Petroleum Storage and Dispensing Systems”;

D. NACE International Standard Practice SP-01-69, “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”; or

E. NACE International Recommended Practice RP 0285, “Corrosion Control of Underground Storage Systems by Cathodic Protection”.

(c) The piping is constructed of metal without additional corrosion protection measures provided that:

(1) The piping is installed at a site that is determined by a corrosion expert to not be corrosive enough to cause it to have a release due to corrosion during its operating life; and

(2) The owners and operators maintain records that demonstrate compliance with the requirements of subsection (c)(1) of this section for the remaining life of the piping; or

(d) The Agency may determine that the piping construction and corrosion protection are designed to prevent the release or threatened release of any stored regulated substance in a manner that is no less protective of human health and the environment than the requirements in subsection (a) through (c) of this section; or
(e) The piping is secondarily contained. Secondary containment must be periodically tested in accordance with § 50147. Secondarily contained piping must meet the following:

(1) Be able to contain regulated substances leaked from the primary containment until they are detected and removed; and

(2) Be able to prevent the release of regulated substances to the environment at any time during the operational life of the UST system.

[NOTE: the following codes of practice may be used to comply with subsection (e) of this section:]

A. Underwriters Laboratories Standard 971, “Standard for Non-Metallic Underground Piping for Flammable Liquids”; or

§ 50114. Spill and Overfill Prevention Equipment.

(a) Except as provided in subsection (b) and (c) of this section, to prevent spilling and overfilling associated with product transfer to the UST system, owners and operators must use the following spill and overfill prevention equipment:

(1) Spill prevention equipment that will prevent release of product to the environment when the transfer hose is detached from the fill pipe (for example, a spill catchment basin); and

(2) Overfill prevention equipment that will:

(A) Automatically shut off flow into the tank when the tank is no more than ninety-five percent (95%) full; or

(B) Alert the transfer operator when the tank is no more than ninety percent (90%) full by restricting the flow into the tank or triggering a high-level alarm; or

(C) Restrict flow thirty (30) minutes prior to overfilling, or alert the transfer operator with a high-level alarm one minute before overfilling, or
automatically shut off flow into the tank so that none of the fittings located on top of the tank are exposed to product due to overfilling.

(b) Owners and operators are not required to use the spill and overfill prevention equipment specified in subsection (a) if:

(1) Alternative equipment is used that is determined by the Agency to be no less protective of human health and the environment than the equipment specified in subsection (a) of this section; or

(2) The UST system is filled by transfers of no more than twenty-five (25) gallons at one time.

(c) Flow restrictors used in vent lines may not be used to comply with subsection (a)(2) when overfill prevention is installed or replaced after October 13, 2015.

(d) Spill and overfill prevention methods that rely on the use of alarms must have the alarms clearly labeled and located where the transfer operator can clearly see or hear the alarm in order to immediately stop delivery of the product.

(e) Spill and overfill prevention equipment must be periodically tested in accordance with § 50146.

§ 50115. Installation.

All USTs and piping must be properly installed in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory and in accordance with the manufacturer's instructions.

NOTE: UST and piping system installation practices and procedures described in the following codes of practice may be helpful in complying with the requirements of this section:

A. American Petroleum Institute Publication 1615, “Installation of Underground Petroleum Storage System”;

25
§ 50116. Certification of Installation.

(a) All owners and operators must ensure that one or more of the following methods of certification, testing, or inspection is used to demonstrate compliance with § 50115 and all work listed in the manufacturer's installation checklists has been completed and the checklists maintained:

1. The installer has been certified by the tank and piping manufacturers; or
2. The installation has been inspected and certified by a licensed professional engineer with education and experience in UST system installation; or
3. The owner or operator has complied with another method for ensuring compliance with § 50115 that is determined by the Agency to be no less protective of human health and the environment.

(b) All owners and operators shall certify compliance with subsection (a) by submitting to the Agency a valid installation certification form as described in subsection (c).

(c) All installers must apply for and obtain an installation certification from the Agency stating that they meet the requirements of subsection (a). The installation certification is valid for the time period specified on the certification by the Agency.

§ 50117. Under-Dispenser Containment.

After October 13, 2015, each new dispenser system installed and connected to an UST system must be equipped with under-dispenser containment.

(a) A dispenser system is considered new when both the dispenser and the equipment needed to connect the dispenser to the underground storage tank system are installed at a UST facility. The equipment necessary to connect the dispenser to the underground storage tank system includes check valves, shear valves, unburied risers or flexible connectors, or other transitional components that are beneath the dispenser and connect the dispenser to the underground piping.
(b) Under-dispenser containment must be liquid-tight on its sides, bottom, and at any penetrations. Under-dispenser containment must allow for visual inspection and access to the components in the containment system or be continuously monitored for leaks from the dispenser system.

§ 50118. Upgrading of Existing UST Systems.

(a) In accordance with Article 8 of this chapter, owners and operators must permanently close any UST system that does not meet the UST system performance standards in § 50111 through § 50117 or has not been upgraded in accordance with subsections (b) through (d) of this section. This does not apply to UST systems listed in § 50101(a)(1) and where an upgrade is determined to be appropriate by the Agency. All existing UST systems must comply with one of the following requirements:

(1) Performance standards established in § 50111 through § 50117;

(2) The upgrading requirements in subsections (b) through (d) of this section; or

(3) Closure requirements under Article 8 of this chapter, including applicable requirements for release reporting, investigation, and confirmation under Article 6 and release response actions under Article 7.

(b) Steel UST systems must be upgraded to meet one of the following requirements in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory:

(1) Tanks upgraded by internal lining must meet the following:

(A) The lining was installed in accordance with the requirements of § 50144, and

(B) Within ten (10) years after the installation of the lining, and every five (5) years thereafter, the lined UST is internally inspected and found to be structurally sound with the lining still performing in accordance with original design specifications. If the internal lining is no longer performing in accordance with original design specifications and cannot be repaired in
accordance with a code of practice developed by a nationally recognized association or independent testing laboratory, then the lined tank must be permanently closed in accordance with Article 8.

(2) Tanks upgraded by cathodic protection must meet the requirements of § 50112(b)(2), (3), and (4), and the integrity of the UST must have been ensured using one of the following methods:

(A) The UST was internally inspected and assessed to ensure that the UST was structurally sound and free of corrosion holes prior to installing the cathodic protection system; or

(B) The UST had been installed for less than ten (10) years and is monitored monthly for releases in accordance with § 50154; or

(C) The UST had been installed for less than ten (10) years and was assessed for corrosion holes by conducting two (2) tightness tests that meet the requirements of § 50154(c). The first tightness test must have been conducted prior to installing the cathodic protection system. The second tightness test must have been conducted between three (3) and six (6) months following the first operation of the cathodic protection system; or

(D) The UST was assessed for corrosion holes by a method that is determined by the Agency to prevent releases in a manner that is not less protective of human health and the environment than subsections (b)(2)(A) through (C) of this section.

(3) USTs upgraded by both internal lining and cathodic protection must meet the following:

(A) The lining was installed in accordance with the requirements of § 50144; and

(B) The cathodic protection system meets the requirements of § 50112(b)(2) through (4).

NOTE: The following codes of practice may be helpful in complying with subsection (b):
A. American Petroleum Institute Publication 1631, “Recommended Practice for the Interior Lining of Existing Steel Underground Storage Tanks”;

B. National Leak Prevention Association Standard 631, “Spill Prevention, Minimum 10 Year Life Extension of Existing Steel Underground Tanks by Lining without the Addition of Cathodic Protection”;

C. National Association of Corrosion Engineers Standard RP-02-85 “Control of External Corrosion on Metallic Buried, Partially Buried, or Submerged Liquid Storage Systems”; and

The following codes of practice may be used to comply with the periodic lining inspection requirement of this under subsection (b)(1)(B):

(A) American Petroleum Institute Recommended Practice 1631, “Interior Lining and Periodic Inspection of Underground Storage Tanks”;

(B) National Leak Prevention Association Standard 631, “Entry, Cleaning, Interior Inspection, Repair, and Lining of Underground Storage Tanks”; or

(C) Ken Wilcox Associates Recommended Practice, “Recommended Practice for Inspecting Buried Lined Steel Tanks Using a Video Camera”.

c) Metal piping that routinely contains regulated substances and is in contact with the ground or water must be cathodically protected in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory and must meet the requirements of § 50113(b)(2), (3), and (4).

NOTE: The codes of practice listed in the note following § 50113(b) may be used to comply with this requirement.

d) To prevent spilling and overfilling associated with product transfer to the UST system, all existing UST systems must comply with the performance standard for spill and overfill prevention equipment as specified in § 50114.

e) Upgrade requirements for UST systems listed in § 50101(a)(1). UST systems that store fuel solely for emergency
power generators, wastewater treatment tank systems, airport hydrant fuel distribution systems, and UST systems with field-constructed tanks where installation commenced on or before October 13, 2015, must meet the following requirements according to the time table in § 50101(a)(1) or be permanently closed pursuant to Article 8.

(1) Corrosion protection. UST system components in contact with the ground or water that routinely contain regulated substances must meet one of the following:

(A) The performance standards for USTs at § 50112 and for piping at § 50113; or

(B) Be constructed of metal and cathodically protected according to a code of practice developed by a nationally recognized association or independent testing laboratory and meets the following:

 (i) Cathodic protection must meet the requirements of § 50112(b)(2), (3), and (4) for tanks and § 50113(b)(2), (3), and (4) for piping.

 (ii) Tanks greater than ten (10) years old without cathodic protection must be assessed to ensure the tank is structurally sound and free of corrosion holes prior to adding cathodic protection. The assessment may be internal inspection or by another method determined by the Agency to adequately assess the tank for structural soundness and corrosion holes.

NOTE: The following codes of practice may be used to comply with this section:

 (A) NACE International Recommended Practice RP 0285, “Control of Underground Storage Tank Systems by Cathodic Protection”;

 (B) NACE International Standard Practice SP 0169, “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”;

 (C) National Leak Prevention Association Standard 631, “Entry, Cleaning, Interior Inspection, Repair, and Lining of Underground Storage Tanks”; or

30
(2) Spill and overfill prevention equipment. To prevent spilling and overfilling associated with product transfer to the UST system, all UST systems listed in § 50101(a)(1) must comply with UST system spill and overfill prevention equipment requirements specified in § 50114.

§ 50119. [Reserved.]
§ 50120. [Reserved.]

 ARTICLE 3
NOTIFICATION, PERMITS, AND VARIANCES

§ 50121. Notification Requirements for Tanks Brought into Use before the Effective Date of These Rules.
§ 50122. Notification Requirements for Tanks Brought into Use on or After the Effective Date of these Rules.
§ 50123. Permit Required.
§ 50124. Application for a Permit.
§ 50125. Permit.
§ 50126. Permit Renewals.
§ 50127. Action on and Timely Approval of an Application for a Permit.
§ 50128. Permit Conditions.
§ 50129. Modification to an Existing Permit and Notice Change.
§ 50130. Revocation or Suspension of Permit.
§ 50131. Permit Transfers.
§ 50132. Variance Applications.
§ 50133. Maintenance of Permit or Variance.
§ 50134. Fees.
§ 50135. [Reserved.]
§ 50136. [Reserved.]
§ 50137. [Reserved.]
§ 50138. [Reserved.]
§ 50139. [Reserved.]
§ 50140. [Reserved.]
§ 50121. Notification Requirements for Tanks Brought into Use before the Effective Date of These Rules.

As to tanks that were brought into use before the effective date of these rules:

(a) Any person who acquires ownership of an UST system that has not been permanently closed pursuant to Article 8 shall, within thirty (30) days of acquiring ownership, submit to the Agency an amendment to the notification submitted by the previous owner. The amendment shall be on the form prescribed by the Agency.

(b) Within thirty (30) days following a change of operator of an UST system, the owner shall submit to the Agency an amendment to the notification previously submitted. The amendment shall be on the form prescribed by the Agency.

(c) For any other changes in information submitted to the Agency on the notification form, the owner shall submit an amended notification form within thirty (30) days following the change, except that notifications of permanent closures and changes in service under Article 8 must be received by the Agency at least thirty (30) days before commencement of the closure or change in service. The amendment shall be on the form prescribed by the Agency. Such changes in information shall include, but not be limited to:

(1) Permanent or temporary closures, including the return to currently-in-use or operating status;

(2) Changes in service under Article 8;

(3) Repairs;

(4) Changes in piping;

(5) Changes in type of regulated substances stored;

(6) Changes in corrosion protection mechanism;

(7) Changes in secondary containment;

(8) Changes in product dispensing method;
Changes in financial responsibility mechanism;

(10) Changes in leak detection method or equipment; and

(11) Changes in spill or overfill prevention method or equipment.

(d) Owners must comply with the permit requirements of § 50123 through § 50130 and § 50133 through § 50134.

§ 50122. Notification Requirements for Tanks Brought into Use on or After the Effective Date of These Rules.

As to tanks that were brought into use on or after the effective date of these rules, the owner may satisfy the notification requirements by complying with the permit requirements of § 50123 through § 50130 and § 50133 through § 50134.

§ 50123. Permit Required.

(a) No person shall install or operate an UST system, brought into use after the effective date of these rules, without first obtaining a permit from the Administrator.

(b) The Administrator shall approve an application for a permit only if the applicant has submitted sufficient information to the satisfaction of the Administrator that the technical, financial, and other requirements of this chapter are or can be met and the installation and operation of the UST system will be done in a manner that is protective of human health and the environment.

(c) A permit shall be issued by the Agency only in accordance with this chapter, and it shall be the duty of the owner to ensure compliance with the law in the installation and operation of the UST system.

(d) Issuance of a permit shall not relieve any person of the responsibility to comply fully with all applicable laws.

(e) Only one (1) permit can be issued for each location, which has an UST system requiring a permit under this Article.
§ 50124. Application for a Permit.

(a) Every application for a permit shall be submitted to the Agency on forms prescribed by the Agency.

(b) A permit fee in accordance with § 50134 shall accompany each application for a permit.

(c) The applicant shall submit sufficient information to enable the Administrator to make a decision on the application. Information submitted shall include but not be limited to the following:

 (1) General information on involved parties, including the landowner, owner, and operator; identification of location of the tanks, piping, and other components that comprise the UST system; and basic description of the UST system;

 (2) Age, size, location, and uses of the UST system;

 (3) Other information required in forms prescribed by the Agency for the application for a permit; and

 (4) Other information as determined by the Administrator.

(d) Every application shall be signed by the owner and the operator and shall constitute an acknowledgement that the owner or operator assumes responsibility for the installation and operation of the UST system in accordance with this chapter and the conditions of the permit, if issued. Each signatory shall be:

 (1) In the case of a corporation, a principal executive officer of at least the level of vice president, or a duly authorized representative if that representative is responsible for the overall operation of the UST system;

 (2) In the case of a partnership, a general partner;

 (3) In the case of a sole proprietorship, the proprietor; or
(4) In the case of a county, state, or federal entity, a principal executive officer, ranking elected official, or other duly authorized employee.

§ 50125. Permit.

(a) Upon approval of an application for a permit to install or operate an UST system, the Administrator shall issue a permit for a term of one (1) year except as noted in subsection (b).

(b) The owner or operator shall have one (1) year from the issuance of the permit to install an UST system. If the installation is not completed within one (1) year, the permit expires and the owner or operator must apply for a new permit.

(c) The owner or operator must inform the Agency at least seven (7) business days before performing the actual installation. The information shall include the permit number, name and address of the UST system, the owner and operator, the owner and operator's phone numbers, and date and time of actual installation.

(d) The owner or operator must notify the Agency within thirty (30) days after the installation of the UST system. The notification shall be submitted on the form prescribed by the Agency.

§ 50126. Permit Renewals.

(a) A permit may be renewed for a term of one (1) year.

(b) A renewal fee in accordance with § 50134 shall accompany each application for renewal of a permit.

(c) An application for a renewal shall be received by the Agency at least sixty (60) days prior to the expiration of the existing permit and shall be submitted on forms prescribed by the Agency.

§ 50127. Action on and Timely Approval of an Application for a Permit.

(a) The Administrator need not act upon nor consider any incomplete application for a permit. An application shall be deemed complete only when:
(1) All required and requested information, including the application forms, plans, specifications, and other information required by this Article have been submitted in a timely fashion;

(2) All fees have been paid as prescribed in § 50134; and

(3) The Administrator determines that the application is complete.

(b) The Administrator shall approve, approve with conditions, or deny a complete application for a permit to install and operate an UST system, a permit renewal, a permit modification, or permit transfer and the Administrator shall notify the applicant of the decision within one hundred eighty (180) days of receipt of a complete application per subsection (a). Otherwise, the application is deemed approved on the 180th day.

§ 50128. Permit Conditions.

The Administrator may impose conditions on a permit that the Administrator deems reasonably necessary to ensure compliance with this chapter and any other relevant requirement, including conditions relating to equipment, work practice, or operation. Conditions may include, but not be limited to, the requirement that devices for measurement or monitoring of regulated substances be installed and maintained and the results reported to the Administrator. All costs and expenses related to any permit condition imposed by the Administrator shall be borne by the applicant.

§ 50129. Modification to an Existing Permit and Notice of Change.

(a) The Administrator may modify a permit if there is a change that requires a modification to an existing permit. Changes requiring a modification to an existing permit shall include, but not be limited to:

(1) Changes in service under Article 8;

(2) Repairs;

(3) Changes in piping;
(4) Changes in type of regulated substance stored;

(5) Changes in corrosion protection mechanism; and

(6) Changes in secondary containment.

(b) The holder of a permit shall apply to the Agency for a modification to an existing permit if plans to renovate or modify an UST system would cause the holder to be out of compliance with the permit.

(c) An application for a modification of an existing permit shall be made in writing to the Agency and shall be accompanied by sufficient information on the planned renovation or modification to the UST system to assist the Administrator in making a determination as to whether the application for modification of an existing permit should be denied or granted.

(d) Applications for a modification of an existing permit shall be received by the Agency no later than thirty (30) days following the occurrence of the event that prompted the application except that applications for permanent closure or change in service must be received by the Agency at least thirty (30) days before the owner or operator begins the closure or change in service. Applications shall be submitted on forms prescribed by the Agency.

(e) Owners and operators shall submit a permit application to add UST systems to an existing permit. If the Administrator approves the addition, the existing permit shall be terminated, and a new permit shall be issued which covers the additional UST systems as well as the already permitted UST systems. The term of the new permit shall be for the remaining term of the original permit.

§ 50130. Revocation or Suspension of Permit.

The Administrator may revoke or suspend a permit if the Administrator finds any one of the following:

(a) There is a release, suspected release, or threatened release of regulated substances from the UST system;

(b) The permittee violated a condition of the permit;

(c) The permit was obtained by misrepresentation, or failure to disclose fully all relevant facts; or
(d) The owner or operator is not operating the UST system in accordance with this chapter.

§ 50131. Permit Transfers.

(a) No permit shall be transferred, unless approved by the Agency. Request for approval to transfer a permit from one owner to another owner must be made by the new owner. Request for approval to transfer a permit from one operator to another operator must be made by the new owner.

(b) The transferred permit will be effective for the remaining life of the original permit.

(c) An application for the transfer shall be received by the Agency at least thirty (30) days prior to the proposed effective date of the transfer and shall be submitted on forms prescribed by the Agency.

§ 50132. Variance Applications.

(a) Every application for a variance shall be submitted to the Agency on forms prescribed by the Agency.

(b) A variance fee in accordance with § 50134 shall accompany each application for a variance.

(c) Every application shall be signed by the owner and operator and signatories shall be in accordance with § 50124(d)(1) through (4).

§ 50133. Maintenance of Permit or Variance.

(a) Permits and variances, including application documents, shall be maintained at the location of the UST system for which the permit was issued and shall be made available for inspection upon request of any duly authorized representative of the Agency.

(b) No person shall willfully deface, alter, forge, counterfeit, or falsify any permit or variance.

§ 50134. Fees.

(a) Every applicant for a permit, a variance, a modification to an existing permit, or a transfer of a permit, shall pay the applicable fees as set forth below.
<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Fee</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Application Fee per Tank (New Installation)</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Operate Fee per Tank (Annual)</td>
<td>$250.00</td>
<td>$300.00</td>
</tr>
<tr>
<td>Permit to Transfer</td>
<td>$250.00</td>
<td></td>
</tr>
<tr>
<td>Permit to Modify</td>
<td>$150.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Permit to Close</td>
<td>$500.00</td>
<td></td>
</tr>
<tr>
<td>Permit to Install OWS</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Close OWS</td>
<td>$500.00</td>
<td></td>
</tr>
<tr>
<td>Training 8-hours (If Guam EPA provides training)</td>
<td></td>
<td>$150.00</td>
</tr>
<tr>
<td>Training 40-hours (If Guam EPA provides training)</td>
<td></td>
<td>$750.00</td>
</tr>
<tr>
<td>Document Reproduction per sheet (First 10 copies free)</td>
<td>$0.25</td>
<td></td>
</tr>
<tr>
<td>Record Request (FOIA, etc.) – Search & Segregation</td>
<td>$25.00/30 mins.</td>
<td></td>
</tr>
<tr>
<td>Request for Proposal Copy (RFP)</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>Installer’s Certification (2 years)</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>Operator’s Certification A & B (2 years)</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>Operator’s Re-Certification A & B</td>
<td>$100.00</td>
<td></td>
</tr>
</tbody>
</table>

(b) Fees shall be submitted with the application and are nonrefundable.

(c) Fees shall be made payable to the Guam Environmental Protection Agency UST-LUST Fund.

(d) If more than one type of application is combined, the highest applicable fee will be assessed.

§ 50135. [Reserved.]
§ 50136. [Reserved.]
§ 50137. [Reserved.]
§ 50138. [Reserved.]
§ 50139. [Reserved.]
ARTICLE 4
GENERAL OPERATING REQUIREMENTS

§ 50141. Spill and Overfill Control.

(a) Owners and operators must ensure that releases due to spilling or overfilling do not occur. Owners and operators must ensure that the volume available in the UST is greater than the volume of product to be transferred to the UST before the transfer is made and that the transfer operation is monitored constantly to prevent spilling and overfilling.

(b) Owners and operators must report, investigate, and clean up any spills and overfills in accordance with § 50164.

§ 50142. Operation and Maintenance of Corrosion Protection Systems.
(a) All owners and operators of metal UST systems with corrosion protection must comply with the following requirements to ensure that releases due to corrosion are prevented until the UST system is permanently closed or undergoes a change-in-service pursuant to § 50182:

 (1) All corrosion protection systems must be operated and maintained to continuously provide corrosion protection to the metal components of that portion of the UST and piping that routinely contain regulated substances and are in contact with the ground or water.

 (2) All UST systems equipped with cathodic protection systems must be inspected for proper operation by a qualified cathodic protection tester in accordance with the following requirements:

 (A) Frequency. All cathodic protection systems must be tested within six (6) months of installation and at least every three (3) years thereafter or according to another reasonable time frame established by the Agency; and

 (B) Inspection criteria. The criteria that are used to determine that cathodic protection is adequate as required by this section must be in accordance with a code of practice developed by a nationally recognized association.

NOTE: The following codes of practice may be used to comply with subsection (a)(2) of this section:

 (A) NACE International Test Method TM 0101, “Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Tank Systems”;

 (B) NACE International Test Method TM0497, “Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems”;

 (C) Steel Tank Institute Recommended Practice R051, “Cathodic Protection Testing Procedures for sti-P3 USTs.”

 (D) NACE International Recommended Practice RP-02-85, Control of Underground Storage Tank Systems by Cathodic Protection; or

 (E) NACE International Standard Practice SP 0169, “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”.

41
§ 50143. Compatibility.

(a) Owners and operators must use an UST system made of or lined with materials that are compatible with the substance stored in the UST system.

(b) Owners and operators storing any regulated substance containing greater than ten percent (10%) ethanol or greater than twenty percent (20%) biodiesel, or any other regulated substance identified by the Agency, must use one or more of the following methods to demonstrate UST system compatibility with these regulations:

(1) Certification or listing of UST system components by a nationally recognized, independent testing laboratory for use with the regulated substance stored;

(2) Equipment or component manufacturer approval. The manufacturer’s approval must be in writing, indicate an affirmative statement of compatibility, specify the range of biofuel blends the component is compatible with, and be from the equipment or component manufacturer; or

(3) Another method determined by the Agency to be no less protective of human health and the environment than the methods listed in subsections (b)(1) or (b)(2) of this section.
(c) Owners and operators must maintain the following records in accordance with § 50145 for the life of the equipment or component:

(1) Documentation of compliance with subsection (b) of this section, as applicable; and

(2) Records of all equipment or components installed or replaced after October 13, 2015. At a minimum, each record must include the date of installation or replacement, manufacturer, and model.

§ 50144. Repairs.

(a) Owners and operators of UST systems must ensure that repairs will prevent releases due to structural failure or corrosion for as long as the UST system is used to store regulated substances.

(b) UST system repairs must meet the following requirements:

(1) Repairs to UST systems must be properly conducted in accordance with a code of practice developed by a nationally recognized association or an independent testing laboratory.

NOTE: The following codes of practice may be helpful in complying with subsection (b)(1) of this section:

C. American Petroleum Institute Recommended Practice RP 1631, “Interior Lining and Periodic Inspection of Underground Storage Tanks”;

D. National Fire Protection Association Standard 326, “Safeguarding of Tanks and Containers for Entry, Cleaning, or Repair”;

F. Steel Tank Institute Recommended Practice R972, “Recommended Practice for the Addition of Supplemental Anodes to sti-P3® Tanks”;

G. NACE International Recommended Practice RP 0285, “Control of Underground Storage Tank Systems by Cathodic Protection”; or
H. Fiberglass Tank and Pipe Institute Recommended Practice T-95-02, “Remanufacturing of Fiberglass Reinforced Plastic (FRP) Underground Storage Tanks”.

(2) Repairs to fiberglass-reinforced plastic tanks may be made by the manufacturer’s authorized representatives or in accordance with a code of practice developed by a nationally recognized association or an independent testing laboratory.

(3) Metal pipe sections and fittings that have released product as a result of corrosion or other damage must be replaced. Non-corrodible pipes and fittings may be repaired in accordance with the manufacturer's specifications.

(4) Repaired tanks and piping must be tightness tested in accordance with § 50154(c) and § 50155(2) within thirty (30) days following the date of the completion of the repair, except as provided in subsections (b)(4)(A) through (b)(4)(C) of this section:

(A) The repaired UST is internally inspected in accordance with a code of practice developed by a nationally recognized association or an independent testing laboratory; or

(B) The repaired portion of the UST or tank system is monitored monthly for releases in accordance with a method specified in § 50154(d) through (f); or

(C) UST systems with secondary containment must be tested as specified in § 50147 within thirty (30) days following the completion of any repair. Tanks using interstitial sensors must be tested using a vacuum, pressure, or liquid method in accordance with one of the criteria listed in § 50147(a)(1)(B) following any repair; or

(D) Another test method is used that is determined by the Agency to be no less protective of human health and the environment than those listed above.

(5) Within six (6) months following the repair of any cathodically protected UST system; the cathodic protection
system must be tested in accordance with § 50142(a)(2) and (3) to ensure that it is operating properly.

(6) Within thirty (30) days following any repair to spill or overfill prevention equipment, the repaired spill or overfill prevention equipment must be tested in accordance with § 50146 to ensure that it is operating properly.

(c) UST system owners and operators must maintain records of each repair for the UST system in accordance with § 50145 to demonstrate compliance with the requirements of this section until the UST system is permanently closed or undergoes a change in service pursuant to § 50182.

§ 50145. Reporting and Recordkeeping.

(a) Owners and operators of UST systems must cooperate fully with inspections, monitoring, and testing conducted by the Agency, as well as requests by the Agency for document submission, monitoring and testing by owners or operators.

(b) Reporting. Owners and operators must submit the following information to the Agency:

(1) Notification for all UST systems as required by § 50121 and § 50122. When appropriate, notification shall include certification of installation for UST systems required under § 50116 and notification when any person assumes ownership of an UST system under § 50121;

(2) Reports of all releases including suspected releases as required in § 50161, spills and overfills as required in § 50164, and confirmed releases as required in § 50172;

(3) Release response actions planned or taken including immediate response actions as required in § 50172, posting of signs as required in § 50173, corrective actions planned or taken including initial abatement measures and site assessment as required in § 50174, initial site characterization as required in § 50175, free product removal as required in § 50176, soil and ground water investigations as required in § 50177, site cleanup as required in § 50178, notification of confirmed release as required in § 50178.1, corrective action plan as required in § 50179, documentation of public participation as required in
§ 50180, and ninety-day (90-day) report and quarterly progress reports as required in § 50180.1; and

(4) Notification before permanent closure or change-in-service of an UST system as required in § 50182.

(c) Recordkeeping. Owners and operators must maintain the following information for the remaining operating life of the UST system unless otherwise specified:

(1) A corrosion expert's analysis of site corrosion potential if corrosion protection equipment is not used as allowed for under § 50112 and § 50113;

(2) Documentation of operation of corrosion protection equipment as required in § 50142;

(3) Documentation of compatibility for USTs storing alcohol blends greater than ten percent (10%) (§ 50143(b));

(4) Records for all new and replaced UST system equipment (§ 50143(c));

(5) Documentation of UST system repairs as required in § 50144(c);

(6) Documentation of compliance for spill and overfill prevention equipment (§ 50146);

(7) Documentation of compliance for tanks, piping, and containment sumps using interstitial monitoring (§ 50147);

(8) Documentation of periodic walkthrough inspections (§ 50148);

(9) Record of compliance with release detection requirements as specified and according to the timeframes in § 50154;

(10) Record of compliance with change-in-service or permanent closure requirements, including results of the site assessment, under Article 8, for at least three (3) years after completion of permanent closure or change in-service;

(11) Documentation of operator training in accordance with Article 11.
(12) Documentation of all permits and variances, including all documentation, as specified in § 50133; and

(13) Proof of current financial assurance mechanisms used to demonstrate financial responsibility as required by Article 9.

(d) Availability and Maintenance of Records. Owners and operators must, until three (3) years after proper closure or change in service of the UST or tank system (unless otherwise specified), keep the records at the following locations:

(1) All documents, except the permanent closure records specified in subsection (c)(10) of this section, shall be made immediately available for inspection by the Agency by:

(A) Being maintained at the UST site; or

(B) At a readily available alternative site and be provided for inspection by the Agency upon request;

(2) In the case of permanent closure records specified in subsection (c)(10) of this section and required under § 50185, owners and operators may submit closure records to the Agency if they cannot be kept at the site or an alternative site as indicated above.

§ 50146. Periodic Testing of Spill and Overfill Prevention Equipment.

(a) Owners and operators of UST systems with spill and overfill prevention equipment must meet the following requirements to ensure the equipment is operating properly and will prevent releases to the environment:

(1) Spill prevention equipment (such as a catchment basin, spill bucket, or other spill containment device) must prevent releases to the environment by meeting one of the following:

(A) The spill prevention equipment has two (2) walls and the space between the walls is monitored continuously to ensure the integrity of the inner and outer walls is maintained; or
(B) The spill prevention equipment is tested at installation and at least once every twelve (12) months to ensure the spill prevention equipment is liquid tight by using vacuum, pressure or liquid testing in accordance with one (1) of the following criteria:

(i) Requirements developed by the manufacturer (Note: Owners and operators may use this option only if the manufacture has developed testing requirements);

(ii) Code of practice developed by a nationally recognized association or independent testing laboratory; or

(iii) Requirements determined by the Agency to be no less protective than the requirements in subsections (a)(1)(B)(i) and (ii) of this section.

(2) Overfill prevention equipment must be tested at installation and at least once every three (3) years. At a minimum, testing must ensure that overfill prevention equipment is set to activate at the correct level specified in §50114 and will activate when regulated substance reaches that level. Testing must be conducted in accordance with one of the criteria in subsection (a)(1)(B) of this section.

(b) Owners and operators must begin meeting these requirements as follows:

(1) For UST systems in use on or before October 13, 2015:

(A) Not later than October 13, 2018, for spill prevention equipment; and

(B) Not later than October 13, 2018, for overfill prevention equipment.

(2) For UST systems brought into use after October 13, 2015, these requirements apply at installation.

(c) Owners and operators must maintain the following records for spill and overfill prevention equipment:
(1) All records of spill prevention equipment testing and overfill prevention equipment testing must be maintained for three (3) years; and

(2) For spill prevention equipment not tested every twelve (12) months, documentation showing that the spill prevention equipment has two (2) walls and is monitored continuously. Owners and operators must maintain this documentation for as long as the spill prevention equipment is monitored continuously, and for three (3) additional years after continuous monitoring ends.

(a) Owners and operators of UST systems with secondary containment using interstitial monitoring must ensure the integrity of all interstitial areas (including all containment sumps used for interstitial monitoring).

(1) Tanks must meet one of the following:

(A) The interstitial space is continuously monitored using vacuum, pressure, a liquid-filled interstitial space, or interstitial sensors; or

(B) The interstitial space is monitored using an interstitial monitoring method not listed in § 50147(a)(1)(A) and the integrity of the interstitial space is ensured at least once every three (3) years by using vacuum, pressure or liquid testing in accordance with one of the following criteria:

(i) Requirements developed by the manufacturer (Note: Owners and operators may use this option only if the manufacturer has developed integrity testing requirements);

(ii) Code of practice developed by a nationally recognized association or independent testing laboratory; or

(iii) Requirements determined by the Agency to be no less protective to human health and the environment than the requirements in subsections (a)(1)(B)(i) or (ii) of this section.
(2) Piping must meet one of the following:

 (A) The interstitial space is continuously monitored using vacuum, pressure, or a liquid-filled interstitial space; or

 (B) The interstitial space is monitored using an interstitial monitoring method not listed in § 50147(a)(2)(A) and the integrity of the interstitial space is ensured at least once every three (3) years by using vacuum, pressure or liquid testing in accordance with one of the criteria listed in subsection (a)(1)(B) of this section.

(3) Containment sumps must meet one of the following:

 (A) The containment sump has two walls and the space between the walls is continuously monitored; or

 (B) The containment sump is tested at least every three (3) years to ensure the containment sump is liquid tight by using vacuum, pressure or liquid testing in accordance with one of the criteria listed in subsection (a)(1)(B) of this section.

(b) Owners and operators of UST systems using interstitial monitoring must begin meeting this requirement as follows:

 (1) For UST systems in use on or before October 13, 2015, not later than October 13, 2018.

 (2) For UST systems brought into use after October 13, 2015, these requirements apply at installation.

(c) Owners and operators must maintain one of the following records for the timeframes indicated for each tank, piping and containment sump that uses interstitial monitoring:

 (1) Records of interstitial space testing must be maintained for three (3) years; or

 (2) As appropriate, records demonstration: the tank is using continuous interstitial monitoring with vacuum, pressure, liquid-filled interstitial space; the piping is using continuous interstitial monitoring with vacuum, pressure, liquid-filled interstitial space; and the containment sump has
two (2) walls and uses continuous interstitial monitoring. Owners and operators must maintain these records for as long as the tank, piping, or containment sump uses one of these continuous methods of interstitial monitoring, and for three (3) additional years after continuous monitoring ends.

[NOTE: the following codes of practice may be used to comply with this section:

A. Steel Tank Institute Recommended Practice R012, “Recommended Practice for Interstitial Tightness Testing of Existing Underground Double Wall Steel Tanks”; or

§ 50148. Periodic Operation and Maintenance of Walkthrough Inspections.

(a) To properly operate and maintain UST systems, owners and operators must meet one of the following:

(1) Conduct a walkthrough inspection at least once every thirty (30) days that, at a minimum and as appropriate to the facility, checks the following equipment as specified:

(A) Spill Prevention Equipment - open and visually check for any damage; remove any liquid or debris; check each fill cap to make sure it is securely on the fill pipe; and for spill prevention equipment with continuous interstitial monitoring, check for a leak in the interstitial area;

(B) Sumps - open and visually check for any damage, leaks to the containment area, or releases to the environment; remove any liquid (in contained sumps) or debris; and for sumps with continuous interstitial monitoring, check for a leak in the interstitial area;

(C) Dispenser Cabinets - open and visually check for any damage, leaks to the containment area, or releases to the environment; remove any liquid (in contained sumps) or debris; and for sumps with continuous interstitial monitoring, check for a leak in the interstitial area;
(D) Monitoring/Observation Wells – check covers to make sure they are secured;

(E) Cathodic Protection – check to make sure impressed current cathodic protection rectifiers are on and operating; and ensure records of three (3) year cathodic protection testing and sixty (60) days impressed current system inspections reviewed are current; and

(F) Release Detection Systems – check to make sure the release detection system is on and operating with no alarms or unusual operating conditions present; check any devices such as tank gauge sticks, groundwater bailers, and hand-held vapor monitoring devices for operability and serviceability; and ensure records of release detection testing are reviewed monthly and current.

(2) Conduct operation and maintenance walkthrough inspections at least once every thirty (30) days according to a standard code of practice developed by a nationally recognized association or independent testing laboratory that are comparable to (a)(1) of this section; or

(3) Conduct operation and maintenance walkthrough inspections developed by the Agency that is comparable to (a)(1) of this section.

(b) Owners and operators must maintain records of operation and maintenance walkthrough inspections for one (1) year. The record must include a listing of each area checked, whether each area checked was acceptable or needed to have any action taken and a description of any actions taken to correct an issue.

NOTE: the following code of practice may be helpful in complying with subsection (a)(1) of this section: Petroleum Equipment Institute Recommended Practice RP 900, “Recommended Practices for the Inspection and Maintenance of UST Systems”.

§ 50149. [Reserved.]

§ 50150. [Reserved.]
§ 50151. General Requirements for All UST Systems.
(a) Owners and operators of UST systems must provide a method, or combination of methods, of release detection that:

(1) Can detect a release from any portion of the UST and the connected piping that routinely contains product;

(2) Is installed and calibrated in accordance with the manufacturer's instructions;

(3) Beginning on October 13, 2018, is operated and maintained, and electronic and mechanical components are tested for proper operation, in accordance with one of the following: manufacturer's instructions; a code of practice developed by a nationally recognized association or independent testing laboratory; or requirements developed by the Agency. A test of the proper operation must be performed at least annually and, at a minimum, as applicable to the facility, it must cover the following components and criteria:

(A) Automatic tank gauge (ATG) and other controllers: test alarm; verify system configuration; test battery back-up;

(B) Probes and sensors: inspect for residual build-up, ensure floats move freely; ensure shaft is not damaged; ensure cables are free of kinks, bends and
breaks; test alarm operability and communication with controller;

(C) Line leak detector: test operation to meet criteria in 40 CFR Part 280.44 by simulating a leak; inspect leak sensing o-ring; and

(D) Vacuum pumps and pressure gauges: ensure proper communication with sensors and controller.

(4) Meets the performance requirements in § 50153, § 50154, § 50155, or § 50156, as applicable, with any performance claims and their manner of determination described in writing by the equipment manufacturer or installer. Owners and operators must also provide the Agency with the equipment manufacturer or installer's written documentation of any performance claims and their manner of determination. In addition, the following methods: § 50153(1), § 50153(2), § 50154(b), § 50154(c), § 50154(d), § 50155, § 50156 must be capable of detecting the leak rate or quantity specified for that method in the corresponding section of the regulations with a minimum probability of detection (Pd) of 0.95 and a maximum probability of false alarm (Pfa) of 0.05.

(b) When a release detection method operated in accordance with the performance standards in § 50153, § 50154, § 50155, or § 50156 indicates a release may have occurred, owners and operators must notify the Agency in accordance with Article 6.

(c) Owners and operators of airport hydrant fuel distribution systems, UST systems with field-constructed tanks, and wastewater treatment tank systems must comply with the release detection requirements of this Article according to the following table:
Schedule for Phase-in of Release Detection for Airport Hydrant Fuel Distribution Systems, UST Systems with Field-Constructed Tanks, and Wastewater Treatment Tank Systems

<table>
<thead>
<tr>
<th>Type of UST System</th>
<th>Time Frame (after October 13, 2015)</th>
<th>Description of Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk piping associated with airport hydrant fuel distribution systems and field-constructed tanks using § 50158(a) for piping release detection</td>
<td>Within three (3) years</td>
<td>Conduct one bulk piping tightness test according to § 50158(a) using the maximum detectable leak rates for semiannual testing. For bulk piping segments that are ≥ 100,000 gallons and not capable of meeting the 3.0 gallon per hour leak rate, owners and operators may use a leak rate of up to 6.0 gallons per hour.</td>
</tr>
<tr>
<td></td>
<td>Between years three (3) and six (6)</td>
<td>Between years six (6) and seven (7)</td>
</tr>
<tr>
<td></td>
<td>After year seven (7)</td>
<td>After year seven (7)</td>
</tr>
<tr>
<td>Bulk piping associated with airport hydrant fuel distribution systems and field-constructed tanks not using § 50158(a) for piping release detection</td>
<td>Within three (3) years</td>
<td>Perform release detection according to this Article.</td>
</tr>
<tr>
<td>Underground tanks associated with hydrant fuel distribution systems and field-constructed tanks</td>
<td>Within three (3) years</td>
<td>Perform release detection according to this Article.</td>
</tr>
<tr>
<td>Wastewater treatment tank systems</td>
<td>Within three (3) years</td>
<td>Perform release detection according to this Article.</td>
</tr>
</tbody>
</table>

(d) Owners and operators of any UST system that cannot apply a method of release detection that complies with the requirements of this Article must comply with closure procedures in Article 8. For UST systems described in § 50101(a)(1), this requirement applies after the effective date for Article 5 described in § 50101(a)(1).
§ 50152. Requirements for Petroleum UST systems.

Owners and operators of petroleum UST systems must provide release detection for tanks and piping as follows:

(a) Tanks. Tanks must be monitored for releases as follows:

(1) Tanks installed on or before October 13, 2015, must be monitored for releases at least every thirty (30) days using one of the methods listed in § 50154(d) through (f) except that:

(A) UST systems that meet the performance standards in Article 2, and the monthly inventory control requirements in § 50154(a) or (b), must use tank tightness testing (conducted in accordance with § 50154(c)) at least every year until ten (10) years after the tank was installed or upgraded under § 50118, whichever is earlier;

(B) Tanks with capacity of five hundred fifty (550) gallons or less and tanks with a capacity of five hundred fifty-one (551) to one thousand (1000) gallons that meet the tank diameter criteria in § 50154(b) may use manual tank gauging (conducted in accordance with § 50154(b));

(C) Field-constructed tanks with capacity of fifty thousand ((50,000) gallons may use the alternative release detection requirements in § 50157;

(D) Tanks using either vapor monitoring or ground-water monitoring release detection methods as specified in the federal regulations at 40 C.F.R. Part 280.43(e) or 280.43(f) to monitor for releases, must begin using one of the methods listed in § 50154(d), (e), or (f) not later than September 30, 2015; and

(2) Tanks installed after October 13, 2015, must be monitored for releases at least every thirty (30) days in accordance with § 50154(e).
(b) Piping. Underground piping that routinely contains regulated substances must be monitored for releases in a manner that meets one of the following requirements:

(1) Piping installed on or before October 13, 2015, must meet one of the following:

 (A) Pressurized piping. Underground piping that conveys regulated substances under pressure must:
 (i) Be equipped with an automatic line leak detector in accordance with § 50155(a); and
 (ii) Have a line tightness test conducted every twelve (12) months and in accordance with § 50155(b) or have monthly monitoring conducted in accordance with § 50155(c).

 (B) Suction piping. Underground piping that conveys regulated substances under suction must either have a line tightness test conducted at least every three (3) years and in accordance with § 50155(b), or use a monthly monitoring method conducted in accordance with § 50155(c). No release detection is required for suction piping that is designed and constructed to meet the following standards:
 (i) The below-grade piping operates at less than atmospheric pressure;
 (ii) The below-grade piping is sloped so that the contents of the pipe will drain back into the storage tank if the suction is released;
 (iii) Only one check valve is included in each suction line;
 (iv) The check valve is located directly below and as close as practical to the suction pump; and
(v) A method is provided that allows compliance with subsections (b)(1)(B)(ii) through (iv) of this section to be readily determined.

(C) Bulk piping. Underground piping associated with airport hydrant fuel distribution systems and field-constructed tanks must meet one of the following release detection requirements:

(i) The requirements in subsections (b)(1)(A) or (B) of this section; or

(ii) The alternative release detection requirements in § 50158.

(2) Piping installed or replaced after October 13, 2015, must meet one of the following:

(A) Pressurized piping must be monitored for releases at least every thirty (30) days in accordance with § 50154(e) and be equipped with an automatic line leak detector in accordance with § 50155(a).

(B) Suction piping must be monitored for releases at least every thirty (30) days in accordance with § 50154(e). No release detection is required for suction piping that meets subsections (b)(1)(B)(i) through (v) of this section.

(C) Underground bulk piping associated with airport hydrant fuel distribution systems and field-constructed tanks must meet the requirements in subsection (b)(1) of this section.

§ 50153. Requirements for Hazardous Substance UST Systems.

Owners and operators of hazardous substance UST systems must monitor these systems using § 50154(e) at least every thirty (30) days and provide containment that meets the following requirements:
(a) Secondary containment systems must be designed, constructed and installed to:

 (1) Contain regulated substances leaked from the primary containment until they are detected and removed;

 (2) Prevent the release of regulated substances to the environment at any time during the operational life of the UST system; and

 (3) Be checked for evidence of a release at least every thirty (30) days.

NOTE: The provisions of the federal regulations at 40 CFR Part 265.193, Containment and Detection of Releases, may be used to comply with these requirements for tanks installed on or before October 13, 2015.

(b) Double-walled tanks must be designed, constructed, and installed to:

 (1) Contain a release from any portion of the inner tank within the outer wall; and

 (2) Detect the failure of the inner wall.

(c) External liners (including vaults) must be designed, constructed, and installed to:

 (1) Contain 100 percent of the capacity of the largest tank within its boundary;

 (2) Prevent the interference of precipitation or ground-water intrusion with the ability to contain or detect a release of regulated substances; and

 (2) Surround the tank completely (i.e., it is capable of preventing lateral as well as vertical migration of regulated substances).

(d) Underground piping must be equipped with secondary containment that satisfies the requirements of this section (e.g., trench liners, double-walled pipe). In addition, underground piping that conveys regulated substances under pressure must be equipped with an automatic line leak detector in accordance with § 50155(1).

(e) For hazardous substance UST systems installed on or before October 13, 2015, other methods of release detection may be used if owners and operators:
(1) Demonstrate to the Agency that an alternate method can detect a release of the stored substance as effectively as any of the methods allowed in §§ 50154(b) through (f) can detect a release of petroleum;

(2) Provide information to the Agency on effective corrective action technologies, health risks, and chemical and physical properties of the stored substance, and the characteristics of the UST site; and

(3) Obtain approval from the Agency to use the alternate release detection method before the installation and operation of the UST system.

Each method of release detection for tanks used to meet the requirements of § 50152, except field-constructed tanks installed on or before October 13, 2015, with capacities greater than fifty thousand (50,000) gallons that meet § 50157, must be conducted in accordance with the following:

(a) Inventory control. Product inventory control (or another test of equivalent performance) must be conducted monthly to detect a release of at least one percent (1.0%) of flow-through plus one hundred thirty (130) gallons on a monthly basis in the following manner:

(1) Inventory volume measurements for regulated substance inputs, withdrawals, and the amount still remaining in the tank are recorded each operating day;

(2) The equipment used is capable of measuring the level of product over the full range of the tank's height to the nearest one-eighth (⅛) of an inch;

(3) The regulated substance inputs are reconciled with delivery receipts by measurement of the tank inventory volume before and after delivery;

(4) Deliveries are made through a drop tube that extends to within one (1) foot of the tank bottom;

(5) Product dispensing is metered and recorded within the local standards for meter calibration or an
accuracy of six (6) cubic inches for every five (5)
gallons of product withdrawn; and

(6) The measurement of any water level in the
bottom of the tank is made to the nearest one-eighth
(1/8) of an inch at least once a month.

[NOTE: Practices described in the American Petroleum Institute
Recommended Practice RP 1621, “Bulk Liquid Stock Control at
Retail Outlets” may be helpful, where applicable, in meeting the
requirements of subsection (1) of this section.]

(b) Manual tank gauging. Manual tank gauging must
meet the following requirements:

(1) Tank liquid level measurements are taken at
the beginning and ending of a period of at least thirty-
six (36) hours during which no liquid is added to or
removed from the tank. The minimum test duration is
defined in the table below;

(2) Level measurements shall be to the nearest
one-eighth (1/8) of an inch and shall be based on the
average of two (2) consecutive gauge stick readings at
both the beginning and ending of the period;

(3) The equipment used is capable of measuring
the level of product over the full range of the tank's
height to the nearest one-eighth (1/8) of an inch;

(4) A release is suspected and subject to the
requirements of Article 6 if the variation between
beginning and ending measurements exceeds the
weekly or monthly standards in the following table:

<table>
<thead>
<tr>
<th>Nominal Tank Capacity</th>
<th>Minimum Duration of Test</th>
<th>Weekly Standard (One Test)</th>
<th>Monthly Standard (Four Test Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>550 gallons or less</td>
<td>36 hours</td>
<td>10 gallons</td>
<td>5 gallons</td>
</tr>
<tr>
<td>551-1,000 gallons</td>
<td>44 hours</td>
<td>9 gallons</td>
<td>4 gallons</td>
</tr>
<tr>
<td>(when tank diameter is 64")</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551-1,000 gallons</td>
<td>58 hours</td>
<td>12 gallons</td>
<td>6 gallons</td>
</tr>
<tr>
<td>(when tank diameter is 48")</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(5) Measurements shall be conducted each week of the month. If the month has five (5) measurement periods, the weekly test with the smallest discrepancy shall not be used in calculating the average.

(6) Tanks of five hundred fifty (550) gallons or less nominal capacity and tanks with a nominal capacity of five hundred fifty-one (551) to one thousand (1,000) gallons that meet the tank diameter criteria in the table in subsection (2)(D) of this section may use this as the sole method of release detection. All other tanks with a nominal capacity of five hundred fifty-one (551) to two thousand (2,000) gallons may use the method in place of inventory control in § 50154(a). Tanks of greater than two thousand (2,000) gallons nominal capacity may not use this method to meet the requirements of this Article.

(c) Tank tightness testing. Tank tightness testing (or another test of equivalent performance) must be capable of detecting a 0.1 gallon per hour leak rate from any portion of the tank that routinely contains product while accounting for the effects of thermal expansion or contraction of the product, vapor pockets, tank deformation, evaporation or condensation, and the location of the water table.

(d) Automatic tank gauging. Equipment for automatic tank gauging that tests for the loss of product and conducts inventory control must meet the following requirements:

(1) The automatic product level monitor test can detect a 0.2 gallon per hour leak rate from any portion of the tank that routinely contains product; and

(2) The test must be performed with the system operating in one of the following modes:
(A) In-tank static testing conducted on a periodic basis; or

(B) Continuous in-tank leak detection operating on an uninterrupted basis or operating within a process that allows the system to gather incremental measurements to determine the leak status of the tank at least once every thirty (30) days.

c) Interstitial monitoring. Interstitial monitoring between the UST system and a secondary barrier immediately around it may be used, but only if the system is designed, constructed and installed to detect a leak from any portion of the tank that routinely contains product and also meets one of the following requirements:

(1) For double-walled tank systems, the sampling or testing method can detect a release through the inner wall in any portion of the tank that routinely contains product;

(2) For tanks with an internally fitted liner, an automated device can detect a release between the inner wall of the tank and the liner, and the liner is compatible with the substance stored.

(3) For UST systems using continuous vacuum, pressure or liquid-filled methods of interstitial monitoring, the method must be capable of detecting a breach in both the inner and outer walls of the tank and/or piping.

f) Other methods. Any other type of release detection method, or combination of methods, can be used if:

(1) It can detect a 0.2 gallon per hour leak rate or a release of one hundred fifty (150) gallons within a month with a probability of detection (Pd) of 0.95 and a probability of false alarm (Pfa) of 0.05; or

(2) The owner and operator demonstrate to the Agency that the method can detect a release of regulated substances before it reaches the environment and is at least as effectively as any of the methods
allowed in subsections (e) through (f) of this section and the Agency approves the method. In comparing methods, the Agency shall consider the size of release that the method can detect and the frequency and reliability with which it can be detected. If the method is approved, the owner and operator must comply with any conditions imposed by the Agency on its use to ensure the protection of human health and the environment.

§ 50155. Methods of Release Detection for Piping.

Each method of release detection for piping used to meet the requirements of § 50152, except bulk piping that meets § 50158, must be conducted in accordance with the following:

(a) Automatic line leak detectors. Methods which alert the operator to the presence of a leak by restricting or shutting off the flow of regulated substances through piping and triggering an audible or visual alarm may be used only if they detect leaks of three (3) gallons per hour at ten (10) pounds per square inch line pressure within one (1) hour. A test of the operation of the leak detector must be conducted at least once every twelve (12) months in accordance with § 50151(a)(3).

(b) Line tightness testing. A periodic test of piping may be conducted only if it can detect a 0.1 gallon per hour leak rate at one and one-half (1½) times the operating pressure.

(c) Applicable tank methods. Except as described in § 50152(a), any of the methods in § 50154(e) through (f) may be used if they are designed to detect a release from any portion of the underground piping that routinely contains regulated substances.

§ 50156. Release Detection Recordkeeping.

(a) All UST system owners and operators must maintain records in accordance with § 50145 demonstrating compliance with all applicable requirements of this Article. These records must include the following:
(1) All written performance claims pertaining to any release detection system used, and the manner in which these claims have been justified or tested by the equipment manufacturer or installer, must be kept and maintained for the lifetime of the equipment;

(2) All results of any sampling, testing, or monitoring must be maintained for at least three (3) years from the date of permanent closure of the UST system. Test results shall include all the testing data, not just the pass or fail determination. This includes, but is not limited to:

 (A) The results of annual operation tests conducted in accordance with § 50151(a)(3) must, at a minimum, list each component tested, indicate whether each component tested meets criteria in § 50151(a)(3) or needs to have action taken, and describe any action taken to correct an issue; and

 (B) The results of tank tightness testing or bulk tank tightness testing conducted in accordance with § 50154(c) or § 50157.

(3) Written documentation of all calibration, maintenance (including testing required by § 50151(a)(2), and repair of release detection equipment permanently located on-site must be maintained for at least five (5) years after the servicing work is completed. Any schedules of required calibration and maintenance provided by the release detection equipment manufacturer must be retained for the lifetime of the equipment;

(4) Operating manuals for all currently installed leak detection equipment must be maintained for the operating life of the UST system; and

(5) Documentation of any site assessment activities must be maintained for at least three (3) years after change-in-service or permanent closure of the UST system.

Owners and operators of field-constructed tanks with a capacity greater than fifty thousand (50,000) gallons may use
one or a combination of the following alternative methods of release detection:

(a) Conduct an annual bulk underground tank tightness test that can detect a 0.5 gallon per hour leak rate;

(b) Use an automatic tank gauging system to perform release detection at least every thirty (30) days that can detect a leak rate less than or equal to (one) 1.0 gallon per hour. This method must be combined with a bulk tank tightness test that can detect a 0.2 gallon per hour leak rate performed at least every three (3) years;

(c) Use an automatic tank gauging system to perform release detection at least every thirty (30) days that can detect a leak rate less than or equal to (two) 2.0 gallons per hour. This method must be combined with a bulk tank tightness test that can detect a 0.2 gallon per hour leak rate performed at least every two (2) years; or

(d) The Agency may approve another method if the owner and operator can demonstrate that the method is as effective and no less protective of human health and the environment as any of the methods allowed in subsections (a) through (c) of this section. In comparing methods, the Agency shall consider the size of release that the method can detect and the frequency and reliability of detection. If the method is approved, the owner and operator must comply with any conditions imposed by the Agency on its use.

Owners and operators of underground piping associated with airport hydrant fuel distribution systems and field-constructed tanks may use one or a combination of the following alternative methods of release detection:

(a) Perform a semi-annual or annual bulk line tightness test at or above operating pressure in accordance with the table below. Bulk piping segments greater than one hundred thousand (≥100,000) gallons not capable of meeting the maximum three (3.0) gallon per hour leak rate for the semi-annual test may be tested at a leak rate up to six
6.0 gallons per hour at least once each year according to the schedule in § 50151(c):

<table>
<thead>
<tr>
<th>Test Section Volume (U.S. Gallons)</th>
<th>Semi-annual Test Maximum Detectable Leak Rate (Gallons per hour)</th>
<th>Annual Test Maximum Detectable Leak Rate (Gallons per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50,000</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>≥50,000 to < 75,000</td>
<td>1.5</td>
<td>0.75</td>
</tr>
<tr>
<td>≥75,000 to < 100,000</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>≥ 100,000</td>
<td>3.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(b) Perform continuous interstitial monitoring designed to detect a release from any portion of the underground piping that routinely contains product in accordance with § 50154(e);

(c) Use an automatic line leak detector that alerts the operator to the presence of a leak by restricting or shutting off flow of regulated substances through piping and triggering an audible or visual alarm. This method may be used only if it can detect a leak of three (3) gallons per hour at ten (10) pounds per square inch line pressure within one (1) hour or equivalent.

When using this method, the following must also be met:

1. Perform interstitial monitoring, designed to detect a release from any portion of the underground piping that routinely contains product, in accordance with § 50154(e) at least every three (3) months; and

2. Conduct an annual test of the operation of the leak detector in accordance with § 50151(a)(3); or

(d) The Agency may approve another method if the owner and operator can demonstrate that the method is as effective and no less protective of human health and the environment as any of the methods allowed in subsections
(a) through (c) of this section. In comparing methods, the Agency shall consider the size of release that the method can detect and the frequency and reliability with which it can be detected. If the method is approved, the owner and operator must comply with any conditions imposed by the Agency on its use to ensure the protection of human health and the environment.

§ 50159. [Reserved.]

§ 50160. [Reserved.]

ARTICLE 6
RELEASE REPORTING, INVESTIGATION,
AND CONFIRMATION

§ 50161. Reporting of Suspected Releases.
§ 50162. Investigation of Off-Site Impacts.
§ 50163. Release Investigation and Confirmation Steps.
§ 50164. Reporting and Cleanup of Spills and Overfills.
§ 50165. [Reserved.]
§ 50166. [Reserved.]
§ 50167. [Reserved.]
§ 50168. [Reserved.]
§ 50169. [Reserved.]
§ 50170. [Reserved.]

§ 50161. Reporting of Suspected Releases.

 Owners and operators of USTs systems must notify the Agency within twenty-four (24) hours, and follow the procedures in § 50163, for any of the conditions listed in subsections (a) through (c) of this section. To ensure timely notice of release or suspected release from a UST system is received by the Agency, an owner or operator must follow up any verbal notice to the Agency with written notice of the release or suspected release within three (3) business days following the date of the initial verbal notice.

(a) The discovery by any person of evidence of regulated substances, which may have been released at the
UST system site or in the surrounding area (such as the presence of free product or vapors in soils, basements, sewer and utility lines, and nearby surface water). However, owners and operators able to confirm a release from any part of their UST system without further investigation should immediately follow the procedures in § 50171 instead of § 50163.

(b) Unusual operating conditions observed or experienced by owners and operators (such as the erratic behavior of product dispensing equipment, the sudden loss of product from the UST system, an unexplained presence of water in the tank, or water or product in the interstitial space of secondarily contained systems), unless system equipment is found to be defective but not leaking, and is immediately repaired or replaced.

(c) Monitoring results, including alarms, from a release detection method required under § 50152 or § 50153 that indicate a release may have occurred unless:

(1) The monitoring device is found to be defective, and is immediately repaired, recalibrated, or replaced, and additional monitoring results do not confirm the initial result; or

(2) In the case of inventory control, two (2) consecutive months of data do not confirm the initial result.

§ 50162. Investigation of Off-Site Impacts.

When required by the Agency, owners and operators of UST systems must follow the procedures in § 50163 to determine if the UST system is the source of off-site impacts. These impacts include the discovery of regulated substances (such as the presence of free product or vapors in soils, basements, sewer and utility lines, and nearby surface and drinking waters) that have been observed by the Agency or brought to the Agency's attention by any person.

§ 50163. Release Investigation and Confirmation Steps.

(a) Unless release response action is initiated in accordance with Article 7, owners and operators must immediately
investigate and confirm all suspected releases of regulated substances that require reporting under § 50161 within seven (7) days following the discovery of the suspected release, unless a written request for extension of time is granted by the Administrator.

(b) Investigations and confirmations required in subsection (a) of this section must use the following steps:

(1) System test. Owners and operators must conduct tests (according to the requirements for tightness testing in § 50154(c) and § 50155(b) or, for UST systems with secondary containment and interstitial monitoring, the integrity testing specified in § 50147) that determine whether a leak exists in that portion of the UST that routinely contains product, the attached delivery piping, or a breach of the interstitial space.

(A) If the system test confirms a leak, owners and operators must repair, replace, or close the UST system. In addition, owners and operators must begin release response action in accordance with Article 7 if the test results for the UST system, tank, or delivery piping indicate that a release exists.

(B) Further investigation is not required if the test results for the UST system, tank, and delivery piping do not indicate that a release exists and if the discovery of environmental contamination is not the basis for suspecting a release.

(C) Owners and operators must conduct a site check as described in subsection (b)(2) of this section if the test results for the UST system, tank, and delivery piping do not indicate that a release exists but the discovery of environmental contamination is the basis for suspecting a release.

(2) Site check. Owners and operators must measure for the presence of a release where contamination is most likely to be present at the UST system site. In selecting sample types, sample locations, and measurement methods, owners and operators must consider the nature of the stored substance, the type of initial alarm or cause for suspicion,
the type of backfill and surrounding soil, the depth and flow of ground water, and other factors as appropriate for identifying the presence and source of a release.

(A) If the test results for the excavation zone or the UST system site indicate that a release has occurred, owners and operators must begin release response action in accordance with Article 7;

(B) If the test results for the excavation zone or the UST system site do not indicate that a release has occurred, further investigation is not required.

(C) If it is determined that a release has not occurred, owners and operators must report the results of the investigation in writing to the Agency within thirty (30) days following discovery of the suspected release. The report shall include, but not be limited to, results of the tests pursuant to subsection (b) of this section as well as performance claims pursuant to § 50151(a)(4).

§ 50164. Reporting and Cleanup of Spills and Overfills.

(a) Owners and operators of UST systems must contain and immediately clean up a spill or overfill and report to the Agency within twenty-four (24) hours, and begin release response action in accordance with Article 7 in the following cases:

(1) Spill or overfill of petroleum that results in a release to the environment that exceeds twenty-five (25) gallons or that causes a sheen on nearby surface water; and

(2) Spill or overfill of a hazardous substance that results in a release to the environment that equals or exceeds its reportable quantity under CERCLA (40 CFR Part 302) or 49 CFR §172.101 (Appendix A to §172.101 – List of Hazardous Substances and Reportable Quantities).

(b) If the owners and operators cannot, within twenty-four (24) hours, contain and complete the cleanup of a spill or overfill of petroleum that is less than twenty-five (25) gallons, or a spill or overfill of a hazardous substance that is less than the reportable quantity, then the owners and operators must immediately notify the Agency of the incident and continue
cleaning up the spill or overfill. Owners and operators must also complete and submit to the Agency a written report of the actions taken in response to the spill or overfill within forty-eight (48) hours of the spill or overfill.

§ 50165. [Reserved.]
§ 50166. [Reserved.]
§ 50167. [Reserved.]
§ 50168. [Reserved.]
§ 50169. [Reserved.]
§ 50170. [Reserved.]

ARTICLE 7
RELEASE RESPONSE ACTION

§ 50171. General.
§ 50172. Immediate Response Actions.
§ 50173. Posting of Signs.
§ 50174. Initial Abatement Measures and Site Assessment.
§ 50175. Initial Site Characterization.
§ 50176. Free Product Removal.
§ 50177. Investigation of Soil and Ground Water Contamination.
§ 50178. Site Cleanup Criteria.
§ 50178.1. Notification of Confirmed Releases.
§ 50180. Public Participation for Corrective Action Plans.
§ 50180.1. Reporting and Recordkeeping.

§ 50171. General.

(a) Owners and operators of UST systems must comply with the requirements of this Article in responding to releases of regulated substances from UST systems.

(b) For purposes of complying with this Article, the date of confirmation of a release shall be as follows:
(1) For releases confirmed on or after the effective date of these rules, the date of confirmation shall be the date the release is confirmed in accordance with § 50163.

(2) For releases confirmed before the effective date of these rules, the date of confirmation shall be the effective date of these rules.

§ 50172. Immediate Response Actions.

(a) Upon confirmation of a release in accordance with § 50163, or after a release from the UST system is identified in any other manner, owners and operators must perform the following immediate response actions within the time specified below:

(1) Report the release within twenty-four (24) hours to the Agency (e.g., by telephone or electronic mail) and follow up with a written release report to the Agency describing the incident and any initial response within seventy-two (72) hours;

(2) Identify and immediately mitigate any safety hazards (such as fire, explosion, or vapor hazards); and

(3) Take immediate action to prevent any further release of the regulated substance into the environment, including removal of as much of the regulated substance from the UST system as possible; and

(4) Take immediate action to minimize the spread of contamination.

(b) Within seven (7) days of confirmation, owners and operators must submit to the Agency a written notice of confirmation. The notice shall include, but not be limited to, the following information: source of the release, method of discovery and confirmation, estimated quantity of substance released, type of substance released, immediate hazards, release impact, migration pathways, and actions taken.

§ 50173. Posting of Signs.

(a) If the Agency determines that posting of signs is appropriate, owners and operators shall post signs around the perimeter of the site informing passersby of the potential
hazards. In this instance, “site” means an area where contamination poses an immediate health risk or an area where contaminated media is exposed to the surface.

(b) Signs shall be placed at each entrance to the site and at other locations in sufficient numbers to be seen from any approach to the site.

(c) Signs shall be legible and readable from a distance of at least twenty-five (25) feet. The sign legend shall read, “Caution - Petroleum/Hazardous Substance Contamination - Unauthorized Personnel Keep Out”. Other sign legends may be used if the legend on the sign indicates that only authorized personnel are allowed to enter the site and that entry onto the site may be dangerous. A contact person and telephone number shall be listed on the sign.

(d) The sign may be removed upon determination by the Agency that no further release response action is necessary or that posting of signs is no longer appropriate.

§ 50174. Initial Abatement Measures and Site Assessment.

(a) After a release has been confirmed, owners and operators must perform the following release abatement and control measures, unless directed to do otherwise by the Agency:

 (1) Remove as much of the regulated substance from the UST system as is necessary to prevent further release to the environment;

 (2) Visually inspect the area around the UST system for evidence of any aboveground releases or exposed belowground releases and continue to take necessary actions to minimize the spread of contamination and to prevent further migration of the released substance into surrounding soils, surface water, and ground water;

 (3) Continue to monitor and mitigate any fire and safety hazards posed by vapors, contamination, or free product that have migrated from the UST or piping excavation zone and entered into subsurface structures such as sewers or basements or drinking water supplies;

 (4) Remedy hazards (such as dust and vapors and the potential for leachate generation) posed by contaminated
soils and debris that are excavated or exposed as a result of release confirmation, site investigation, abatement, or corrective action activities or release response actions undertaken pursuant to this Article;

(5) Investigate to determine the possible presence of free product, and begin free product removal as soon as practicable and in accordance with § 50176;

(6) Remove or remediate contaminated soil at the site to the extent necessary to prevent the spread of free product;

(7) Measure for the presence of a release where contamination is most likely to be present at the UST system site, unless the presence and source of the release have been confirmed in accordance with the site check required by § 50163(b)(2) or the site assessment required for change-in-service or permanent UST system closures in § 50183. In selecting sample types, sample locations, and measurement methods, the owner and operator must consider the nature of the stored substance, the type of backfill and surrounding soil, depth to and flow of ground water, and other factors as appropriate for identifying the presence and source of a release; and

(8) If any of the remedies in this section include treatment or disposal of contaminated soils, owners or operators must comply with all applicable state and federal requirements.

(b) Within twenty (20) days after release confirmation, or within another reasonable period of time determined by the Agency, owners and operators must submit a report to the Agency summarizing the initial abatement steps taken under subsection (a) of this section and any resulting information or data.

§ 50175. Initial Site Characterization.

(a) While carrying out release response actions under this Article, owners and operators must concurrently assemble necessary information about the characteristics of the site and the nature of the release in order to adequately assess the impact or potential impact the release has on human health and the environment.
(b) The information assembled pursuant to subsection (a) must include, but is not necessarily limited to, the following:

(1) Data on the nature and estimated quantity of release;

(2) Data from available sources or site investigations concerning the following factors: surrounding populations, water quality, use and approximate locations of wells potentially affected by the release, subsurface soil conditions, locations of subsurface sewers, climatological conditions, and land use;

(3) Results of the site check required under § 50174(a)(7);

(4) Results of the free product investigations required under § 50174(a)(5) to be used by the owners and operators to determine whether free product must be recovered under § 50176; and

(5) Any other information, as appropriate, which may relate to the impact of the release on human health and the environment.

(c) Within forty-five (45) days of release confirmation or another reasonable period of time determined by the Agency, owners and operators must submit the information collected in compliance with subsection (b) of this section to the Agency in a manner that demonstrates its applicability and technical adequacy, or in a format and according to the schedule required by the Agency.

§ 50176. Free Product Removal.

(a) At sites where investigations indicate the presence of free product, owners and operators must remove free product to the maximum extent practicable as determined by the Agency, while continuing, as necessary, actions initiated under § 50172 through § 50175, or preparing for actions required under § 50177 through § 50179. In meeting the requirement of this section, owners and operators must:

(1) Conduct free product removal in a manner that minimizes the spread of contamination into previously uncontaminated zones by using recovery and disposal
techniques appropriate to the hydro geologic conditions at the site, and that properly treats, discharges or disposes of recovery byproducts in compliance with applicable state and federal regulations;

(2) Use abatement of free product migration as a minimum objective for the design of the free product removal system;

(3) Handle any flammable products in a safe and competent manner to prevent fires or explosions; and

(4) Prepare and submit to the Agency, within forty-five (45) days after confirming a release, a free product removal report that provides at least the following information:

(A) The name of the person(s) responsible for implementing the free product removal measures;

(B) The estimated quantity, type, and thickness of free product observed or measured in wells, boreholes, and excavations;

(C) The type of free product recovery system used;

(D) Whether any discharge will take place on-site or off-site during the recovery operation and where this discharge will be located;

(E) The type of treatment applied to, and the effluent quality expected from, any discharge;

(F) The steps that have been or are being taken to remove free product including steps to obtain any necessary permits for any discharges;

(G) The disposition of the recovered free product; and

(H) Schedule for completion of free product removal.

(b) Owners and operators shall initiate free product removal as soon as practicable but no later than ninety (90) days
following confirmation of a release or sooner if directed by the Agency.

§ 50177. Investigation of Soil and Ground Water Contamination.

(a) In order to determine the full extent and location of soils contaminated by the release and the presence and concentrations of dissolved product contamination in the surface water or the ground water, owners and operators must conduct investigations of the release, the release site, and the surrounding area possibly affected by the release if any of the following conditions exist:

 (1) There is evidence that surface water or ground water wells have been affected by the release (e.g., as found during release confirmation or previous corrective action measures);

 (2) Free product is found to need recovery in compliance with § 50176;

 (3) There is evidence that contaminated soils may be in contact with surface water or ground water (e.g., as found during conduct of the initial response measures or investigations required under § 50171 through § 50176); and

 (4) The Agency requests an investigation, based on the potential effects of contaminated soil or ground water on nearby surface water and ground water resources.

(b) Owners and operators must submit the information collected under subsection (a) of this section as soon as practicable or in accordance with a schedule established by the Agency.

§ 50178. Site Cleanup Criteria.

(a) For releases confirmed in accordance with § 50163, owners and operators must remediate soil, water, and materials contaminated by releases from UST systems in a manner which is protective of human health and the environment and achieves cleanup as described in subsection (b).
(b) Owners and operators must remediate contaminated soil and water at the site to residual levels which meet the following criteria:

(1) Site-specific action levels as approved by the Agency. Site-specific action levels must take into account the following factors:

(A) Acceptable levels shall represent concentration levels to which the human population, including sensitive subgroups, may be exposed without adverse effect during a lifetime or part of a lifetime, incorporating an adequate margin of safety;

(B) Impacts to ecological receptors; and

(C) Other applicable requirements, if available.

[NOTE: Owners and operators should consult with the Agency on how the standards in § 50178(b) can be met. Owners and operators should also consult the Agency for forms to be used that will be helpful in expediting the Agency's review of reports submitted by the owner or operator.]

(c) The Agency may require the owners and operators to modify cleanup activities being undertaken at a site if the Agency determines that the activities are not being carried out in accordance with this Article, or are not achieving cleanup levels which are protective of human health and the environment. The Agency may impose modifications to cleanup activities by written notice to the owners and operators, and the owners and operators must implement necessary changes to the cleanup activities in response to the Agency's notice by a time schedule established by the Agency.

(d) A schedule for completion of site cleanup shall be included in the fourth quarter report required pursuant to § 50180.1(b).

§ 50178.1. Notification of Confirmed Releases.

(a) Within forty-five (45) days following confirmation of a release pursuant to § 50163, or another reasonable timeframe determined by the Agency, the owner and operator shall notify those members of the public directly affected by a release and the proposed response to the release. Members of the public directly affected by the release shall include:
(1) Persons who own, hold a lease for, or have easements at any property on which the regulated substance released from the UST system was discovered; and

(2) Other persons as identified by the Administrator.

(b) The owner and operator shall send a letter to all members of the public directly affected by the release. Model language for the letter shall be provided by the Agency and shall include at least the following information:

(1) Name and address of the UST system;

(2) Statement that a release of regulated substance has been confirmed at the UST system;

(3) Name of a contact person at the Agency; and

(4) Reference to an attached fact sheet pursuant to subsection (c) of this section.

(c) The letter to the members of the public directly affected by the release shall include a fact sheet which contains the following information:

(1) Name and address of the UST system;

(2) Name and address of the owner and operator of the UST system;

(3) Date of the confirmed release;

(4) Nature and extent of the confirmed release;

(5) Summary of measures taken to assess the release and extent of contamination; and

(6) Summary of the proposed response to the release. The fact sheet shall be updated once every ninety (90) days, or another reasonable timeframe determined by the Agency, and sent to all members of the public directly affected by the release. If additional members of the public directly affected by the release are identified in the course of release response actions, the owner and operator shall provide those persons with all previous and future letters and fact sheets.
(d) The owner and operator shall include in the forty-five day (45-day) progress report required pursuant to section 50180.1 the following information:

(1) Copy of the letter pursuant to subsection (b) of this section;

(2) List of the members of the public directly affected by the release and to whom the letter was sent; and

(3) Copies of the fact sheet and amended fact sheets pursuant to subsection (c) of this section.

(a) At any point after reviewing the information submitted in compliance with § 50171 through § 50175, the Agency may require owners and operators to submit additional information or to develop and submit a corrective action plan for responding to contaminated soils, surface water, and ground water. If a plan is required, owners and operators must submit the plan according to a schedule and format established by the Agency. Alternatively, owners and operators may, after fulfilling the requirements of § 50171 through § 50175, choose to submit a corrective action plan for responding to contaminated soil, surface water, and ground water. In either case, owners and operators are responsible for submitting a plan that provides for adequate protection of human health and the environment as determined by the Agency, and must modify their plan as necessary to meet this standard.

(b) The Agency will approve the corrective action plan only after ensuring that implementation of the plan will adequately protect human health, safety, and the environment. In making this determination, the Agency should consider the following factors as appropriate:

(1) The physical and chemical characteristics of the regulated substance, including its toxicity, persistence, and potential for migration;

(2) The hydro geologic characteristics of the facility and the surrounding area;

(3) The proximity, quality, and current and future uses of nearby surface water and ground water;
(4) The potential effects of residual contamination on nearby surface water and ground water;
(5) An exposure assessment; and
(6) Any information assembled in compliance with this Article.

(c) Upon approval of the corrective action plan or as directed by the Agency, owners and operators must implement the plan, including modifications to the plan made by the Agency. They must monitor, evaluate, and report the results of implementing the plan in accordance with a schedule and in a format established by the Agency.

(d) Owners and operators may, in the interest of minimizing environmental contamination and promoting more effective cleanup, begin cleanup of soil, surface water, and ground water before the corrective action plan is approved provided that they:

(1) Notify the Agency of their intention to begin cleanup;

(2) Comply with any conditions imposed by the Agency, including halting cleanup or mitigating adverse consequences from cleanup activities; and

(3) Incorporate these self-initiated cleanup measures in the corrective action plan that is submitted to the Agency for approval.

§ 50180. Public Participation for Corrective Action Plans.

(a) The Agency shall conduct public participation activities as outlined in subsections (e) through (k) where:

(1) A corrective action plan required pursuant to § 50179 has been submitted and the Agency has made a tentative decision concerning the proposed plan; or

(2) Implementation of any previously approved corrective action plan has not achieved the cleanup levels established in the plan and termination of the plan is under consideration by the Agency.
(b) Costs for all public participation activities described in subsections (e) through (k) shall be borne by the owner and operator of the UST system, including the costs of making copies of materials to the public under subsection (h).

(c) The Agency will provide notice to the public of the release and the applicable response by means designed to reach those members of the public affected by the release and the cleanup actions planned.

(d) Members of the public affected by the release shall include the following:

1. Members of the public directly affected by the release as defined in § 50178.1(a); and
2. The general public.

(e) Notice to those individuals defined in subsection (d)(1) shall be in the form of a letter from the Agency and shall include at least the following information:

1. Name and address of the UST system;
2. Name and address of the owner and operator of the UST system;
3. Summary of the release information and the proposed or previously approved corrective action plan;
4. The Agency’s tentative decision concerning the proposed corrective action plan or concerning the termination of the previously approved corrective action plan;
5. Announcement that an informational meeting will be held if there is any public interest;
6. Request for comments on the corrective action plan and the Agency's tentative decision; and
7. Availability of information on the release and the Agency's tentative decision.

(f) Notice to those individuals defined in subsection (d)(2) may be in the form of a notice in local newspapers, block advertisements, public service announcements, publication in a state register, letters to individual households, a publication on
the internet, or personal contacts by field staff and shall include at least the same information as in subsection (c).

(g) Comments shall be received by the Agency no later than thirty (30) days after the notice provided in subsections (e) and (f) or after the end of the public meeting, if held, pursuant to subsection (i), whichever occurs later.

(h) Information on the release, the proposed corrective action plan, and the Agency's tentative decision on the plan shall be made available to the public for inspection upon request.

(i) Before approving a corrective action plan, the Agency may conduct a public meeting to provide information and receive comments on the proposed plan. A meeting will be held if there is sufficient public interest or for any other reason determined by the administrator. Public interest shall be indicated by written request to the Agency.

(j) Within thirty (30) days following the end of the comment period provided for in subsection (g), the Agency will provide a second notice to the public of the Agency's final decision on the corrective action plan.

(k) The second notice shall be provided to those persons defined in subsection (d)(1) and to any persons who have expressed an interest during the public comment period or the public meeting. The notice shall be in the form of a letter and shall include at least the following information:

 (1) Name and address of the UST system;

 (2) The final decision by the Agency concerning the corrective action plan;

 (3) Any changes in the final corrective action plan from the proposed or previously approved version; and

 (4) Response to comments received.

(l) The Agency must ensure that site release information and decisions concerning the corrective action plan are made available to the public for inspection upon request.

§ 50180.1. Reporting and Recordkeeping.
(a) No later than ninety (90) days following the confirmation of a release in accordance with § 50163, owners and operators must submit to the Agency a written report of:

(1) All release response actions taken pursuant to this Article during the first ninety (90) days following confirmation of a release; and

(2) A plan for future release response actions to be taken.

(b) Beginning one hundred eighty (180) days following confirmation of a release, owners and operators must submit written progress reports at least once every ninety (90) days to the Agency. These reports shall be referred to as 90-day progress reports and they must describe the following:

(1) All response actions taken pursuant to this Article after the last report date;

(2) A plan for future release response actions to be taken; and

(3) Information required pursuant to § 50178.1.

(c) A 90-day progress report is not required if:

(1) Response actions have met the requirements of § 50178; and

(2) A final 90-day progress report has been submitted.

ARTICLE 8
CLOSURE AND CHANGE-IN-SERVICE

§ 50181. Temporary Closure.
§ 50182. Permanent Closure and Change-in-Service.
§ 50183. Site Assessment.
§ 50184. Previously-Closed UST Systems.
§ 50185. Closure Records.
§ 50186. [Reserved.]
§ 50187. [Reserved.]
§ 50188. [Reserved.]
§ 50189. [Reserved.]
§ 50190. [Reserved.]

§ 50181. Temporary Closure.

(a) An UST system is considered temporarily closed if the owner and operator does not deposit regulated substances into the UST system or dispense regulated substances from the UST system during a time period of at least twelve (12) months.

(b) When an UST system is temporarily closed, owners and operators must continue operation and maintenance of any corrosion protection system in accordance with § 50142, and any release detection in accordance with Article 5. However, release detection is not required if the UST system is empty. The UST system is empty when all materials have been removed using practices commonly recognized and employed by the industry so that no more than 2.5 centimeters (one (1) inch) of residue, or residue that is no more than 0.3 percent by weight of the total capacity of the UST system, remain in the UST system.

(c) Owners and operators must comply with Articles 6 and 7 if a release is suspected or confirmed.

(d) When an UST system is temporarily closed for three (3) months or more, owners and operators must also comply with the following requirements:

1. Leave vent lines open and functioning;
2. Cap and secure all other lines, pumps, man ways, and ancillary equipment; and
3. Empty the UST system.

(e) When an UST system is temporarily closed for more than twelve (12) months, owners and operators must permanently close the UST system if it does not meet the performance standards in § 50111. Owners and operators who fail to meet such requirements or who maintain an UST system in temporarily closed status for more than sixty (60) months must permanently close the UST system. Permanent closure must be conducted in accordance with § 50182 through § 50185, unless the Agency grants an extension of the temporary closure period. Owners and operators must complete a site assessment
in accordance with § 50183 before such an extension can be requested.

(f) An UST system that is in temporarily closure must be integrity tested in accordance with a code of practice approved by the Agency prior to bringing the UST system back into service or enacting a change-in-service.

§ 50182. Permanent Closure and Change-In-Service.

(a) At least thirty (30) days before beginning either permanent closure or a change-in-service under subsections (c) and (d) of this section, owners and operators must notify the Agency in writing of their intent to permanently close or make the change-in-service, unless such action is in response to corrective action. The required assessment of the excavation zone under § 50183 must be performed after notifying the Agency but before completion of the permanent closure or a change-in-service.

(b) At least ten (10) days before a permanent closure or change-in-service action, owners or operators must notify the Agency of the exact date(s) that the activity will occur.

(c) To permanently close a tank system, owners and operators must:

(1) Empty the UST system by removing all liquids and accumulated sludge;

(2) Remove the UST system from the ground; and

(3) Conduct a site assessment in accordance with § 50183.

(d) Continued use of an UST system to store a non-regulated substance is considered a change-in-service. Before a change-in-service, owners and operators must:

(1) Empty the and clean the UST system by removing all liquid contents and accumulated sludge; and

(2) Conduct a site assessment in accordance with § 50183.
(e) All UST systems must be permanently closed within forty (40) years of their installation, except as otherwise provided by the Agency.

NOTE: The following cleaning and closure procedures may be helpful in complying with this section:

A. American Petroleum Institute Recommended Practice RP 1604, “Closure of Underground Petroleum Storage Tanks”;
B. American Petroleum Institute Standard 2015, “Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks”;
D. American Petroleum Institute Recommended Practice RP 1631, “Interior Lining and Periodic Inspection of Underground Storage Tanks,” may be used as guidance for compliance with this section; and
E. National Fire Protection Association Standard 326, “Safeguarding of Tanks and Containers for Entry, Cleaning, or Repair”; and
F. The National Institute for Occupational Safety and Health Publication 80-106 “Criteria for a Recommended Standard… Working in Confined Space” may be used as guidance for conducting safe closure procedures at some hazardous substance tanks.

§ 50183. Site Assessment.

(a) Before permanent closure or a change-in-service is completed, owners and operators must measure for the presence of a release of regulated substances where contamination is most likely to be present at the UST system site.

(b) In selecting sample types, sample locations, and measurement methods, owners and operators must consider the method of closure, the nature of the stored substance, the types of backfill and surrounding soil, the depth to and flow of ground water, and other factors appropriate for identifying the presence of a release.

(c) If a release of regulated substances, contaminated soils, contaminated ground water, or free product as a liquid or vapor is discovered in carrying out the requirements of this section, or by any other means, owners and operators must respond to the release in accordance with the requirements of Article 7.

§ 50184. Previously-Closed UST Systems.
(a) Owners and operators of UST systems which have been permanently closed or removed before October 13, 2015, or were left in-place but have not been in operation on or after October 13, 2015, must comply with the requirements of this Article, and Article 7 if contaminated soil, contaminated ground water, or free product as a vapor or liquid is discovered by any means in or around the location or former location of the UST system.

(b) When directed by the Agency, the owner and operator of an UST system permanently closed before October 13, 2015, must assess the excavation zone and close the UST system in accordance with this Article if releases from the UST may, in the judgment of the Agency, pose a current or potential threat to human health and the environment.

§ 50185. Closure Records.

(a) Owners and operators permanently closing or changing the service of an UST system must submit to the Agency a revised written notification form pursuant to § 50121.

(b) Owners and operators must keep and maintain records in accordance with § 50145. These records must be capable of demonstrating compliance with the requirements of this Article.

(c) Records of compliance with permanent closure or change-in-service requirements, including the results of the site assessment required in § 50183, must be kept and maintained for at least three (3) years after completion of permanent closure or change-in-service. These results must be kept and maintained in one of the following ways:

(1) By the owners and operators who permanently closed or changed the service of the UST system;

(2) By the current owners and operators of the UST system site; or

(3) By submitting these records to the Agency if they cannot be maintained at the closed facility or site.

§ 50186. [Reserved.]

§ 50187. [Reserved.]

§ 50188. [Reserved.]
§ 50189. [Reserved.]
§ 50190. [Reserved.]

ARTICLE 9
FINANCIAL RESPONSIBILITY

§ 50191. Applicability.
§ 50192. Compliance Dates.
§ 50193. Definition of Terms.
§ 50194. Amount and Scope of Required Financial Responsibility.
§ 50195. Allowable Mechanisms and Combination of Mechanisms.
§ 50196. Financial Test of Self-Insurance.
§ 50197. Guarantee.
§ 50198. Insurance and Risk Retention Group Coverage.
§ 50199. Surety Bond.
§ 50200. Letter of Credit.
§ 50201. Trust Fund.
§ 50202. Standby Trust Fund.
§ 50203. Local Government Bond Rating Test.
§ 50204. Local Government Financial Test.
§ 50205. (Reserved).
§ 50206. Local Government Guarantee.
§ 50207. Local Government Fund.
§ 50210. Reporting by Owner or Operator.
§ 50211. Recordkeeping.
§ 50214. Bankruptcy or Other Incapacity of Owner or Operator or Provider of Financial Assurance.
§ 50215. Replenishment of Guarantees, Letters of Credit, or Surety Bonds.
§ 50216. [Reserved.]
§ 50217. [Reserved.]
§ 50218. [Reserved.]
§ 50219. [Reserved.]
§ 50220. [Reserved.]

§ 50191. Applicability.
(a) This Article applies to all owners and operators of petroleum USTs or tank systems except as otherwise provided in this section.
(b) Owners and operators of petroleum UST systems are subject to these requirements in accordance with § 50192.
(c) Guam and federal government entities, whose debts and liabilities are the debts and liabilities of the United States, Government of Guam, or any other state, are exempt from the requirements of this Article.
(d) The requirements of this Article do not apply to owners and operators of any UST or tank system described in § 50101(b) or (c).
(e) If owners and operators of a petroleum UST or tank system are separate persons, only one person is required to demonstrate financial responsibility; however, both parties are liable in the event of noncompliance.

§ 50192. Compliance Dates.
Owners and operators of petroleum USTs must comply with the requirements of this Article. UST systems listed in § 50101(a)(1) must comply with the requirements of this Article according to the schedule in § 50101(a)(1).

§ 50193. Definition of Terms.
When used in this Article, the following terms have the meanings given below:
(a) “Accidental release” means any sudden or nonsudden release of petroleum from an UST or tank system that results in a need for release response action, compensation for bodily injury or property damage, or both, neither expected nor intended by UST or tank system owners or operators.
(b) “Bodily injury” shall have the meaning given to this term by applicable state law; however, this term shall not include those liabilities, which consistent with standard insurance industry practices, are excluded from coverage in liability insurance policies for bodily injury.

(c) “Chief Financial Officer,” in the case of local government owners and operators, means the individual with the overall authority and responsibility for the collection, disbursement, and use of funds by the local government.

(d) “Controlling interest” means direct ownership of at least fifty (50) percent of the voting stock of another entity.

(e) “Corrective action” or “release response action” means those activities carried out in response to any release from an underground storage tank or tank system to minimize or mitigate the impact of the release of regulated substances in order to protect human health and the environment.

(f) “Financial reporting year” means the latest consecutive twelve (12) month period for which any of the following reports used to support a financial test is prepared:

(1) A 10-K report submitted to the U.S. Securities and Exchange Commission;

(2) An annual report of tangible net worth submitted to Dun and Bradstreet; or

(3) Annual reports submitted to the federal Energy Information Administration or the federal Rural Electrification Administration.

(g) “Financial reporting year” may thus comprise a fiscal or a calendar year period.

(h) “GUSTR” means the Guam Underground Storage Tank Regulations, Chapter 50.

(i) “Legal defense cost” is any expense that owners or operators or providers of financial assurance incur in defending against claims or actions brought:
(1) By the U.S. EPA or Guam to require release response action or to recover the costs of release response action;

(2) By or on behalf of a third party for bodily injury or property damage caused by an accidental release; or

(3) By any person to enforce the terms of a financial assurance mechanism.

(k) “Occurrence” means an accident, including continuous or repeated exposure to conditions, which results in a release from an UST or tank system. This definition is intended to assist in the understanding of these rules and is not intended either to limit the meaning of “occurrence” in a way that conflicts with standard insurance usage or to prevent the use of other standard insurance terms in place of “occurrence.”

(l) “Owner or operator” when owners or operators are separate parties, refers to the party that is obtaining or has obtained financial assurances.

(m) “Petroleum marketing facilities” include all facilities at which petroleum is produced or refined and all facilities from which petroleum is sold or transferred to other petroleum marketers or to the public.

(n) “Petroleum marketing firms” are all firms owning petroleum-marketing facilities. Firms owning other types of facilities with USTs or tank systems as well as petroleum marketing facilities are considered to be petroleum-marketing firms.

(o) “Property damage” shall have the meaning given this term by applicable state law. This term shall not include those liabilities, which consistent with standard insurance industry practices, are excluded from coverage in liability insurance policies for property damage. However, such exclusions for property damage shall not include response actions associated with releases from USTs or tank systems, which are covered by the policy.
(p) “Provider of financial assurance” means a person that provides evidence of financial responsibility to an owner or operator of an UST or tank system through one of the financial mechanisms listed in § 50196 through § 50202, including a guarantor, insurer, risk retention group, surety, issuer of a letter of credit, issuer of a Guam-required mechanism, or a state.

(q) “Substantial business relationship” means the extent of a business relationship necessary under applicable state law to make a guarantee contract issued incident to that relationship valid and enforceable. A guarantee contract is issued “incident to that relationship” if it arises from and depends on existing economic transactions between the guarantor and the owner or operator.

(r) “Substantial governmental relationship” means the extent of a governmental relationship necessary under applicable state law to make an added guarantee contract issued incident to that relationship valid and enforceable. A guarantee contract is issued “incident to that relationship” if it arises from a clear commonality of interest in the event of an UST or tank system release such as coterminous boundaries, overlapping constituencies, common ground water aquifer, or other relationship other than monetary compensation that provides a motivation for the guarantor to provide a guarantee.

(s) “Tangible net worth” means the tangible assets that remain after deducting liabilities; such assets do not include intangibles such as goodwill and rights to patents or royalties. For purposes of this definition, “assets” means all existing and all probable future economic benefits obtained or controlled by a particular entity as a result of past transactions.

(t) “Termination” under § 50198(b)(1) and § 50198(b)(2) means only those changes that could result in a gap in coverage such as where the insured has not obtained substitute coverage or has obtained substitute coverage with a different retroactive date than the retroactive date of the original policy.
§ 50194. Amount and Scope of Required Financial Responsibility.

(a) Owners or operators of petroleum USTs or tank systems must demonstrate financial responsibility for taking release response action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum USTs or tank systems in at least the following per-occurrence amounts:

(1) For owners or operators of petroleum USTs or tank systems that are located at petroleum marketing facilities, or that handle an average of more than ten thousand (10,000) gallons of petroleum per month based on annual throughput for the previous calendar year; one ($1,000,000.00) million.

(2) For all other owners or operators of petroleum USTs or tank systems; five ($500,000.00) hundred thousand dollars.

(b) Owners or operators of petroleum USTs or tank systems must demonstrate financial responsibility for taking release response action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum USTs or tank systems in at least the following annual aggregate amounts:

(1) For owners or operators of one to one hundred petroleum USTs, one ($1,000,000.00) million dollars; and

(2) For owners or operators of one hundred one (101) or more petroleum USTs, two million ($2,000,000.00) dollars.

(c) For the purposes of subsections (b) and (f) only, a petroleum “UST” means a single containment unit and does not mean combinations of single containment units.

(d) Except as provided in subsection (e), if an owner or operator uses separate mechanisms or separate combinations of mechanisms to demonstrate financial responsibility for:

(1) Taking release response action;

(2) Compensating third parties for bodily injury and property damage caused by sudden accidental releases; or
(3) Compensating third parties for bodily injury and property damage caused by nonsudden accidental releases, the amount of assurance provided by each mechanism or combination of mechanisms must be in the full amount specified in subsections (a) and (b).

(e) If an owner or operator uses separate mechanisms or separate combinations of mechanisms to demonstrate financial responsibility for different petroleum USTs or tank systems, the annual aggregate required shall be based on the number of USTs or tank systems covered by each such separate mechanism or combination of mechanisms.

(f) Owners or operators shall review the amount of aggregate assurance provided whenever additional petroleum USTs or tank systems are acquired or installed. If the number of petroleum USTs or tank systems for which assurance must be provided exceeds one hundred, the owner or operator shall demonstrate financial responsibility in the amount of at least two million dollars of annual aggregate assurance by the anniversary of the date on which the mechanism demonstrating financial responsibility became effective. If assurance is being demonstrated by a combination of mechanisms, the owner or operator shall demonstrate financial responsibility in the amount of at least two million dollars of annual aggregate assurance by the first-occurring effective date anniversary of any one of the mechanisms combined (other than a financial test or guarantee) to provide assurance.

(g) The amounts of assurance required under this section exclude legal defense costs.

(h) The required per-occurrence and annual aggregate coverage amounts do not in any way limit the liability of the owner or operator.

(a) Subject to the limitations of subsections (b) and (c):

(1) An owner or operator, including a local government owner or operator, may use any one or combination of the mechanisms listed in § 50196 through §
22 GAR GUAM ENVIRONMENTAL PROTECTION AGENCY
CH. 50 GUAM UNDERGROUND STORAGE TANK REGULATIONS

50202 to demonstrate financial responsibility under this Article for one (1) or more USTs or tank systems; and

(2) A local government owner or operator may use any one or combination of the mechanisms listed in § 50203 through § 50207 to demonstrate financial responsibility under this Article for one (1) or more USTs or tank systems.

(b) An owner or operator may use a guarantee under § 50197 or surety bond under § 50199 to establish financial responsibility only if the state attorney general has submitted a written statement to the Administrator that a guarantee or surety bond executed as described in this section is a legally valid and enforceable obligation in the State.

(c) An owner or operator may use self-insurance in combination with a guarantee only if, for the purpose of meeting the requirements of the financial test under this rule, the financial statements of the owner or operator are not consolidated with the financial statements of the guarantor.

§ 50196. Financial Test of Self-Insurance.

(a) An owner or operator, or guarantor or both may satisfy the requirements of § 50194 by passing a financial test as specified in this section. To pass the financial test of self-insurance, the owner or operator, or guarantor or both, must meet the criteria of subsection (b) or (c) based on year end financial statements for the latest completed fiscal year.

(1) The owner or operator, or guarantor or both, must have a tangible net worth of at least ten (10) times:

(A) The total of the applicable aggregate amount required by § 50194, based on the number of USTs or tank systems for which a financial test is used to demonstrate financial responsibility to the Guam Environmental Protection Agency;

(B) The sum of the corrective action cost estimates, the current closure and post closure care cost estimates, and amount of liability coverage for which a financial test is used to demonstrate financial responsibility to U.S. EPA under 40 Code of Federal Regulations 264.101, 264.143, 264.145, 265.143,
22 GAR Guam Environmental Protection Agency
CH. 50 Guam Underground Storage Tank Regulations

265.145, 264.147, and 265.147; or to the Guam Environmental Protection Agency approved by EPA under 40 CFR Part 281:

(b) The sum of current plugging and abandonment cost estimates for which a financial test is used to demonstrate financial responsibility to the U.S. EPA under 40 Code of Federal Regulations 144.63 or to the Guam Environmental Protection Agency when the Guam’s underground storage tank program is authorized by the U.S. EPA under 40 Code of Federal Regulations 145.

(1) The owner or operator, or guarantor or both, must have a tangible net worth of at least ten ($10,000,000.00) million dollars.

(2) The owner or operator, or guarantor or both, must have a letter signed by the chief financial officer worded as specified in subsection (d).

(3) The owner or operator, or guarantor or both, must either:

(A) File financial statements annually with the U.S. Securities and Exchange Commission, the federal Energy Information Administration, or the federal Rural Electrification Administration; or

(B) Report annually the firm's tangible net worth to Dun and Bradstreet, and Dun and Bradstreet must have assigned the firm a financial strength rating of 4A or 5A.

(4) The firm's year end financial statements, if independently audited, cannot include an adverse auditor's opinion, a disclaimer of opinion, or a “going concern” qualification.

(c) (1) The owner or operator, or guarantor or both, must meet the financial test requirements of 40 CFR 264.147(f)(1) substituting the appropriate amounts specified in § 50194(b)(1) and (b)(2) for the “amount of liability coverage” each time specified in that section.

(2) The fiscal year end financial statements of the owner or operator, or guarantor or both, must be examined
by an independent certified public accountant and be accompanied by the accountant's report of the examination.

(3) The firm's year end financial statements cannot include an adverse auditor's opinion, a disclaimer of opinion, or a “going concern” qualification.

(4) The owner or operator, or guarantor or both must have a letter signed by the chief financial officer, worded as specified in subsection (d).

(5) If the financial statements of the owner or operator, or guarantor or both, are not submitted annually to the U.S. Securities and Exchange Commission, the Federal Energy Information Administration or the federal Rural Electrification Administration, the owner or operator, or guarantor, or both, must obtain a special report by an independent certified public accountant stating that:

(A) The accountant has compared the data that the letter from the chief financial officer specifies as having been derived from the latest year end financial statements of the owner or operator, or guarantor or both, with the amounts in such financial statements; and

(B) In connection with that comparison, no matters came to the accountant's attention, which caused the accountant to believe that the specified data should be adjusted.

(d) To demonstrate that it meets the financial test under subsection (b) or (c), the chief financial officer of the owner or operator, or guarantor, must sign, within one hundred twenty (120) days of the close of each financial reporting year, as defined by the twelve (12) month period for which financial statements used to support the financial test are prepared, a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

Letter from Chief Financial Officer

I am the chief financial officer of [insert: name and address of the owner or operator, or guarantor]. This
letter is in support of the use of [insert: “the financial test of self-insurance,” or “guarantee” or both.] to demonstrate financial responsibility for [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage” or both] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or both] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an) underground storage tank(s). Underground storage tanks at the following facilities are assured by this financial test by this [insert: “owner or operator” or “guarantor” or both]:

[List for each facility: the name and address of the facility where tanks assured by this financial test are located, and whether tanks are assured by this financial test. If separate mechanisms or combinations of mechanisms are being used to assure any of the tanks at this facility, list each tank assured by this financial test by the tank identification number provided in the notification submitted pursuant 40 Code of Federal Regulations Part 280.22 or in the permit applications submitted under § 50124 and § 50126.

A [insert: “financial test” or “guarantee” or both] is also used by this [insert: “owner or operator,” or “guarantor’] to demonstrate evidence of financial responsibility in the following amounts under other U.S. Environmental Protection Agency regulations or state programs authorized by the U.S. Environmental Protection Agency under 40 CFR Parts 271 and 145:

<table>
<thead>
<tr>
<th>EPA Regulations</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure (§§264.143 and 265.143)</td>
<td>$______</td>
</tr>
<tr>
<td>Post-Closure Care (§§264.145 and 265.145)</td>
<td>$______</td>
</tr>
<tr>
<td>Liability Coverage (§§264.147 and 265.147)</td>
<td>$______</td>
</tr>
<tr>
<td>Corrective Action (§264.101(b))</td>
<td>$______</td>
</tr>
<tr>
<td>Plugging and Abandonment (§144.63)</td>
<td>$______</td>
</tr>
</tbody>
</table>

Authorized Guam’s Programs:

<table>
<thead>
<tr>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure</td>
</tr>
<tr>
<td>Post-Closure Care</td>
</tr>
</tbody>
</table>
22 GAR Guam Environmental Protection Agency
Ch. 50 Guam Underground Storage Tank Regulations

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liability Coverage</td>
<td>$______</td>
</tr>
<tr>
<td>Corrective Action</td>
<td>$______</td>
</tr>
<tr>
<td>Plugging and Abandonment</td>
<td>$______</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$______</td>
</tr>
</tbody>
</table>

This [insert: “owner or operator,” or “guarantor”] has not received an adverse opinion, a disclaimer of opinion, or a “going concern” qualification from an independent auditor on his or her financial statements for the latest completed fiscal year.

[Fill in the information for Alternative I if the criteria of § 50196(b), are being used to demonstrate compliance with the financial test requirements. Fill in the information for Alternative II if the criteria of § 50196(c), are being used to demonstrate compliance with the financial test requirements.]

Alternative I

1. Amount of annual UST aggregate coverage being assured by a financial test, or guarantee or both $______
2. Amount of corrective action, closure and post-closure care costs, liability coverage, and plugging and abandonment costs covered by a financial test, or guarantee or both, $______
3. Sum of lines 1 and 2 $______
4. Total tangible assets $______
5. Total liabilities [if any of the amount reported on line 3 is included in total liabilities, you may deduct that amount from this line and add that amount to line 6] $______
6. Tangible net worth [subtract line 5 from line 4] $______
7. Is line 6 at least 10 million dollars? Yes No
8. Is line 6 at least 10 times line 3? Yes No
9. Have financial statements for the latest fiscal year been filed with the U.S. Securities and Exchange Commission? Yes No
10. Have financial statements for the latest fiscal year been filed with the federal Energy Information Administration? Yes No
11. Have financial statements for the latest fiscal year been filed with the federal Rural Electrification Administration? Yes No
12. Has financial information been provided to Dun and Bradstreet, and has Dun and Bradstreet provided a financial strength rating of 4A or 5A? [Answer “Yes” only if both criteria have been met.] Yes No

ALTERNATIVE II

1. Amount of annual UST aggregate coverage being assured by a financial test, or guarantee or both, $_______

2. Amount of corrective action, closure and post-closure care costs, liability coverage, and plugging and abandonment costs covered by a financial test, or guarantee or both, $_______

3. Sum of lines 1 and 2 $_______

4. Total tangible assets $_______

5. Total liabilities [if any of the amount reported on line 3 is included in total liabilities, you may deduct that amount from this line and add that amount to line 6] $_______

6. Tangible net worth [subtract line 5 from line 4] $_______

7. Total assets in the U.S. [required only if less than ninety per cent of assets are located in the U.S.] $_______

8. Is line 6 at least 10 million dollars? Yes No

9. Is line 6 at least six times line 3? Yes No

10. Are at least 90 per cent of assets located in the U.S.? [If “No,” complete line 11] Yes No

11. Is line 7 at least six times line 3? [Fill in either lines 12-15 or lines 16-18:] Yes No

12. Current assets $_______

13. Current liabilities $_______

14. Net working capital [subtract line 13 from line 12] $_______

15. Is line 14 at least six times line 3? Yes No
16. Current bond rating of most recent bond issue

17. Name of rating service

18. Date of maturity of bond

19. Have financial statements for the latest fiscal year been filed with the U.S. Securities and Exchange Commission, the federal Energy Information Administration, or the federal Rural Electrification Administration? Yes No

[If “No,” please attach a report from an independent certified public accountant certifying that there are no material differences between the data as reported in lines 4-18 above and the financial statements for the latest fiscal year.]

[For both Alternative I and Alternative II complete the certification with this statement.]

I hereby certify that the wording of this letter is identical to the wording specified in § 50196(d) of the GUSTR; as such rules were constituted on the date shown immediately below.

[Signature]

[Name]

[Title]

[Date]

(e) If an owner or operator using the test to provide financial assurance finds that he or she no longer meets the requirements of the financial test based on the year-end financial statements, the owner or operator must obtain alternative coverage within one hundred fifty (150) days of the end of the year for which financial statements have been prepared.

(f) The Administrator may require reports of financial condition at any time from the owner or operator, or guarantor or both. If the administrator finds, on the basis of such reports or other information, that the owner or operator, or guarantor or both, no longer meets the financial test requirements of § 50196(b) or (c) and (d), the owner or operator must obtain alternate coverage within thirty (30) days after notification of such a finding.
If the owner or operator fails to obtain alternate assurance within one hundred fifty (150) days of finding that he or she no longer meets the requirements of the financial test based on the year-end financial statements, or within thirty (30) days of notification by the Administrator that he or she no longer meets the requirements of the financial test, the owner or operator must notify the Administrator of such failure within ten (10) days. (Imp: 40 C.F.R. §280.95)

§ 50197. Guarantee.

(a) An owner or operator may satisfy the requirements of § 50194 by obtaining a guarantee that conforms to the requirements of this section. The guarantor must be:

(1) A firm that

(A) Possesses a controlling interest in the owner or operator;

(B) Possesses a controlling interest in a firm described under subsection (a)(1)(A);

(C) Is controlled through stock ownership by a common parent firm that possesses a controlling interest in the owner or operator; or

(2) A firm engaged in a substantial business relationship with the owner or operator and issuing the guarantee as an act incident to that business relationship.

(b) Within one hundred twenty (120) days of the close of each financial reporting year the guarantor must demonstrate that it meets the financial test criteria of § 50196 based on year end financial statements for the latest completed financial reporting year by completing the letter from the chief financial officer described in § 50196(d) and must deliver the letter to the owner or operator. If the guarantor fails to meet the requirements of the financial test at the end of any financial reporting year, within one hundred twenty (120) days of the end of that financial reporting year the guarantor shall send by certified mail, before cancellation or nonrenewal of the guarantee, notice to the owner or operator. If the administrator notifies the guarantor that it no longer meets the requirements of the financial test of either § 50196(b) or (c), and (d), the guarantor must notify the owner or
operator within ten (10) days of receiving such notification from the administrator. In both cases, the guarantee will terminate no less than one hundred twenty (120) days after the date the owner or operator receives the notification, as evidenced by the return receipt. The owner or operator must obtain alternative coverage as specified in § 50210(c).

(c) The guarantee must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

GUARANTEE

Guarantee made this [date] by [name of guaranteeing entity], a business entity organized under the laws of the State of [name of state], herein referred to as guarantor, to the Guam Environmental Protection Agency and to any and all third parties, and obliges, on behalf of [owner or operator] of [business address].

Recitals.

(1) Guarantor meets or exceeds the financial test criteria of § 50196(b) or (c) and (d) of the GUSTR, and agrees to comply with the requirements for guarantors as specified in § 50197(b) of the GUSTR.

(2) [Owner or operator] owns or operates the following underground storage tank(s) covered by this guarantee: [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 Code of Federal Regulations section 280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR, and the name and address of the facility.] This guarantee satisfies the requirements of Article 9 of the GUSTR for assuring funding for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the above-identified underground storage tank(s) in the amount of [insert dollar amount] per occurrence and [insert dollar amount] annual aggregate.

(3) [Insert appropriate phrase: “On behalf of our subsidiary” (if guarantor is corporate parent of the owner or operator); “On behalf of our affiliate” (if guarantor is a related firm of the
owner or operator); or “Incident to our business relationship with” (if guarantor is providing the guarantee as an incident to a substantial business relationship with owner or operator)]

[owner or operator], guarantor guarantees to the Guam Environmental Protection Agency and to any and all third parties that:

In the event that [owner or operator] fails to provide alternative coverage within sixty (60) days after receipt of a notice of cancellation of this guarantee and the Administrator of the Guam Environmental Protection Agency has determined or suspects that a release has occurred at an underground storage tank covered by this guarantee, the guarantor, upon instructions from the Administrator of the Guam Environmental Protection Agency, shall fund a standby trust fund in accordance with the provisions of § 50208 of the Gustr, in an amount not to exceed the coverage limits specified above.

In the event that the Administrator of the Guam Environmental Protection Agency determines that [owner or operator] has failed to perform corrective action for releases arising out of the operation of the above identified tank(s) in accordance with Article 7 of the Gustr, the guarantor upon written instructions from the Administrator of the Guam Environmental Protection Agency shall fund a standby trust in accordance with the provisions of § 50208 of the Gustr, in an amount not to exceed the coverage limits specified above.

If [owner or operator] fails to satisfy a judgment or award based on a determination of liability for bodily injury or property damage to third parties caused by [“sudden” or “nonsudden” or both] accidental releases arising from the operation of the above-identified tank(s), or fails to pay an amount agreed to in settlement of a claim arising from or alleged to arise from such injury or damage, the guarantor, upon written instructions from the Administrator of the Guam Environmental Protection Agency shall fund a standby trust in accordance with the provisions of § 50208 of the Gustr, to satisfy such judgment(s), award(s), or settlement agreement(s) up to the limits of coverage specified above.

(4) Guarantor agrees that if, at the end of any fiscal year before cancellation of this guarantee, the guarantor fails to meet the financial test criteria of § 50196 (b) or (c) and (d) of the Gustr, guarantor shall send within one hundred twenty (120) days of such failure, by certified mail, notice to [owner or operator]. The guarantee will terminate one hundred twenty (120) days from the date of receipt of the notice by [owner or operator], as evidenced by the return receipt.
22 GAR GUAM ENVIRONMENTAL PROTECTION AGENCY
CH. 50 GUAM UNDERGROUND STORAGE TANK REGULATIONS

(5) Guarantor agrees to notify [owner or operator] by certified mail of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming guarantor as debtor, within ten (10) days after commencement of the proceeding.

(6) Guarantor agrees to remain bound under this guarantee notwithstanding any modification or alteration of any obligation of [owner or operator] pursuant to the GUSTR.

(7) Guarantor agrees to remain bound under this guarantee for so long as [owner or operator] must comply with the applicable financial responsibility requirements of Article 9 of the GUSTR, for the above-identified tank(s), except that guarantor may cancel this guarantee by sending notice by certified mail to [owner or operator], such cancellation to become effective no earlier than one hundred twenty (120) days after receipt of such notice by [owner or operator], as evidenced by the return receipt.

(8) The guarantor's obligation does not apply to any of the following:

(a) Any obligation of [insert owner or operator] under a workers' compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of, employment by [insert owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily damage or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50194 of the GUSTR.

(9) Guarantor expressly waives notice of acceptance of this guarantee by the Guam Environmental Protection Agency, by any or all third parties, or by [owner or operator].

I hereby certify that the wording of this guarantee is identical to the wording specified in § 50197(c) of the GUSTR, as such rules were constituted on the effective date shown immediately below.

Effective date: __________________________
(d) An owner or operator who uses a guarantee to satisfy the requirements of § 50194 must establish a standby trust fund when the guarantee is obtained. Under the terms of the guarantee, all amounts paid by the guarantor under the guarantee will be deposited directly into the standby trust fund in accordance with instructions from the Administrator of the Guam Environmental Protection Agency under § 50208. This standby trust fund must meet the requirements specified in § 50202. (Imp: 40 C.F.R. §280.96)

§ 50198. Insurance and Risk Retention Group Coverage.

(a) An owner or operator may satisfy the requirements of § 50194 by obtaining liability insurance that conforms to the requirements of this section from a qualified insurer or risk retention group. Such insurance may be in the form of a separate insurance policy or an endorsement to an existing insurance policy.

(b) Each insurance policy must be amended by an endorsement worded as specified in subsection (l) or evidenced by a certificate of insurance worded as specified in subsection (2), except that instructions in brackets must be replaced with the relevant information and the brackets deleted:

(1) ENDORSEMENT

Name: [name of each covered location]

Address: [address of each covered location]

Policy Number: ____________________________

Period of Coverage: [current policy period]
Name of [Insurer or Risk Retention Group]:

Address of [Insurer or Risk Retention Group]:

Name of Insured: ______________________
Address of Insured: ______________________

Endorsement:

1. This endorsement certifies that the policy to which the endorsement is attached provides liability insurance covering the following underground storage tanks:

[List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted, 40 Code of Federal Regulations § 280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR, and the name and address of the facility.]

for [insert: “taking corrective action”, and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; in accordance with and subject to the limits of liability, exclusions, conditions, and other terms of the policy; if coverage is different for different tanks]
or locations, indicate the type of coverage applicable to each tank or location] arising from operating the underground storage tank(s) identified above.

The limits of liability are [insert the dollar amount of the “each occurrence” and “annual aggregate” limits of the Insurer's or Group's liability; if the amount of coverage is different for different types of coverage or for different underground storage tanks or locations, indicate the amount of coverage for each type of coverage, and/or for each underground storage tank or location], exclusive of legal defense costs, which are subject to a separate limit under the policy. This coverage is provided under [policy number]. The effective date of said policy is [date].

2. The insurance afforded with respect to such occurrences is subject to all of the terms and conditions of the policy; provided, however, that any provisions inconsistent with subsections (a) through (e) of this subsection are hereby amended to conform to subsections (a) through (e);

a. Bankruptcy or insolvency of the insured shall not relieve the [“Insurer” or “Group”] of its obligations under the policy to which this endorsement is attached.

b. The [“Insurer” or “Group”] is liable for the payment of amounts within any deductible applicable to the policy to the provider of corrective action or a damaged third-party, with a right of reimbursement by the insured for any such payment made by the [“Insurer” or “Group”]. This provision does not apply with respect to that amount of any deductible for which coverage is demonstrated under another mechanism or combination of mechanisms as specified in § 50196 through § 50201 of the GUSTR.
c. Whenever requested by the Administrator of the Guam Environmental Protection Agency, the [“Insurer” or “Group”] agrees to furnish to the Administrator of the Guam Environmental Protection Agency a signed duplicate original of the policy and all endorsements.

d. Cancellation or any other termination of the insurance by the [“Insurer” or “Group”], except for non-payment of premium or misrepresentation by the insured, will be effective only upon written notice and only after the expiration of sixty (60) days after a copy of such written notice is received by the insured. Cancellation for non-payment of premium or misrepresentation by the insured will be effective only upon written notice and only after expiration of a minimum of ten (10) days after a copy of such written notice is received by the insured.

[Insert for claims-made policies:

e. The insurance covers claims otherwise covered by the policy that are reported to the [“Insurer” or “Group”] within six months of the effective date of cancellation or non-renewal of the policy except where the new or renewed policy has the same retroactive date or a retroactive date earlier than that of the prior policy, and which arise out of any covered occurrence that commenced after the policy retroactive date, if applicable, and prior to such policy renewal or termination date. Claims reported during such extended reporting period are subject to the terms, conditions, limits, including limits of liability, and exclusions of the policy.]

I hereby certify that the wording of this instrument is identical to the wording in § 50198(b)(1) of the GUSTR, and that the [“Insurer” or “Group”] is
22 GAR Guam Environmental Protection Agency
CH. 50 Guam Underground Storage Tank Regulations

[“licensed to transact the business of insurance or eligible to provide insurance as an excess or surplus lines insurer in “Guam”].

[Signature of authorized representative of Insurer or Risk Retention Group]

[Name of person signing]

[Title of person signing]. Authorized Representative of [name of Insurer or Risk Retention Group]

[Address of Representative]

(2) CERTIFICATE OF INSURANCE

Name: [name of each covered location]

__
Address: [address of each covered location]

__

__
Policy Number: __________________________
Endorsement (if applicable): ______________
Period of Coverage: [current policy period]

__
Name of [Insurer or Risk Retention Group]:

__

__
Address of [Insurer or Risk Retention Group]:

__

__
Name of Insured: __________________________
Address of Insured:
Certification:

1. [Name of Insurer or Risk Retention Group], [the “Insurer” or “Group”], as identified above, hereby certifies that it has issued liability insurance covering the following underground storage tank(s):

[List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted, 40 Code of Federal Regulations § 280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR, and the name and address of the facility.] for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; in accordance with and subject to the limits of liability, exclusions, conditions, and other terms of the policy; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the underground storage tank(s) identified above.

The limits of liability are [insert the dollar amount of the “each occurrence” and “annual aggregate” limits of the Insurer's or Group's liability; if the amount of coverage is different for different types of coverage or for different underground storage tanks or locations, indicate the amount of coverage for each type of coverage and/or for each underground storage tank or location], exclusive of legal defense costs, which are subject to a separate limit under the policy. This coverage
is provided under [policy number]. The effective date of said policy is [date].

2. The [“Insurer” or “Group”] further certifies the following with respect to the insurance described in Subsection 1:

a. Bankruptcy or insolvency of the insured shall not relieve the [“Insurer” or “Group”] of its obligations under the policy to which this certificate applies.

b. The [“Insurer” or “Group”] is liable for the payment of amounts within any deductible applicable to the policy to the provider of corrective action or a damaged third-party, with a right of reimbursement by the insured for any such payment made by the [“Insurer” or “Group”]. This provision does not apply with respect to that amount of any deductible for which coverage is demonstrated under another mechanism or combination of mechanisms as specified in § 50196 through § 50201 of the GUSTR.

c. Whenever requested by the Administrator of the Guam Environmental Protection Agency, the [“Insurer” or “Group”] agrees to furnish to the administrator a signed duplicate original of the policy and all endorsements.

d. Cancellation or any other termination of the insurance by the [“Insurer” or “Group”], except for non-payment of premium or misrepresentation by the insured, will be effective only upon written notice and only after the expiration of sixty (60) days after a copy of such written notice is received by the insured. Cancellation for non-payment of premium or misrepresentation by the insured will be effective only upon written notice and only after expiration of a minimum of ten (10) days after a copy of such written notice is received by the insured.
[Insert for claims-made policies:

e. The insurance covers claims otherwise covered by the policy that are reported to the [“Insurer” or “Group”] within six (6) months of the effective date of cancellation or non-renewal of the policy except where the new or renewed policy has the same retroactive date or a retroactive date earlier than that of the prior policy, and which arise out of any covered occurrence that commenced after the policy retroactive date, if applicable, and prior to such policy renewal or termination date. Claims reported during such extended reporting period are subject to the terms, conditions, limits, including limits of liability, and exclusions of the policy.]

I hereby certify that the wording of this instrument is identical to the wording in § 50198(b)(2) of the GUSTR, and that the [“Insurer” or “Group”] is [“licensed to transact the business of insurance, or eligible to provide insurance as an excess or surplus lines insurer, in Guam”].

[Signature of authorized representative of Insurer]
[Type Name]
[Title], Authorized Representative of [name of Insurer or Risk Retention Group]
[Address of Representative]

(c) Each insurance policy must be issued by an insurer or a risk retention group that, at a minimum, is licensed to transact the business of insurance or eligible to provide insurance as an excess or surplus lines insurer in Guam. (Imp: 40 C.F.R. §280.97)

§ 50199. Surety Bond.

(a) An owner or operator may satisfy the requirements of § 50194 by obtaining a surety bond that conforms to the requirements of this section. The surety company issuing the bond must be among those listed as acceptable sureties on
federal bonds in the latest Circular 570 of the U.S. Department of the Treasury.

(b) The surety bond must be worded as follows, except that instructions in brackets must be replaced with the relevant information and the brackets deleted:

PERFORMANCE BOND

Date bond executed: ______________________________

Period of coverage: ______________________________

Principal: [legal name and business address of owner or operator] ______________________________________

Type of organization: [insert “individual,” “joint venture,” “partnership,” or “corporation”]

State of incorporation (if applicable): ______________________________

Surety(ies): [name(s) and business address(es)] ______________________________________

Scope of Coverage: [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 Code of Federal Regulations §280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR, and the name and address of the facility. List the coverage guaranteed by the bond: “taking corrective action” or “compensating third parties for bodily injury and property damage caused by” or both either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases” “arising from operating the underground storage tank”].

Penal sums of bond:

Per occurrence $__________________________
Annual aggregate $_______________________________
Surety's bond number: ____________________________

Know All Persons by These Presents, that we, the Principal
and Surety(ies), hereto are firmly bound to the Guam
Environmental Protection Agency, in the above penal sums
for the payment of which we bind ourselves, our heirs,
executors, administrators, successors, and assigns jointly
and severally; provided that, where the Surety(ies) are
corporations acting as co-sureties, we, the Sureties, bind
ourselves in such sums jointly and severally only for the
purpose of allowing a joint action or actions against any or
all of us, and for all other purposes each Surety binds itself,
jointly and severally with the Principal, for the payment of
such sums only as is set forth opposite the name of such
Surety, but if no limit of liability is indicated, the limit of
liability shall be the full amount of the penal sums.

Whereas said Principal is required under Article 9 of the
GUSTR to provide financial assurance for [insert: “taking
corrective action” and/or “compensating third parties for
bodily injury and property damage caused by” either
“sudden accidental releases” or “nonsudden accidental
releases” or “accidental releases”; if coverage is different
for different tanks or locations, indicate the type of coverage
applicable to each tank or location] arising from operating
the underground storage tanks identified above, and

Whereas said Principal shall establish a standby trust fund
as is required when a surety bond is used to provide such
financial assurance;

Now, therefore, the conditions of the obligation are such
that if the Principal shall faithfully [“take corrective action,
in accordance with Article 7 of the GUSTR, and the
Administrator of the Guam Environmental Protection
Agency instructions for,”]: and/or “compensate injured third
parties for bodily injury and property damage caused by” either
“sudden” or “nonsudden” or “sudden and
nonsudden”] accidental releases arising from operating the
tank(s) identified above, or if the Principal shall provide
alternate financial assurance, as specified in Article 9 of the
GUSTR, within one hundred twenty (120) days after the
date the notice of cancellation is received by the Principal from the Surety(ies), then this obligation shall be null and void; otherwise it is to remain in full force and effect.

Such obligation does not apply to any of the following:

(a) Any obligation of [insert owner or operator] under a workers' compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of, employment by [insert owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily injury or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50194 of the GUSTR.

The Surety(ies) shall become liable on this bond obligation only when the Principal has failed to fulfill the conditions described above.

Upon notification by the Administrator of the Guam Environmental Protection Agency that the Principal has failed to [“take corrective action, in accordance with Article 7 of the GUSTR, and the Administrator of the Guam Environmental Protection Agency instructions,” and/or “compensate injured third parties”] as guaranteed by this bond, the Surety(ies) shall either perform [“corrective action in accordance with the GUSTR, and the Administrator of

118
the Guam Environmental Protection Agency instructions,” or “third-party liability compensation” or both] or place funds in an amount up to the annual aggregate penal sum into the standby trust fund as directed by the Administrator of the Guam Environmental Protection Agency under § 50208 of the GUSTR.

Upon notification by the Administrator of the Guam Environmental Protection Agency that the Principal has failed to provide alternate financial assurance within sixty (60) days after the date the notice of cancellation is received by the Principal from the Surety(ies) and that the Administrator of the Guam Environmental Protection Agency has determined or suspects that a release has occurred, the Surety(ies) shall place funds in an amount not exceeding the annual aggregate penal sum into the standby trust fund as directed by the Administrator of the Guam Environmental Protection Agency under § 50208 of the GUSTR.

The Surety(ies) hereby waive(s) notification of amendments to applicable laws, statutes, rules, and regulations and agrees that no such amendment shall in any way alleviate its (their) obligation on this bond.

The liability of the Surety(ies) shall not be discharged by any payment or succession of payments hereunder, unless and until such payment or payments shall amount in the annual aggregate to the penal sum shown on the face of the bond, but in no event shall the obligation of the Surety(ies) hereunder exceed the amount of said annual aggregate penal sum.

The Surety(ies) may cancel the bond by sending notice of cancellation by certified mail to the Principal, provided, however, that cancellation shall not occur during the one hundred twenty (120) days beginning on the date of receipt of the notice of cancellation by the Principal, as evidenced by the return receipt.

The Principal may terminate this bond by sending written notice to the Surety(ies).
In Witness Thereof, the Principal and Surety(ies) have executed this Bond and have affixed their seals on the date set forth above.

The persons whose signatures appear below hereby certify that they are authorized to execute this surety bond on behalf of the Principal and Surety(ies) and that the wording of this surety bond is identical to the wording specified in § 50199(b) of the GUS TR, as such rules were constituted on the date this bond was executed.

PRINCIPAL
[Signature(s)]
[Name(s)]
[Title(s)]
[Corporate seal]
CORPORATE SURETY (IES)
[Name and address]
State of Incorporation: __________________________
Liability limit: $__________________________
[Signature(s)]
[Name(s) and title(s)]
[Corporate seal]

[For every co-surety, provide signature(s), corporate seal, and other information in the same manner as for Surety above.]

Bond premium: $__________________________

(c) Under the terms of the bond, the surety will become liable on the bond obligation when the owner or operator fails to perform as guaranteed by the bond. In all cases, the surety's liability is limited to the per-occurrence and annual aggregate penal sums.

(d) The owner or operator who uses a surety bond to satisfy the requirements of § 50194 must establish a standby trust fund when the surety bond is acquired. Under the terms of the bond,
all amounts paid by the surety under the bond will be deposited directly into the standby trust fund in accordance with instructions from the Administrator under § 50208. This standby trust fund must meet the requirements specified in § 50202. (Imp: 40 C.F.R. §280.98)

§ 50200. Letter of Credit.

(a) An owner or operator may satisfy the requirements of § 50194 by obtaining an irrevocable standby letter of credit that conforms to the requirements of this section. The issuing institution must be an entity that has the authority to issue letters of credit in Guam where used and whose letter-of-credit operations are regulated and examined by a federal or Guam.

(b) The letter of credit must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

IRREVOCABLE STANDBY LETTER OF CREDIT

[Name and address of issuing institution]

[Name and address of Administrator of the Guam Environmental Protection Agency]

Dear Sir or Madam: We hereby establish our Irrevocable Standby Letter of Credit No. in your favor, at the request and for the account of [owner or operator name] of [address] up to the aggregate amount of [in words] U.S. dollars ($[insert dollar amount]), available upon presentation of

(1) Your sight draft, bearing reference to this letter of credit, No. , and

(2) Your signed statement reading as follows: “I certify that the amount of the draft is payable pursuant to regulations issued under authority of Chapter 50.

This letter of credit may be drawn on to cover [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage caused by” or both either “sudden accidental release” or “nonsudden
accidental releases” or “accidental releases”) arising from operating the underground storage tank(s) identified below in the amount of [in words] $[insert dollar amount] per occurrence and [in words] $[insert dollar amount] annual aggregate:

[List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 Code of Federal Regulations §280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR, and the name and address of the facility.]

The letter of credit may not be drawn on to cover any of the following:

(a) Any obligation of [insert owner or operator] under a workers’ compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of, employment by [insert owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;
(e) Bodily injury or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50194 of the GUSTR.

This letter of credit is effective as of [date] and shall expire on [date], but such expiration date shall be automatically extended for a period of [at least the length of the original term] on [expiration date] and on each successive expiration date, unless, at least one hundred twenty (120) days before the current expiration date, we notify [owner or operator] by certified mail that we have decided not to extend this letter of credit beyond the current expiration date. In the event that [owner or operator] is so notified, any unused portion of the credit shall be available upon presentation of your sight draft for one hundred twenty (120) days after the date of receipt by [owner or operator], as shown on the signed return receipt.

Whenever this letter of credit is drawn on under and in compliance with the terms of this credit, we shall duly honor such draft upon presentation to us, and we shall deposit the amount of the draft directly into the standby trust fund of [owner or operator] in accordance with your instructions.

We certify that the wording of this letter of credit is identical to the wording specified in § 50200(b) of the GUSTR; as such rules were constituted on the date shown immediately below.

[Signature(s) and title(s) of official(s) of issuing institution]

[Date]

This credit is subject to [insert “the most recent edition of the Uniform Customs and Practice for Documentary Credits, published by the International Chamber of Commerce,” or “the Uniform Commercial Code”].

123
(c) An owner or operator who uses a letter of credit to satisfy the requirements of § 50194 must also establish a standby trust fund when the letter of credit is acquired. Under the terms of the letter of credit, all amounts paid pursuant to a draft by the administrator will be deposited by the issuing institution directly into the standby trust fund in accordance with instructions from the Administrator under § 50208. This standby trust fund must meet the requirements specified in § 50202.

(d) The letter of credit must be irrevocable with a term specified by the issuing institution. The letter of credit must provide that credit be automatically renewed for the same term as the original term, unless, at least one hundred twenty (120) days before the current expiration date, the issuing institution notifies the owner or operator by certified mail of its decision not to renew the letter of credit. Under the terms of the letter of credit, the one hundred twenty (120) days will begin on the date when the owner or operator receives the notice, as evidenced by the return receipt. (Imp: 40 C.F.R. §280.99)

§ 50201. Trust Fund.

(a) An owner or operator may satisfy the requirements of § 50194 by establishing a trust fund that conforms to the requirements of this section. The trustee must be an entity that has the authority to act as a trustee and whose trust operations are regulated and examined by a federal agency or an agency of Guam.

(b) The wording of the trust agreement must be identical to the wording specified in § 50202(b)(1), and must be accompanied by a formal certification of acknowledgment as specified in § 50202(b)(2).

(c) The trust fund, when established, must be funded for the full-required amount of coverage, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining required coverage.

(d) If the value of the trust fund is greater than the required amount of coverage, the owner or operator may submit a written request to the administrator for release of the excess.

(e) If other financial assurance as specified in this Article is substituted for all or part of the trust fund, the owner or operator
may submit a written request to the administrator for release of the excess.

(f) Within sixty (60) days after receiving a request from the owner or operator for release of funds as specified in subsection (d) or (e), the administrator will instruct the trustee to release to the owner or operator such funds as the Administrator specifies in writing. (Imp: 40 C.F.R. §280.102)

§ 50202. Standby Trust Fund.

(a) An owner or operator using any one of the mechanisms authorized by § 50197, § 50199, or § 50200 must establish a standby trust fund when the mechanism is acquired. The trustee of the standby trust fund must be an entity that has the authority to act as a trustee and whose trust operations are regulated and examined by a federal agency or an agency of Guam.

(b) (l) The standby trust agreement, or trust agreement, must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

TRUST AGREEMENT

Trust agreement, the “Agreement,” entered into as of [date] by and between [name of the owner or operator], a [name of state] [insert “corporation,” “partnership,” “association,” or “proprietorship”], the “Grantor,” and [name of corporate trustee], [insert “Incorporated in the State of “or” a national bank”], the “Trustee.”

Whereas, the Guam Environmental Protection Agency has established certain regulations applicable to the Grantor, requiring that an owner or operator of an underground storage tank shall provide assurance that funds will be available when needed for corrective action and third-party compensation for bodily injury and property damage caused by sudden and nonsudden accidental releases arising from the operation of the underground storage tank. The attached Schedule A lists the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located that are covered by the standby trust agreement.
[Whereas, the Grantor has elected to establish [insert either “a guarantee,” “surety bond,” or “letter of credit”] to provide all or part of such financial assurance for the underground storage tanks identified herein and is required to establish a standby trust fund able to accept payments from the instrument (This subsection is only applicable to the standby trust agreement.));

Whereas, the Grantor, acting through its duly authorized officers, has selected the Trustee to be the trustee under this agreement, and the Trustee is willing to act as trustee;

Now, therefore, the Grantor and the Trustee agree as follows:

Section 1. Definitions.

As used in this Agreement:

(a) The term “Grantor” means the owner or operator who enters into this Agreement and any successors or assigns of the Grantor.

(b) The term “Trustee” means the Trustee who enters into this Agreement and any successor Trustee.

Section 2. Identification of the Financial Assurance Mechanism.

This Agreement pertains to the [identify the financial assurance mechanism, either a guarantee, surety bond, or letter of credit, from which the standby trust fund is established to receive payments (This subsection is only applicable to the standby trust agreement.)].

Section 3. Establishment of Fund.

The Grantor and the Trustee hereby establish a trust fund, the “Fund,” for the benefit of the Guam Environmental Protection Agency. The Grantor and the Trustee intend that no third party have access to the Fund except as herein provided. [The Fund is established initially as a standby to receive payments]
and shall not consist of any property.] Payments made by the provider of financial assurance pursuant to the administrator of Guam Environmental Protection Agency instruction are transferred to the Trustee and are referred to as the Fund, together with all earnings and profits thereon, less any payments or distributions made by the Trustee pursuant to this Agreement. The Fund shall be held by the Trustee, IN TRUST, as hereinafter provided. The Trustee shall not be responsible nor shall it undertake any responsibility for the amount or adequacy of, nor any duty to collect from the Grantor as provider of financial assurance, any payments necessary to discharge any liability of the Grantor established by the Guam Environmental Protection Agency.

Section 4. Payment for [“Corrective Action” or “Third-party Liability Claims” or both].

The Trustee shall make payments from the Fund as the Administrator of the Guam Environmental Protection Agency shall direct, in writing, to provide for the payment of the costs of [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage caused by” or both either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] arising from operating the tanks covered by the financial assurance mechanism identified in this Agreement.

The Fund may not be drawn upon to cover any of the following:

(a) Any obligation of [insert owner or operator] under a workers' compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of employment by [insert owner or operator];
(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily injury or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50194.

The Trustee shall reimburse the Grantor, or other persons as specified by the Administrator of the Guam Environmental Protection Agency, from the Fund for corrective action expenditures or third-party liability claims or both, in such amounts as the administrator shall direct in writing. In addition, the Trustee shall refund to the Grantor such amounts as the administrator specifies in writing. Upon refund, such funds shall no longer constitute part of the Fund as defined herein.

Section 5. Payments Comprising the Fund.

Payments made to the Trustee for the Fund shall consist of cash and securities acceptable to the Trustee.

Section 6. Trustee Management.

The Trustee shall invest and reinvest the principal and income of the Fund and keep the Fund invested as a single fund, without distinction between principal and income, in accordance with general investment policies and guidelines which the Grantor may communicate in writing to the Trustee from time to time, subject, however, to the provisions of this Section. In investing, reinvesting, exchanging, selling, and
managing the Fund, the Trustee shall discharge his or her duties with respect to the trust fund solely in the interest of the beneficiaries and with the care, skill, prudence, and diligence under the circumstances then prevailing which persons of prudence, acting in a like capacity and familiar with such matters, would use in the conduct of an enterprise of a like character and with like aims; except that:

(i) Securities or other obligations of the Grantor, or any other owner or operator of the tanks, or any of their affiliates as defined in the federal Investment Company Act of 1940, as amended, 15 U.S.C. 80a 2(a), shall not be acquired or held, unless they are securities or other obligations of the federal or Government of Guam;

(ii) The Trustee is authorized to invest the Fund in time or demand deposits of the Trustee, to the extent insured by an agency of the federal or Government of Guam; and

(iii) The Trustee is authorized to hold cash awaiting investment or distribution uninvested for a reasonable time and without liability for the payment of interest thereon.

Section 7. Commingling and Investment.

The Trustee is expressly authorized in its discretion:

(a) To transfer from time to time any or all of the assets of the Fund to any common, commingled, or collective trust fund created by the Trustee in which the Fund is eligible to participate, subject to all of the provisions thereof, to be commingled with the assets of other trusts participating therein; and

(b) To purchase shares in any investment company registered under the federal Investment Company Act of 1940, 15 U.S.C. 80a 1 et seq., including one which may be created, managed, underwritten, or to which
investment advice is rendered or the shares of which are sold by the Trustee. The Trustee may vote such shares in its discretion.

Section 8. Express Powers of Trustee.

Without in any way limiting the powers and discretions conferred upon the Trustee by the other provisions of this Agreement or by law, the Trustee is expressly authorized and empowered:

(a) To sell, exchange, convey, transfer, or otherwise dispose of any property held by it, by public or private sale. No person dealing with the Trustee shall be bound to see to the application of the purchase money or to inquire into the validity or expediency of any such sale or other disposition;

(b) To make, execute, acknowledge, and deliver any and all documents of transfer and conveyance and any and all other instruments that may be necessary or appropriate to carry out the powers herein granted;

(c) To register any securities held in the Fund in its own name or in the name of a nominee and to hold any security in bearer form or in book entry, or to combine certificates representing such securities with certificates of the same issue held by the Trustee in other fiduciary capacities, or to deposit or arrange for the deposit of such securities in a qualified central depository even though, when so deposited, such securities may be merged and held in bulk in the name of the nominee of such depository with other securities deposited therein by another person, or to deposit or arrange for the deposit of any securities issued by the United States Government, or any agency or instrumentality thereof, with a Federal Reserve bank, but the books and records of
the Trustee shall at all times show that all such securities are part of the Fund;

(d) To deposit any cash in the Fund in interest-bearing accounts maintained or savings certificates issued by the Trustee, in its separate corporate capacity, or in any other banking institution affiliated with the Trustee, to the extent insured by an agency of the federal or Government of Guam; and

(e) To compromise or otherwise adjust all claims in favor of or against the Fund.

Section 9. Taxes and Expenses.

All taxes of any kind that may be assessed or levied against or in respect of the Fund and all brokerage commissions incurred by the Fund shall be paid from the Fund. All other expenses incurred by the Trustee in connection with the administration of this Trust, including fees for legal services rendered to the Trustee, the compensation of the Trustee to the extent not paid directly by the Grantor, and all other proper charges and disbursements of the Trustee shall be paid from the Fund.

Section 10. Advice of Counsel.

The Trustee may from time to time consult with counsel, who may be counsel to the Grantor, with respect to any questions arising as to the construction of this Agreement or any action to be taken hereunder. The Trustee shall be fully protected, to the extent permitted by law, in acting upon the advice of counsel.

Section 11. Trustee Compensation.

The Trustee shall be entitled to reasonable compensation for its services as agreed upon in writing from time to time with the Grantor.

Section 12. Successor Trustee.

The Trustee may resign or the Grantor may replace the Trustee, but such resignation or replacement shall not
be effective until the Grantor has appointed a successor trustee and this successor accepts the appointment. The successor trustee shall have the same powers and duties as those conferred upon the Trustee hereunder. Upon the successor trustee's acceptance of the appointment, the Trustee shall assign, transfer, and pay over to the successor trustee the funds and properties then constituting the Fund. If for any reason the Grantor cannot or does not act in the event of the resignation of the Trustee, the Trustee may apply to a court of competent jurisdiction for the appointment of a successor trustee or for instructions. The successor trustee shall specify the date on which it assumes administration of the trust in writing sent to the Grantor and the present Trustee by certified mail ten (10) days before such change becomes effective. Any expenses incurred by the Trustee as a result of any of the acts contemplated by this Section shall be paid as provided in Section 9.

Section 13. Instructions to the Trustee.

All orders, requests, and instructions by the Grantor to the Trustee shall be in writing, signed by such persons as are designated in the attached Schedule B or such other designees as the Grantor may designate by amendment to Schedule B. The Trustee shall be fully protected in acting without inquiry in accordance with the Grantor's orders, requests, and instructions. All orders, requests, and instructions by the Administrator of the Guam Environmental Protection Agency to the Trustee shall be in writing, signed by the administrator, and the Trustee shall act and shall be fully protected in acting in accordance with such orders, requests, and instructions. The Trustee shall have the right to assume, in the absence of written notice to the contrary, that no event constituting a change or a termination of the authority of any person to act on behalf of the Grantor or the administrator hereunder has occurred. The Trustee shall have no duty to act in the absence of such orders, requests, and instructions.
Section 14. Amendment of Agreement.

This Agreement may be amended by an instrument in writing executed by the Grantor and the Trustee, or by the Trustee and the Administrator of the Guam Environmental Protection Agency if the Grantor ceases to exist.

Section 15. Irrevocability and Termination.

Subject to the right of the parties to amend this Agreement as provided in Section 14, this Trust shall be irrevocable and shall continue until terminated at the written direction of the Grantor and the Trustee, or by the Trustee and the Administrator of the Guam Environmental Protection Agency, if the Grantor ceases to exist. Upon termination of the Trust, all remaining trust property, less final trust administration expenses, shall be delivered to the Grantor.

Section 16. Immunity and Indemnification.

The Trustee shall not incur personal liability of any nature in connection with any act or omission, made in good faith, in the administration of this Trust, or in carrying out any directions by the Grantor or the Administrator of the Guam Environmental Protection Agency issued in accordance with this Agreement. The Trustee shall be indemnified and saved harmless by the Grantor, from and against any personal liability to which the Trustee may be subjected by reason of any act or conduct in its official capacity, including all expenses reasonably incurred in its defense in the event the Grantor fails to provide such defense.

Section 17. Choice of Law.

This Agreement shall be administered, construed, and enforced according to the laws of Guam or the Comptroller of the Currency in the case of National Association banks.

Section 18. Interpretation.
As used in this Agreement, words in the singular include the plural and words in the plural include the singular. The descriptive headings for each section of this Agreement shall not affect the interpretation or the legal efficacy of this Agreement.

In Witness whereof the parties have caused this Agreement to be executed by their respective officers duly authorized and their corporate seals (if applicable) to be hereunto affixed and attested as of the date first above written. The parties below certify that the wording of this Agreement is identical to the wording specified in § 50202(b)(1) of the GUSTR; as such rules were constituted on the date written above.

[Signature of Grantor]
[Name of the Grantor]
[Title]
Attest:
[Signature of Trustee]
[Name of the Trustee]
[Title]
[Seal]
[Signature of Witness]
[Name of Witness]
[Title]
[Seal]

(2) The standby trust agreement, or trust agreement, must be accompanied by a formal certification of acknowledgment similar to the following:

State of ________________________________
County of ______________________________

On this [date], before me personally came [owner or operator] to me known, who, being by me duly sworn, did depose and say that she/he resides at [address], that
she/he is [title] of [corporation], the corporation described in and which executed the above instrument; that she/he knows the seal of said corporation; that the seal affixed to such instrument is such corporate seal; that it was so affixed by order of the Board of Directors of said corporation; and that she/he signed her/his name thereto by like order.

[Signature of Notary Public]

[Name of Notary Public]

(c) The Administrator will instruct the trustee to refund the balance of the standby trust fund to the provider of financial assurance if the Administrator determines that no additional corrective action costs or third-party liability claims will occur as a result of a release covered by the financial assurance mechanism for which the standby trust fund was established.

(d) An owner or operator may establish one trust fund as the depository mechanism for all funds assured in compliance with this rule. (Imp: 40 C.F.R. §280.103)

§ 50203. Local Government Bond Rating Test.

(a) A general purpose local government owner or operator, or local government, or both, serving as a guarantor may satisfy the requirements of § 50194 by having a currently outstanding issue or issues of general obligation bonds of one million dollars or more, excluding refunded obligations, with a Moody's rating of Aaa, Aa, A, or Baa, or a Standard and Poor's rating of AAA, AA, A, or BBB. Where a local government has multiple outstanding issues, or where a local government's bonds are rated by both Moody's and Standard and Poor's, the lowest rating must be used to determine eligibility. Bonds that are backed by credit enhancement other than municipal bond insurance may not be considered in determining the amount of applicable bonds outstanding.

(b) A local government owner or operator or local government serving as a guarantor that is not a general-purpose local government and does not have the legal authority to issue general obligation bonds may satisfy the requirements of § 50194 by having a currently outstanding issue or issues of revenue bonds of one million or more, excluding refunded issues
and by also having a Moody's rating of Aaa, Aa, A, or Baa, or A Standard & Poor's rating of AAA, AA, A or BBB as the lowest rating for any rated revenue bond issued by the local government. Where bonds are rated by both Moody's and Standard & Poor's, the lower rating for each bond must be used to determine eligibility. Bonds that are backed by credit enhancement may not be considered in determining the amount of applicable bonds outstanding.

(c) The local government owner or operator, or guarantor or both, must maintain a copy of its bond rating published within the last twelve (12) months by Moody's or Standard & Poor's.

(d) To demonstrate that it meets the local government bond rating test, the chief financial officer of a general purpose local government owner or operator, or guarantor or both, must sign a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

Letter from Chief Financial Officer

I am the chief financial officer of [insert: name and address of local government owner or operator, or guarantor]. This letter is in support of the use of the bond rating test to demonstrate financial responsibility for [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage” or both] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or both] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an) underground storage tank(s).

Underground storage tanks at the following facilities are assured by this bond-rating test: [List for each facility: the name and address of the facility where tanks are assured by the bond rating test].

The details of the issue date, maturity, outstanding amount, bond rating, and bond rating agency of all outstanding bond issues that are being used by [name of local government owner or operator, or guarantor] to demonstrate financial responsibility are as follows: [complete table]
The total outstanding obligation of [insert amount], excluding refunded bond issues, exceeds the minimum amount of one million dollars. All outstanding general obligation bonds issued by this government that have been rated by Moody's or Standard & Poor's are rated as at least investment grade (Moody's Baa or Standard & Poor's BBB) based on the most recent ratings published within the last twelve (12) months. Neither rating service has provided notification within the last twelve (12) months of downgrading of bond ratings below investment grade or of withdrawal of bond rating other than for repayment of outstanding bond issues.

I hereby certify that the wording of this letter is identical to the wording specified in § 50203(d) of the GUSTR; as such regulations were constituted on the date shown immediately below.

[Date]
[Signature]
[Name]
[Title]

(e) To demonstrate that it meets the local government bond rating test, the chief financial officer of local government owner or operator, or guarantor or both other than a general purpose government must sign a letter worded exactly as follow, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

Letter from Chief Financial Officer

I am the chief financial officer of [insert: name and address of local government owner or operator, or guarantor]. This letter is in support of the use of the bond rating test to demonstrate financial responsibility for [insert: “taking corrective action” or “compensating third parties for bodily
injury and property damage” or both] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or both] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an) underground storage tank(s). This local government is not organized to provide general governmental services and does not have the legal authority under state law or constitutional provisions to issue general obligation debt.

Underground storage tanks at the following facilities are assured by this bond-rating test: [List for each facility: the name and address of the facility where tanks are assured by the bond rating test.]

The details of the issue date, maturity, outstanding amount, bond rating, and bond rating agency of all outstanding revenue bond issues that are being used by [name of local government owner or operator, or guarantor] to demonstrate financial responsibility are as follows: [complete table]

<table>
<thead>
<tr>
<th>Issue Date</th>
<th>Maturity Date</th>
<th>Outstanding Amount</th>
<th>Bond Rating</th>
<th>Rating Agency*</th>
</tr>
</thead>
</table>

*[Moody's or Standard & Poor's]

The total outstanding obligation of [insert amount], excluding refunded bond issues, exceeds the minimum amount of one million dollars. All outstanding revenue bonds issued by this government that have been rated by Moody's or Standard & Poor's are rated as at least investment grade (Moody's Baa or Standard & Poor's BBB) based on the most recent ratings published within the last twelve (12) months. The revenue bonds listed are not backed by third-party credit enhancement or are insured by a municipal bond insurance company. Neither rating service has provided notification within the last twelve (12) months of downgrading of bond ratings below investment grade or of withdrawal of bond rating other than for repayment of outstanding bond issues.
I hereby certify that the wording of this letter is identical to the wording specified in § 50203(e) of the GUSTR; as such regulations were constituted on the date shown immediately below.

[Date]
[Signature]
[Name]
[Title]

(f) The Administrator may require reports of financial condition at any time from the local government owner or operator, or local government guarantor, or both. If the Administrator finds, on the basis of such reports or other information, that the local government owner or operator, or guarantor or both, no longer meets the local government bond rating test requirements of § 50203, the local government owner or operator must obtain alternative coverage within thirty (30) days after notification of such a finding.

(g) If a local government owner or operator using the bond rating test to provide financial assurance finds that it no longer meets the bond rating test requirements, the local government owner or operator must obtain alternative coverage within one hundred fifty (150) days of the change in status. (Imp: 40 C.F.R. §280.104)

§ 50204. Local Government Financial Test.

(a) A local government owner or operator may satisfy the requirements of § 50194 by passing the financial test specified in this section. To be eligible to use the financial test, the local government owner or operator must have the ability and authority to assess and levy taxes or to freely establish fees and charges. To pass the local government financial test, the owner or operator must meet the criteria of subsections (b)(2) and (b)(3) based on year-end financial statements for the latest completed fiscal year.

(b) (1) The local government owner or operator must have the following information available, as shown in the year-end financial statements for the latest completed fiscal year:
(A) Total Revenues: Consists of the sum of general fund operating and non-operating revenues including net local taxes, licenses and permits, fines and forfeitures, revenues from use of money and property, charges for services, investment earnings, sales (property, publications, etc.), intergovernmental revenues (restricted and unrestricted), and total revenues from all other governmental funds including enterprise, debt service, capital projects, and special revenues, but excluding revenues to funds held in a trust or agency capacity. For purposes of this test, the calculation of total revenues shall exclude all transfers between funds under the direct control of the local government using the financial test (interfund transfers), liquidation of investments, and issuance of debt.

(B) Total Expenditures: Consists of the sum of general fund operating and non-operating expenditures including public safety, public utilities, transportation, public works, environmental protection, cultural and recreational, community development, revenue sharing, employee benefits and compensation, office management, planning and zoning, capital projects, interest payments on debt, payments for retirement of debt principal, and total expenditures from all other governmental funds including enterprise, debt service, capital projects, and special revenues. For purposes of this test, the calculation of total expenditures shall exclude all transfers between funds under the direct control of the local government using the financial test (interfund transfers).

(C) Local Revenues: Consists of total revenues (as defined in subsection (b)(1)(A)) minus the sum of all transfers from other governmental entities, including all monies received from federal, state, or local government sources.

(D) Debt Service: Consists of the sum of all interest and principal payments on all long-term credit obligations and all interest-bearing short-term credit obligations. Includes interest and principal payments
on general obligation bonds, revenue bonds, notes, mortgages, judgments, and interest-bearing warrants. Excludes payments on noninterest-bearing short-term obligations, interfund obligations, amounts owed in a trust or agency capacity, and advances and contingent loans from other governments.

(E) Total Funds: Consists of the sum of cash and investment securities from all funds, including general, enterprise, debt service, capital projects, and special revenue funds, but excluding employee retirement funds, at the end of the local government's financial reporting year. Includes federal securities, federal agency securities, state and local government securities, and other securities such as bonds, notes and mortgages. For purposes of this test, the calculation of total funds shall exclude agency funds, private trust funds, accounts receivable, value of real property, and other non-security assets.

(F) Population consists of the number of people in the area served by the local government.

(2) The local government's year-end financial statements, if independently audited, cannot include an adverse auditor's opinion or a disclaimer of opinion. The local government cannot have outstanding issues of general obligation or revenue bonds that are rated as less than investment grade.

(3) The local government owner or operator must have a letter signed by the chief financial officer worded as specified in subsection (c).

(c) To demonstrate that it meets the financial test under subsection (b), the chief financial officer of the local government owner or operator, must sign, within one hundred twenty (120) days of the close of each financial reporting year, as defined by the twelve (12) month period for which financial statements used to support the financial test are prepared, a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

Letter from Chief Financial Officer
22 GAR GUAM ENVIRONMENTAL PROTECTION AGENCY
CH. 50 GUAM UNDERGROUND STORAGE TANK REGULATIONS

I am the chief financial officer of [insert: name and address of the owner or operator]. This letter is in support of the use of the local government financial test to demonstrate financial responsibility for [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage” or both] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or both] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating [an] underground storage tank[s].

Underground storage tanks at the following facilities are assured by this financial test [List for each facility: the name and address of the facility where tanks assured by this financial test are located. If separate mechanisms or combinations of mechanisms are being used to assure any of the tanks at this facility, list each tank assured by this financial test by the tank identification number provided in the notification submitted pursuant to 40 Code of Federal Regulations §280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR.]

This owner or operator has not received an adverse opinion, or a disclaimer of opinion from an independent auditor on its financial statements for the latest completed fiscal year. Any outstanding issues of general obligation or revenue bonds, if rated, have a Moody's rating of Aaa, Aa, A, or Baa or a Standard and Poor's rating of AAA, AA, A, or BBB; if rated by both firms, the bonds have a Moody's rating of Aaa, Aa, A or Baa and a Standard and Poor's rating of AAA, AA, A, or BBB.

WORKSHEET FOR MUNICIPAL FINANCIAL TEST

PART I: BASIC INFORMATION

1. Total Revenues
 a. Revenues (dollars Value of revenues excludes liquidation of investments and issuance of debt. Value includes all general fund operating and non-operating revenues, as well as all revenues from all other governmental funds including
enterprise, debt service, capital projects, and special revenues, but excluding revenues to funds held in a trust or agency capacity.

b. Subtract interfund transfers (dollars)

c. Total Revenues (dollars)

2. Total Expenditures

a. Expenditures (dollars)

Value consists of the sum of general fund operating and non-operating expenditures including interest payments on debt, payments for retirement of debt principal, and total expenditures from all other governmental funds including enterprise, debt service, capital projects, and special revenues.

b. Subtract interfund transfers (dollars)

c. Total Expenditures (dollars)

3. Local Revenues

a. Total Revenues (from 1c) (dollars)

b. Subtract total intergovernmental transfers (dollars)

c. Local Revenues (dollars)

4. Debt Service

a. Interest and fiscal charges (dollars)

b. Add debt retirement (dollars)

c. Total Debt Service (dollars)

5. Total Funds (Dollars) _______

(Sum of amounts held as cash and investment securities from all funds, excluding amounts held for employee retirement funds, agency funds, and trust funds)

6. Population (Persons)

PART II: APPLICATION OF TEST

143
7. Total Revenues to Population
 a. Total Revenues (from 1c)
 b. Population (from 6)
 c. Divide 7a by 7b
 d. Subtract 417
 e. Divide by 5,212
 f. Multiply by 4.095

8. Total Expenses to Population
 a. Total Expenses (from 2c)
 b. Population (from 6)
 c. Divide 8a by 8b
 d. Subtract 524
 e. Divide by 5,401
 f. Multiply by 4.095

9. Local Revenues to Total Revenues
 a. Local Revenues (from 3c)
 b. Total Revenues (from 1c)
 c. Divide 9a by 9b
 d. Subtract 0.695
 e. Divide by 0.205
 f. Multiply by 2.840

10. Debt Service to Population
 a. Debt Service (from 4d)
 b. Population (from 6)
 c. Divide 10a by 10b
 d. Subtract 51
 e. Divide by 1,038
 f. Multiply by -1.866
11. Debt Service to Total Revenues
 a. Debt Service (from 4d)
 b. Total Revenues (from 1c)
 c. Divide 11a by 11b
 d. Subtract 0.068
 e. Divide by 0.259
 f. Multiply by -3.533

12. Total Revenues to Total Expenses
 a. Total Revenues (from 1c)
 b. Total Expenses (from 2c)
 c. Divide 12a by 12b
 d. Subtract .910
 e. Divide by 0.899
 f. Multiply by 3.458

13. Funds Balance to Total Revenues
 a. Total Funds (from 5)
 b. Total Revenues (from 1c)
 c. Divide 13a by 13b
 d. Subtract 0.891
 e. Divide by 9.156
 f. Multiply by 3.270

14. Funds Balance to Total Expenses
 a. Total Funds (from 5)
 b. Total Expenses (from 2c)
 c. Divide 14a by 14b
 d. Subtract 0.866
 e. Divide by 6.409
 f. Multiply by 3.270
15. Total Funds to Population
 a. Total Funds (from 5)
 b. Population (from 6)
 c. Divide 15a by 15b
 d. Subtract 270
 e. Divide by 4,548
 f. Multiply by 1.866

16. Add 7f+8f+9f+10f+11f+12f+13f+14f+15f+4.937

I hereby certify that the financial index shown on line 16 of the worksheet is greater than zero and that the wording of this letter is identical to the wording specified in § 50204(c) of the GUSTR, as such rules were constituted on the date shown immediately below.

[Date]
[Signature]
[Name]
[Title]

(d) If a local government owner or operator using the test to provide financial assurance finds that it no longer meets the requirements of the financial test based on the year-end financial statements, the owner or operator must obtain alternative coverage within one hundred fifty (150) days of the end of the year for which financial statements have been prepared.

(e) The Administrator may require reports of financial condition at any time from the local government owner or operator. If the Administrator finds, on the basis of such reports or other information, that the local government owner or operator no longer meets the financial test requirements of subsections (b) and (c), the owner or operator must obtain.

(f) If the local government owner or operator fails to obtain alternate assurance within one hundred fifty (150) days of finding that it no longer meets the requirements of the financial test based on the year-end financial statements or within thirty (30) days of notification by the Administrator that it no longer
meets the requirements of the financial test, the owner or operator must notify the Administrator of such failure within ten (10) days. (Imp: 40 C.F.R. §280.105)

§ 50205. (Reserved)

§ 50206. Local Government Guarantee.

(a) A local government owner or operator may satisfy the requirements of §50194 by obtaining a guarantee that conforms to the requirements of this section. The guarantor must be a local government having a “substantial governmental relationship” with the owner or operator and issuing the guarantee as an act incident to that relationship. A local government acting as the guarantor must:

(1) Demonstrate that it meets the bond rating test requirements of §50203 and deliver a copy of the chief financial officer's letter as contained in §50203(c) to the local government owner or operator;

(2) Demonstrate that it meets the worksheet test requirements of §50204 and deliver a copy of the chief financial officer's letter as contained in §50204(c) to the local government owner or operator; or

(3) Demonstrate that it meets the local government fund requirements of §50207(a) or §50207(b) or §50207(c), and deliver a copy of the chief financial officer's letter as contained in §50207 to the local government owner or operator.

(b) If the local government guarantor is unable to demonstrate financial assurance under any of §50203, §50204, §50207(a), §50207(b), or §50207(c), at the end of the financial reporting year, the guarantor shall send by certified mail, before cancellation or nonrenewal of the guarantee, notice to the owner or operator. The guarantee will terminate no less than one hundred twenty (120) days after the date the owner or operator receives the notification, as evidenced by the return receipt. The owner or operator must obtain alternative coverage as specified in §50214(c).
22 GAR Guam Environmental Protection Agency
Ch. 50 Guam Underground Storage Tank Regulations

(c) The guarantee agreement must be worded as specified in subsection (d) or (e), depending on which of the following alternative guarantee arrangements is selected:

(1) If, in the default or incapacity of the owner or operator, the guarantor guarantees to fund a standby trust as directed by the Administrator, the guarantee shall be worded as specified in subsection (d).

(2) If, in the default or incapacity of the owner or operator, the guarantor guarantees to make payments as directed by the Administrator for taking corrective action or compensating third parties for bodily injury and property damage, the guarantee shall be worded as specified in subsection (e).

(d) If the guarantor is a local government, the local government guarantee with standby trust must be worded exactly as follows, except that instructions in brackets are to be replaced with relevant information and the brackets deleted:

Local Government Guarantee with Standby Trust Made By a Local Government

Guarantee made this [date] by [name of guaranteeing entity], a local government organized under the laws of Guam, herein referred to as guarantor, to the Guam Environmental Protection Agency and to any and all third parties, and obliges, on behalf of [local government owner or operator].

Recitals

(1) Guarantor meets or exceeds [select one: the local government bond rating test requirements of § 50203 of the GUSTR, the local government financial test requirements of § 50204 of the GUSTR, or the local government fund under § 50207(a), § 50207(b) or § 50207(c) of the GUSTR.]

(2) [Local government owner or operator] owns or operates the following underground storage tank(s) covered by this guarantee: [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than
one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 Code of Federal Regulations §280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR, and the name and address of the facility.] This guarantee satisfies Article 9 of the GUSTR, requirements for assuring funding for [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage caused by” or both either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”]; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the above-identified underground storage tank(s) in the amount of [insert dollar amount] per occurrence and [insert: dollar amount] annual aggregate.

(3) Incident to our substantial governmental relationship with [local government owner or operator], guarantor guarantees to the Guam Environmental Protection Agency and to any and all third parties that:
In the event that [local government owner or operator] fails to provide alternative coverage within sixty (60) days after receipt of a notice of cancellation of this guarantee and the Administrator of the Guam Environmental Protection Agency has determined or suspects that a release has occurred at an underground storage tank covered by this guarantee, the guarantor, upon instructions from the Administrator shall fund a standby trust fund in accordance with the provisions of § 50212 of the GUST, in an amount not to exceed the coverage limits specified above.

In the event that the Administrator determines that [local government owner or operator] has failed to perform corrective action for releases arising out of the operation of the above-identified tank(s) in accordance with Article 7 of the GUSTR, the guarantor upon written instructions from the administrator shall fund a
standby trust fund in accordance with the provisions of § 50212 of the GUSTR, in an amount not to exceed the coverage limits specified above.

If [owner or operator] fails to satisfy a judgment or award based on a determination of liability for bodily injury or property damage to third parties caused by ["sudden" or “nonsudden” or both] accidental releases arising from the operation of the above-identified tank(s), or fails to pay an amount agreed to in settlement of a claim arising from or alleged to arise from such injury or damage, the guarantor, upon written instructions from the Administrator, shall fund a standby trust in accordance with the provisions of § 50212 of the GUSTR, to satisfy such judgment(s), award(s), or settlement agreement(s) up to the limits of coverage specified above.

(4) Guarantor agrees that, if at the end of any fiscal year before cancellation of this guarantee, the guarantor fails to meet or exceed the requirements of the financial responsibility mechanism specified in subsection (1), guarantor shall send within one hundred twenty (120) days of such failure, by certified mail, notice to [local government owner or operator], as evidenced by the return receipt.

(5) Guarantor agrees to notify [owner or operator] by certified mail of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code naming guarantor as debtor, within ten (10) days after commencement of the proceeding.

(6) Guarantor agrees to remain bound under this guarantee notwithstanding any modification or alteration of any obligation of [owner or operator] pursuant to Chapter 50.

(7) Guarantor agrees to remain bound under this guarantee for so long as [local government owner or operator] must comply with the applicable financial responsibility requirements of Article 9 of the GUSTR, for the above identified tank(s), except that guarantor may cancel this guarantee by sending notice by
certified mail to [owner or operator], such cancellation to become effective no earlier than one hundred twenty (120) days after receipt of such notice by [owner or operator], as evidenced by the return receipt.

(8) The guarantor's obligation does not apply to any of the following:

(a) Any obligation of [local government owner or operator] under a workers' compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert: local government owner or operator] arising from, and in the course of, employment by [insert: local government owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owner, rented, loaded to, in the care, custody, or control of, or occupied by [insert: local government owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily damage or property damage for which [insert: owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50194 of the GUSTR.

(9) Guarantor expressly waives notice of acceptance of this guarantee by the Guam Environmental Protection Agency, by any or all third parties, or by [local government owner or operator].

I hereby certify that the wording of this guarantee is identical to the wording specified in § 50206 of the GUSTR; as such rules were constituted on the effective date shown immediately below.
Effective date: _____________________________

[Name of guarantor]
[Authorized signature for guarantor]
[Name of person signing]
[Title of person signing]

Signature of witness or notary: __

(e) If the guarantor is a local government, the local government guarantee without standby trust must be worded exactly as follows, except that instructions in brackets are to be replaced with relevant information and the brackets deleted:

Local Government Guarantee without Standby Trust Made by a Local Government

Guarantee made this [date] by [name of guaranteeing entity], a local government organized under the laws of Guam, herein referred to as guarantor, to the Guam Environmental Protection Agency and to any and all third parties, and obliges, on behalf of [local government owner or operator].

Recitals

(1) Guarantor meets or exceeds [select one: the local government bond rating test requirements of § 50203 of the GUSTR, the local government financial test requirements of § 50204 of the GUSTR, or the local governmental fund under § 50207(a), § 50207(b) or § 50207(c), of the GUSTR.]

(2) [Local government owner or operator] owns or operates the following underground storage tank(s) covered by this guarantee: [List the number of tanks at each facility and the name(s) and address(es) of the facility (ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 Code of Federal
Regulations §280.22 or in the permit applications submitted under § 50124 and § 50126 of the GUSTR, and the name and address of the facility.] This guarantee satisfies Article 9 of the GUSTR, requirements for assuring funding for [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage caused by” or both either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the above-identified underground storage tank(s) in the amount of [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate.

(3) Incident to our substantial governmental relationship with [local government owner or operator], guarantor guarantees to the Guam Environmental Protection Agency and to any and all third parties and obliges that:

In the event that [local government owner or operator] fails to provide alternative coverage within sixty (60) days after receipt of a notice of cancellation of this guarantee and the Administrator of the Guam Environmental Protection Agency has determined or suspects that a release has occurred at an underground storage tank covered by this guarantee, the guarantor, upon written instructions from the Administrator shall make funds available to pay for corrective actions and compensate third parties for bodily injury and property damage in an amount not to exceed the coverage limits specified above.

In the event that the Administrator determines that [local government owner or operator] has failed to perform corrective action for releases arising out of the operation of the above-identified tank(s) in accordance with Article 7 of the GUSTR, the guarantor upon written instructions from the Administrator shall make funds available to pay for corrective actions in an
amount not to exceed the coverage limits specified above.

If [owner or operator] fails to satisfy a judgment or award based on a determination of liability for bodily injury or property damage to third parties caused by [“sudden” or “nonsudden” or both] accidental releases arising from the operation of the above-identified tank(s), or fails to pay an amount agreed to in settlement of a claim arising from or alleged to arise from such injury or damage, the guarantor, upon written instructions from the administrator, shall make funds available to compensate third parties for bodily injury and property damage in an amount not to exceed the coverage limits specified above.

(4) Guarantor agrees that if at the end of any fiscal year before cancellation of this guarantee, the guarantor fails to meet or exceed the requirements of the financial responsibility mechanism specified in subsection (1), guarantor shall send within one hundred twenty (120) days of such failure, by certified mail, notice to [local government owner or operator], as evidenced by the return receipt.

(5) Guarantor agrees to notify [owner or operator] by certified mail of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code naming guarantor as debtor, within ten (10) days after commencement of the proceeding.

(6) Guarantor agrees to remain bound under this guarantee notwithstanding any modification or alteration of any obligation of [owner or operator] pursuant to the GUSTR.

(7) Guarantor agrees to remain bound under this guarantee for so long as [local government owner or operator] must comply with the applicable financial responsibility requirements of Article 9 of the GUSTR, for the above identified tank(s), except that guarantor may cancel this guarantee by sending notice by certified mail to [owner or operator], such cancellation to become effective no earlier than one hundred twenty
(120) days after receipt of such notice by [owner or operator], as evidenced by the return receipt. If notified of a probable release, the guarantor agrees to remain bound to the terms of this guarantee for all charges arising from the release, up to the coverage limits specified above, notwithstanding the cancellation of the guarantee with respect to future releases.

(8) The guarantor's obligation does not apply to any of the following:

(a) Any obligation of [local government owner or operator] under a workers' compensation disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert: local government owner or operator] arising from and in the course of, employment by [insert: local government owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert: local government owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily damage or property damage for which [insert: owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50194 of the GUSTR.

(9) Guarantor expressly waives notice of acceptance of this guarantee by the Guam Environmental Protection Agency, by any or all third parties, or by [local government owner or operator].
I hereby certify that the wording of this guarantee is identical to the wording specified in § 50206 of the GUSTR; as such rules were constituted on the effective date shown immediately below.

Effective date:

[Name of guarantor]
[Authorized signature for guarantor]
[Name of person signing]
[Title of person signing]

Signature of witness or notary:

(Imp: 40 C.F.R. § 280.106)

§ 50207. Local Government Fund.

A local government owner or operator may satisfy the requirements of § 50194 by establishing a dedicated fund account that conforms to the requirements of this section. Except as specified in subsection (b), a dedicated fund may not be commingled with other funds or otherwise used in normal operations. A dedicated fund will be considered eligible if it meets one of the following requirements:

(a) The fund is dedicated by state constitutional provision, or local government statute, charter, ordinance, or order to pay for taking corrective action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum underground storage tanks or tank systems and is funded for the full amount of coverage required under § 50194, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining coverage; or

(b) The fund is dedicated by state constitutional provision, or local government statute, charter, ordinance, or order as a contingency fund for general emergencies, including taking corrective action and compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum underground storage tanks or tank systems, and is funded
for five times the full amount of coverage required under § 50194, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining coverage. If the fund is funded for less than five (5) times the amount of coverage required under § 50194, the amount of financial responsibility demonstrated by the fund may not exceed one-fifth (⅕) the amount in the fund; or

(c) The fund is dedicated by state constitutional provision, or local government statute, charter, ordinance or order to pay for taking corrective action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum underground storage tanks or tank systems. A payment is made to the fund once every year for seven (7) years until the fund is fully funded. This seven (7) year period is hereafter referred to as the “pay-in-period.” The amount of each payment must be determined by this formula:

\[
\frac{TF - CF}{Y}
\]

Where TF is the total required financial assurance for the owner or operator, CF is the current amount in the fund, and Y is the number of years remaining in the pay-in-period, and;

(1) The local government owner or operator has available bonding authority, approved through voter referendum (if such approval is necessary prior to the issuance of bonds), for an amount equal to the difference between the required amount of coverage and the amount held in the dedicated fund. This bonding authority shall be available for taking corrective action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum underground storage tanks or tank systems, or

(2) The local government owner or operator has a letter signed by the state attorney general stating that
the use of the bonding authority will not increase the local government's debt beyond the legal debt ceilings established by the relevant state laws. The letter must also state that prior voter approval is not necessary before use of the bonding authority.

(d) To demonstrate that it meets the requirements of the local government fund, the chief financial officer of the local government owner or operator, or guarantor or both must sign a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

LETTER FROM CHIEF FINANCIAL OFFICER

I am the chief financial officer of [insert: name and address of local government owner or operator, or guarantor.] This letter is in support of the use of the local government fund mechanism do demonstrate financial responsibility for [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage” or both] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or both] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an) underground storage tank(s).

Underground storage tanks at the following facilities are assured by this local government fund mechanism: (List for each facility: the name and address of the facility where tanks are assured by the local government fund).

[Insert: “The local government fund is funded for the full amount of coverage required under § 50194 of the GUSTR, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining coverage.” or “The local government fund is funded for ten (10) times the full amount of coverage required under § 50194 of the GUSTR, or funded for part of the required amount of coverage and used in conjunction with other mechanism(s) that provide the remaining coverage.” or “A payment is made to the fund once every year for seven years until the fund is fully-funded and [name of local government owner or operator] has available

158
bonding authority, approved through voter referendum, of an amount equal to the difference between the required amount of coverage and the amount held in the dedicated fund” or “A payment is made to the fund once every year for seven years until the fund is fully-funded and I have attached a letter signed by Guam’s Attorney General stating that (1) the use of the bonding authority will not increase the local government's debt beyond the legal debt ceilings established by the relevant state laws and (2) that prior voter approval is not necessary before use of the bonding authority”.

The details of the local government fund are as follows:

Amount in Fund (market value of fund at close of last fiscal year):

[If fund balance is incrementally funded as specified in § 50207(c) of the GUSTR, insert:

Amount added to fund in the most recently completed fiscal year:

Number of years remaining in the pay-in period:

A copy of the state constitutional provision, or local government statute, charter, ordinance or order dedicating the fund is attached.

I hereby certify that the wording of this letter is identical to the wording specified in § 50207 of the GUSTR; as such regulations were constituted on the date shown immediately below.

[Date]

[Signature]

[Name]

[Title]

(Imp: 40 C.F.R. §280.107)

(a) An owner or operator may substitute any alternate financial assurance mechanisms as specified in this Article, provided that at all times the owner or operator maintains an effective financial assurance mechanism or combination of mechanisms that satisfies the requirements of § 50194.

(b) After obtaining alternate financial assurance as specified in this Article, an owner or operator may cancel a financial assurance mechanism by providing notice to the provider of financial assurance. (Imp: 40 C.F.R. §280.108)

(a) Except as otherwise provided, a provider of financial assurance may cancel or fail to renew an assurance mechanism by sending a notice of termination by certified mail to the owner or operator.

(1) Termination of a local government guarantee, a guarantee, a surety bond, or a letter of credit may not occur until one hundred twenty (120) days after the date on which the owner or operator receives the notice of termination, as evidenced by the return receipt.

(2) Termination of insurance or risk retention coverage, except for non-payment or misrepresentation by the insured, may not occur until sixty (60) days after the date on which the owner or operator receives the notice of termination, as evidenced by the return receipt. Termination for non-payment of premium or misrepresentation by the insured may not occur until a minimum of ten (10) days after the date on which the owner or operator receives the notice of termination, as evidenced by the return receipt.

(b) If a provider of financial responsibility cancels or fails to renew for reasons other than incapacity of the provider as specified in § 50214, the owner or operator must obtain alternate coverage as specified in this Article within sixty (60) days after receipt of the notice of termination. If the owner or operator fails to obtain alternate coverage within sixty (60) days after receipt of the notice of termination, the owner or operator must notify the administrator of such failure and submit:
§ 50210. Reporting by Owner or Operator.

(a) An owner or operator must submit the appropriate forms listed in § 50211(b) documenting current evidence of financial responsibility to the Administrator:

(1) Within thirty (30) days after the owner or operator identifies a release from an UST or tank system required to be reported under § 50164 or § 50172;

(2) If the owner or operator fails to obtain alternate coverage as required by this Article, within thirty (30) days after the owner or operator receives notice of:

(A) Commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a provider of financial assurance as a debtor,

(B) Suspension or revocation of the authority of a provider of financial assurance to issue a financial assurance mechanism,

(C) Failure of a guarantor to meet the requirements of the financial test,

(D) Other incapacity of a provider of financial assurance; or

(3) As required by § 50196(g) and § 50209(b).

(b) An owner or operator must certify compliance with the financial responsibility requirements of this Article as specified in the notification form submitted pursuant to § 50221, or the permit applications under § 50124 and § 50126 when notifying the Administrator of the installation of an UST system.

(c) The Administrator may require an owner or operator to submit evidence of financial assurance as described in §
50211(b) or other information relevant to compliance with this Article at any time. (Imp: 40 C.F.R. §280.110)

§ 50211. Recordkeeping.

(a) Owners or operators must maintain evidence of all financial assurance mechanisms used to demonstrate financial responsibility under this Article for an UST or tank system until released from the requirements of this Article under § 50213. An owner or operator must maintain such evidence at the UST or tank system site or the owner's or operator's place of work. Records maintained off-site must be made available upon request of the Administrator.

(b) An owner or operator must maintain the following types of evidence of financial responsibility:

(1) An owner or operator using an assurance mechanism specified in § 50196 through § 50200, § 50201, or § 50203 through § 50207, must maintain a copy of the instrument worded as specified.

(2) An owner or operator using a financial test or guarantee, or a local government financial test or a local government guarantee supported by the local government financial test must maintain a copy of the chief financial officer's letter based on year-end financial statements for the most recent completed financial reporting year. Such evidence must be on file no later than one hundred twenty (120) days after the close of the financial reporting year.

(3) An owner or operator using a guarantee, surety bond, or letter of credit must maintain a copy of the signed standby trust fund agreement and copies of any amendments to the agreement.

(4) A local government owner or operator using a local government guarantee under § 50206(d) must maintain a copy of the signed standby trust fund agreement and copies of any amendments to the agreement.

(5) A local government owner or operator using the local government bond rating test under § 50203 must maintain a copy of its bond rating published within the last twelve (12) months by Moody's or Standard & Poor's.
(6) A local government owner or operator using the local government guarantee under § 50206, where the guarantor's demonstration of financial responsibility relies on the bond rating test under § 50203 must maintain a copy of the guarantor's bond rating published within the last twelve (12) months by Moody's or Standard & Poor's.

(7) An owner or operator using an insurance policy or risk retention group coverage must maintain a copy of the signed insurance policy or risk retention group coverage policy, with the endorsement or certificate of insurance and any amendments to the agreements.

(8) An owner or operator using a local government fund under § 50207 must maintain the following documents:

(A) A copy of the state constitutional provision or local government statute, charter, ordinance, or order dedicating the fund, and

(B) Year-end financial statements for the most recent completed financial reporting year showing the amount in the fund. If the fund is established under § 50207 using incremental funding backed by bonding authority, the financial statements must show the previous year's balance, the amount of funding during the year, and the closing balance in the fund.

(C) If the fund is established under § 50207 using incremental funding backed by bonding authority, the owner or operator must also maintain documentation of the required bonding authority, including either the results of a voter referendum (under § 50207, or attestation by Guam’s Attorney General as specified under § 50207).

(9) A local government owner or operator using the local government guarantee supported by the local government fund must maintain a copy of the guarantor's year-end financial statements for the most recent completed financial reporting year showing the amount of the fund.

(10) (A) An owner or operator using an assurance mechanism specified in § 50196 through § 50207 must
maintain an updated copy of a certification of financial responsibility worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

Certification of Financial Responsibility

[Owner or operator] hereby certifies that it is in compliance with the requirements of Article 9 of the GUSTR.

The financial assurance mechanism(s) used to demonstrate financial responsibility under Article 9 of the GUSTR, is (are) as follows:

[For each mechanism, list the type of mechanism, name of issuer, mechanism number (if applicable), amount of coverage, effective period of coverage and whether the mechanism covers “taking corrective action” or “compensating third parties for bodily injury and property damage caused by” or both either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases.”]

[Signature of owner or operator]
[Name of owner or operator]
[Title]
[Date]
[Signature of witness or notary]
[Name of witness or notary]
[Date]

(B) The owner or operator must update this certification whenever the financial assurance mechanism(s) used to demonstrate financial responsibility change(s). (Imp: 40 C.F.R. §280.111)

(a) Except as specified in subsection (d), the Administrator shall require the guarantor, surety, or institution issuing a letter
of credit to place the amount of funds stipulated by the Administrator, up to the limit of funds provided by the financial assurance mechanism, into the standby trust if:

(1) (A) The owner or operator fails to establish alternate financial assurance within sixty (60) days after receiving notice of cancellation of the guarantee, surety bond, letter of credit, or, as applicable, other financial assurance mechanism; and

(B) The Administrator determines or suspects that a release from an UST or tank system covered by the mechanism has occurred and so notifies the owner or operator or the owner or operator has notified the Administrator pursuant to Article 6 or 7 of a release from an UST or tank system covered by the mechanism; or

(2) The conditions of subsection (b)(1) or subsections (b)(2)(A) or (b)(2)(B) are satisfied.

(b) The Administrator may draw on a standby trust fund when:

(1) The Administrator makes a final determination that a release has occurred and immediate or long-term corrective action for the release is needed, and the owner or operator, after appropriate notice and opportunity to comply, has not conducted release response action as required under Article 7; or

(2) The Administrator has received either:

(A) Certification from the owner or operator and the third-party liability claimant(s) and from attorneys representing the owner or operator and the third-party liability claimant(s) that a third-party liability claims should be paid. The certification must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

Certification of Valid Claim

The undersigned, as principals and as legal representatives of [insert: owner or operator] and
[insert: name and address of third-party claimant], hereby certify that the claim of bodily injury [and/or] property damage caused by an accidental release arising from operating [owner's or operator's] underground storage tank should be paid in the amount of

$[].

[Signatures]
Owner or Operator
Attorney for Owner or Operator

(Notary)
Date

[Signatures]
Claimant(s)
Attorney(s) for Claimant(s)

(Notary)
Date

Or,

(B) A valid final court order establishing a judgment against the owner or operator for bodily injury or property damage caused by an accidental release from an underground storage tank or tank system covered by financial assurance under this Article and the administrator determines that the owner or operator has not satisfied the judgment.

(c) If the Administrator determines that the amount of corrective action costs and third-party liability claims eligible for payment under subsection (b) may exceed the balance of the standby trust fund and the obligation of the provider of financial assurance, the first priority for payment shall be corrective action costs necessary to protect human health and the environment. The Administrator shall pay third-party liability claims in the order in which the Administrator receives certifications under

166
subsection (b)(2)(A), and valid court orders under subsection (b)(2)(B).

(d) A governmental entity acting as guarantor under § 50206(e), the local government guarantee without standby trust, shall make payments as directed by the Administrator under the circumstances described in § 50212(a), (b), and (c). (Imp: 40 C.F.R. §280.112)

An owner or operator is no longer required to maintain financial responsibility under this Article for an UST or tank system after the UST or tank system has been properly and permanently closed or, if release response action is required, after the release response action has been completed and the UST or tank system has been properly and permanently closed as required by Article 8. (Imp: 40 C.F.R. §280.113)

§ 50214. Bankruptcy or Other Incapacity of Owner or Operator or Provider of Financial Assurance.

(a) Within ten (10) days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming an owner or operator as debtor, the owner or operator must notify the Administrator by certified mail of such commencement and submit the appropriate forms listed in § 50211(b) documenting current financial responsibility.

(b) Within ten (10) days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a guarantor providing financial assurance as debtor, such guarantor must notify the owner or operator by certified mail of such commencement as required under the terms of the guarantee specified in § 50197.

(c) Within ten (10) days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a local government owner or operator as debtor, the local government owner or operator must notify the Administrator by certified mail of such commencement and submit the appropriate forms listed in § 50211(b) documenting current financial responsibility.
(d) Within ten (10) days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a guarantor providing a local government financial assurance as debtor, such guarantor must notify the local government owner or operator by certified mail of such commencement as required under the terms of the guarantee specified in § 50206.

(e) An owner or operator who obtains financial assurance by a mechanism other than the financial test of self-insurance will be deemed to be without the required financial assurance in the event of a bankruptcy or incapacity of its provider of financial assurance, or a suspension or revocation of the authority of the provider of financial assurance to issue a guarantee, insurance policy, risk retention group coverage policy, surety bond, or letter of credit. The owner or operator must obtain alternate financial assurance as specified in this Article within thirty (30) days after receiving notice of such an event. If the owner or operator does not obtain alternate coverage within thirty (30) days after such notification, the owner or operator must notify the Administrator. (Imp: 40 C.F.R. §280.114)

§ 50215. Replenishment of Guarantees, Letters of Credit, or Surety Bonds.

(a) If at any time after a standby trust is funded upon the instruction of the administrator with funds drawn from a guarantee, local government guarantee with standby trust, letter of credit, or surety bond, and the amount in the standby trust is reduced below the full amount of coverage required, the owner or operator shall by the anniversary date of the financial mechanism from which the funds were drawn:

(1) Replenish the value of financial assurance to equal the full amount of coverage required, or

(2) Acquire another financial assurance mechanism for the amount by which funds in the standby trust have been reduced.

(b) For purposes of this section, the full amount of coverage required is the amount of coverage to be provided by § 50194. If a combination of mechanisms was used to provide the
assurance funds, which were drawn upon, replenishment shall occur by the earliest anniversary date among the mechanisms. (Imp: 40 C.F.R. §280.115)

§ 50216. [Reserved.]
§ 50217. [Reserved.]
§ 50218. [Reserved.]
§ 50219. [Reserved.]
§ 50220. [Reserved.]

ARTICLE 10
FIELD CITATIONS

§ 50221. Purpose.
§ 50222. Applicability.
§ 50223. Issuance and Contents of a Field Citation.
§ 50224. Notice of Citation.
§ 50225. Expedited Enforcement Compliance Order and Settlement Agreement.
§ 50226. Correcting Violations; Paying the Settlement Amount; and Signing the Settlement Agreement.
§ 50227. Methods of Payment.
§ 50228. Field Citation Penalty Amounts for Settlement.
§ 50229. [Reserved.]
§ 50230. [Reserved.]

§ 50221. Purpose.

The purpose of this Article is to create a field citation program that facilitates the effective and expeditious settlement of easily verifiable violations of this chapter. This Article presents the expedited enforcement compliance order and settlement agreement process also known as the field citation enforcement program.

§ 50222. Applicability.

(a) The rules of this Articles shall apply to those violations of this chapter and Chapter 76, Title 10 Guam Code Annotated
(GCA), that which the Agency, in its discretion, deems appropriate for resolution through the issuance of an expedited enforcement compliance order and settlement agreement or field citation.

(b) The field citation is an offer to settle an administrative case that the Agency shall withdraw if the owner, operator, product delivery person, or other person declines to accept the Agency's offer to settle, in which case the Agency may pursue other enforcement options.

§ 50223. Issuance and Contents of a Field Citation.

(a) In addition to any other remedy provided by law, any person who violates any provision of this chapter may be subject to a field citation.

(b) Any authorized employee of the Agency may issue a field citation.

(c) A field citation issued pursuant to this section must:

 (1) Be in the form prescribed by the Agency; and

 (2) Contain a notice of citation.

(d) The expedited enforcement compliance order and settlement agreement is not effective unless it is signed by the person(s) to whom it was issued and by the Administrator. Approval by the Administrator is in the Administrator's sole discretion.

§ 50224. Notice of Citation.

(a) The notice of citation shall:

 (1) Identify the provision alleged to have been violated;

 (2) Contain a brief description of the alleged violation;

 (3) Set forth the settlement amount; and

 (4) Be signed by the Agency’s employee who issues the field citation and the person(s) to whom it was issued or their representative.
(b) A penalty amount for settlement, specified in § 50228, may be imposed for a violation of any of the provisions set forth in that section.

§ 50225. Expedited Enforcement Compliance Order and Settlement Agreement.

(a) By signing the settlement agreement, the person to whom it was issued agrees not to challenge the field citation and accepts the settlement agreement. Subsequent signature by the Administrator constitutes acceptance by the Administrator of the settlement agreement.

(b) By signing the settlement agreement, the person to whom it was issued waives the right to a contested case hearing.

§ 50226. Correcting Violations; Paying the Settlement Amount; and Signing the Settlement Agreement.

(a) In order to settle the field citation, the person to whom it was issued must correct the violations, pay the settlement amount, and sign and return the settlement agreement within the time period specified by the Agency.

(b) If the person to whom the field citation was issued does not correct the violations, pay the settlement amount, and sign and return the settlement agreement within the time period specified by the Agency, the field citation is automatically withdrawn and the Agency may pursue other enforcement options.

(c) Failure to return the settlement agreement and pay the settlement amount within the time allowed does not relieve the person, to whom it was issued of the responsibility to comply fully with the provisions of this chapter, including correcting the violations that have been specifically identified in the field citation.

§ 50227. Methods of Payment.

(a) Payment of a settlement penalty amount imposed pursuant to § 50225 must be made as specified by the Agency. All payments shall be deposited into the Underground Storage Tank Management Fund as established in Chapter 76, Title 10 GCA, under § 76114.
§ 50228. Field Citation Penalty Amounts for Settlement.

The penalties that may be assessed for settlement of a field citation shall be determined by the Agency in accordance with Article 13 Appendices, Appendix VII.

§ 50229. [Reserved.]

§ 50230. [Reserved.]

ARTICLE 11
OPERATOR TRAINING

§ 50231. General Requirements for All UST Systems.

§ 50232. Designation of Operators.

§ 50233. Requirements for Operator Training.

§ 50235. Retraining.

§ 50236. Documentation.

§ 50237. [Reserved.]

§ 50238. [Reserved.]

§ 50239. [Reserved.]

§ 50240. [Reserved.]

§ 50231. General Requirement for All UST Systems.

Not later than August 8, 2012, all owners and operators of UST systems must ensure they have designated Class A, Class B, and Class C operators who meet the requirements of this Article.

§ 50232. Designation of Operators.

UST system owners or operators must designate:

(a) At least one Class A and one Class B operator for each UST or group of USTs at a facility.

(b) Each individual who meets the definition of Class C operator at the UST facility must be designated as a Class C operator. Class C operators must be employees of the UST system owner or operator.

§ 50233. Requirements for Operator Training.
UST system owners and operators must ensure Class A, Class B, and Class C operators meet the requirements of this section. Any individual designated for more than one operator class must successfully complete the required training program or comparable examination according to the operator class in which the individual is designated.

(a) Class A operators. Each designated Class A operator must either be trained in accordance with subsections (a)(1) and (a)(2) of this section or pass a comparable examination in accordance with subsection (e) of this section. Class A operators must receive training from an independent trainer.

(1) At a minimum, the training program for the Class A operator must provide general knowledge of the requirements in this subsection. At a minimum, the training must teach the Class A operators, as applicable, on the purpose, methods, and function of:

(A) Spill and overfill prevention;
(B) Release detection;
(C) Corrosion protection;
(D) Emergency response;
(E) Product and equipment compatibility;
(F) Financial responsibility;
(G) Notification, permitting, and storage tank registration;
(H) Temporary and permanent closure;
(I) Related reporting and recordkeeping;
(J) Environmental and regulatory consequences of releases; and
(K) Training requirements for the Class B and Class C operators.

(2) At a minimum, the training program must evaluate Class A operators to determine these individuals have the knowledge and skills to make
informed decisions regarding compliance and whether appropriate individuals are fulfilling the operation, maintenance, and recordkeeping requirements in accordance with subsection (a)(1) of this section.

(b) Class B operators. Each designated Class B operator must either receive training in accordance with subsections (b)(1) and (b)(2) of this section or pass a comparable examination, in accordance with (e) of this section. Class B operators must receive training from independent trainers not affiliated with the facility where the Class A or B operates USTs.

(1) At a minimum, the training program for the Class B operator must cover either: general requirements, which encompass all regulatory requirements and standards and typical equipment used at UST facilities; or site-specific requirements which addresses only the regulatory requirements and standards and equipment specific to the facility. At a minimum, the training program must teach the Class B operator, as applicable, on the purpose, methods, and function of:

(A) Operation and maintenance;
(B) Spill and overfill prevention;
(C) Release detection and related reporting;
(D) Corrosion protection and related testing;
(E) Emergency response;
(F) Product and equipment compatibility;
(F) Reporting and recordkeeping;
(G) Environmental and regulatory consequences of releases; and

(H) Training requirements for the Class C operator.

(2) At a minimum, the training program must evaluate Class B operators to determine these individuals have the knowledge and skills to
implement applicable UST regulatory requirements in
the field on the components of typical UST systems or,
as applicable, site-specific equipment used at an UST
facility in accordance with subsection (b)(1) of this
section.

(c) Class C operators. Each designated Class C
operator must either: be trained by a Class A or Class B
operator in accordance with subsections (c)(1) and (c)(2) of
this section; complete a training program in accordance with
subsections (c)(1) and (c)(2) of this section; or pass a
comparable examination, in accordance with subsection (e)
of this section.

(1) At a minimum, the training program for the
Class C operator must teach the Class C operators to
take appropriate actions in response to:

(A) Emergencies; and

(B) Alarms caused by spills or releases from
the UST system.

(2) At a minimum, the training program must
evaluate Class C operators to
determine these
individuals have the knowledge and skills to take
appropriate action in response to emergencies
(including situations posing an immediate danger or
threat to the public or to the environment or that
require immediate action) or alarms caused by spills or
releases from an underground storage tank system.

(d) Training Program. Any training program must
meet the minimum requirements of this section and include
an evaluation through testing, a practical demonstration, or
another approach acceptable to the Agency. The evaluation
component of the training program must be developed and
administered by an independent organization or the Agency
or delegated authority.

(e) Comparable Examination. A comparable
examination must, at a minimum, test the knowledge of the
Class A, Class B, and Class C operators in accordance with
the requirements of subsections (a), (b), or (c) of this
section, as applicable. The examination must be developed and administered by one of the following:

(1) An independent organization; or
(2) The Agency or delegated authority.

(a) An owner or operator must ensure that designated Class A, Class B and Class C operators meet requirements in § 50233 by not later than August 8, 2012.

(b) Class A and Class B operators designated after the applicable effective date indicated in subsection (a) of this section must be trained within thirty (30) days of assuming duties.

(c) Class C operators designated after the applicable effective date indicated in subsection (a) of this section must be trained before assuming duties of a Class C operator.

§ 50235. Retraining.

(a) Class A and B Operators must be retrained once every (2) two years in accordance with subsection 50233.

(b) Owners and operators of UST systems shall ensure that Class A and B operators are retrained in accordance with subsection 50233, if the agency determines that the UST system is out of compliance with the requirements of this Chapter. At a minimum, Class A and Class B operators shall successfully complete retraining in the areas identified as out of compliance. Class A and B operators shall complete training pursuant to this subsection no later than thirty (30) days from the date the Agency identifies the noncompliance.

§ 50236. Documentation.

Owners and operators of underground storage tank systems must maintain a list of designated Class A, Class B, and Class C operators and maintain records verifying that training and retraining, as applicable, have been completed, in accordance with § 50235 as follows:

(a) The list must:
(1) Identify all Class A, Class B and Class C operators at the UST facility over the last two (2) years; and

(2) Include names, class of operator trained, date assumed duties; date each completed initial training, and any retraining.

(b) Records verifying completion of training or retraining must be a paper or electronic record for Class A, Class B, and Class C operators. The records, at a minimum, must identify name of trainee, date trained, and operator training classes completed. Owners and operators must maintain these records for as long as Class A, Class B, and Class C operators are designated. The following requirements also apply to the following types of training:

(1) Records from classroom or field training programs or a comparable examination must, at a minimum, be signed by the trainer or examiner and list printed name of trainer or examiner and the company name, address, and phone number;

(2) Records from computer-based training must, at a minimum, indicate the name of the training program and web address, if Internet-based; and

(3) Records of retraining must include those areas on which the Class A or Class B operator has been retrained.

§ 50237. [Reserved.]
§ 50238. [Reserved.]
§ 50239. [Reserved.]
§ 50240. [Reserved.]

ARTICLE 12
CONFIDENTIALITY

§ 50241. Request for Confidentiality.
§ 50242. Submission Procedures.
§ 50241. Request for Confidentiality.

(a) Any information submitted to the Agency may be claimed as confidential.

(b) Any such claim must be asserted at the time of submission.

(c) No information shall be eligible for protection as confidential information under § 50245 unless it is submitted in accordance with the provisions of this chapter.

(d) If no claim of confidentiality is made at the time of submission, the Agency may make the information available to the public without further notice.

(e) If a claim of confidentiality is asserted at the time of submission, the Administrator shall make a determination of eligibility for protection as confidential information in accordance with § 50243.

§ 50242. Submission Procedures.

(a) Any person claiming information as confidential under the provisions of § 50241 shall:

(1) Clearly mark each page containing such information with the word “CONFIDENTIAL”; and

(2) Submit an affidavit setting forth the reasons that the person believes the information is entitled to protection as a trade secret.

(b) Any information submitted to the Agency for which a claim of confidentiality is made shall be submitted in a sealed envelope marked “CONFIDENTIAL” and addressed to the
Administrator. The information shall be submitted in two (2) separate parts as follows:

(1) The first part shall contain all information which is not deemed by the submitter to be confidential and shall include appropriate cross references to the second part; and

(2) The second part shall contain data, words, phrases, subsections or pages and appropriate affidavits containing or relating to the information, which is claimed to be confidential.

§ 50243. Prerequisite for Protection.

(a) No information shall be protected as confidential unless:

(1) It is submitted in accordance with the provision of this chapter; and

(2) The Administrator finds that the information would constitute a trade secret under Guam law.

(b) If the Administrator determines that the information, which is properly submitted, constitute a trade secret, then the information shall be kept confidential in accordance with § 50245.

§ 50244. Acceptability of Information.

(a) The Administrator shall give written notice to any person submitting information for which confidentiality is claimed of his or her decision on whether the information has been accepted as confidential.

(b) All information, which the Administrator determines is entitled to protection, shall be marked with the term “ACCEPTED” and shall be protected in accordance with § 50245.

(c) If the Administrator finds that the information submitted does not meet the requirements of § 50243, he or she shall promptly notify the person submitting the information of this findings. The Administrator shall give the person reasonable opportunity to further justify his or her claim that the information deserved protection as a trade secret or to limit the scope of information for which the request for protection is made.
(d) If the person fails to satisfactorily demonstrate to the Administrator that the information submitted meets the criteria of § 50243, the information shall be marked with the term “REJECTED” and promptly returned to the person submitting the information.

§ 50245. Security.

(a) All information, which is accepted by the Administrator as confidential, shall be stored in locked filling cabinets.

(b) No person shall have access to confidential information unless the person requires such access in order to carry out his or her responsibilities under the Underground Storage of Regulated Substances Act or this Regulation.

(c) No person shall disclose any confidential information except in accordance with applicable Guam’s law.

§ 50246. [Reserved.]

§ 50247. [Reserved.]

§ 50248. [Reserved.]

§ 50249. [Reserved.]

§ 50250. [Reserved.]

ARTICLE 13
APPENDICES

2019 NOTE: Please visit the Guam EPA website at www.epa.guam.gov or call (671) 300-4751 to obtain a copy of the following documents applicable to this chapter.

Appendix I. Notification for Underground Storage Tanks Permit.

Appendix II. Certification of Underground Storage Tank Installation.

Appendix III. Application for Underground Storage Tank Permit Renewal.
Appendix IV. Application for Transfer Underground Storage Tank Permit.
Appendix V. Application for Underground Storage Tank Variance.
Appendix VI. Field Citation/Settlement Agreement.
Appendix VII. Field Citation Penalty Amounts.
Assessment Of The Potential Costs, Benefits, And Other Impacts
Of The Final Revisions To
EPA’s Underground Storage Tank Regulations

Prepared for:
Release Prevention Division, Office of Underground Storage Tanks
U.S. Environmental Protection Agency
1200 Pennsylvania Avenue NW
Washington, DC 20460

Prepared by:
Industrial Economics, Incorporated
2067 Massachusetts Avenue
Cambridge, MA 02140
617/354-0074

April 2015
Acronyms And Terms

AHFDS – Airport hydrant fuel distribution system

ASTSWMO – Association of State and Territorial Solid Waste Management Officials

ATG – Automatic tank gauge / gauging – an automated process that monitors product level and provides inventory control

BLS – United States Bureau of Labor Statistics

BTEX – benzene, toluene, ethylbenzene, and xylenes

CFR – Code of Federal Regulations

CITLD – continuous in-tank leak detection

EGT – emergency generator tank

EPA – United States Environmental Protection Agency

FCT – field-constructed tank

Fill pipe – access by which a tank is filled

IRS – United States Internal Revenue Service

LLD – line leak detector / detection – a device that alerts the tank operator to the presence of a leak in underground piping by restricting or shutting off the flow of product through the piping, or by triggering an audible or visible alarm

LUST – leaking underground storage tank

MIDAS – modeling of infectious diseases agents study

NACS – National Association of Convenience Stores

NAICS – North American Industry Classification System

NRDA – natural resource damage assessment

OMB – United States Office of Management and Budget

OUST – Office of Underground Storage Tanks, United States Environmental Protection Agency

PAHs – polycyclic aromatic hydrocarbons
RFA – Regulatory Flexibility Act

SBA – United States Small Business Administration

SBREFA – Small Business Regulatory Enforcement Fairness Act of 1996

SIR – statistical inventory reconciliation – a leak detection method where inventory, delivery, and dispensing data is statistically analyzed

SISNOSE – significant impact on a substantial number of small entities

SPA – state program approval

SPCC – Spill Prevention, Control, and Countermeasure

Spill bucket – contained sump installed at the fill or vapor recovery connection points to contain drips and spills that can occur during delivery

Sump – subsurface area pit designed to provide access to equipment located below ground, and, when contained, to prevent liquids from releasing into the environment

SWDA – Solid Waste Disposal Act

TPH – total petroleum hydrocarbons

Turbine sump – sump designed to provide access to the turbine area above the tank

TVM – time value of money

UDC – under-dispenser containment – a device for collecting fluids spilled beneath a dispenser (pump) (e.g. dispenser pan)

UMRA – Unfunded Mandates Reform Act

UST – underground storage tank

WTP – willingness to pay
Contents

EXECUTIVE SUMMARY .. ES-1

CHAPTER 1. INTRODUCTION ... 1-1
 1.1 Background .. 1-1
 1.2 Need for Regulatory Action ... 1-2
 1.3 Summary of the Final UST regulation .. 1-3
 1.4 Alternative Regulatory Options ... 1-5
 1.5 Scope of Analysis .. 1-8
 1.6 Report Organization .. 1-8

CHAPTER 2. UNIVERSE OF UST SYSTEMS AFFECTED BY THE FINAL UST REGULATION 2-1
 2.1 Types of Entities Affected by the Final UST regulation .. 2-1
 2.2 Configuration of Average Conventional UST System ... 2-2
 2.3 UST Universe Size and Distribution Across Sectors .. 2-3
 2.4 Universe of Facilities and Systems Potentially Affected by Final UST regulation 2-7
 2.5 Facilities and Systems Affected by Final UST regulation .. 2-11

CHAPTER 3. ASSESSMENT OF COMPLIANCE COSTS .. 3-1
 3.1 Introduction ... 3-1
 3.2 Compliance Cost Methodology .. 3-1
 3.2.1 Categories of Compliance Costs Analyzed ... 3-3
 3.2.2 Estimation of System-Level Compliance Costs for UST Systems 3-6
 3.3 Calculation of Incremental Compliance Costs .. 3-11
 3.3.1 Calculation of Incremental Compliance Costs Using an Alternative Baseline 3-13
 3.4 Results of Assessment of Compliance Costs .. 3-14
 3.4.1 Assessment of Compliance Costs under the Alternative Baseline Scenario 3-20
 3.5 Sensitivity Analyses ... 3-20
 3.5.1 Compliance Costs of the Final UST regulation Using Alternative Estimates of Labor Rates, Overhead Costs, and Fringe Benefits 3-20
 3.5.2 Sensitivity Analysis of Distribution of Technologies for Overfill Prevention Equipment Inspections, Spill Prevention Equipment Testing, and Containment Sump Testing 3-24
 3.5.3 Summary of Sensitivity Findings 3-24
CHAPTER 4. ASSESSMENT OF COST SAVINGS AND BENEFITS 4-1

4.1 Introduction ... 4-1
4.2 Investigation of Empirical Methods for Measuring Cost Savings 4-1
 4.2.1 Engineering Estimates and Literature 4-1
 4.2.2 Statistical Analysis of State Release Data 4-3
4.3 Final Methodology for Assessment of Positive Impacts: Expert Consultation 4-6
 4.3.1 Avoided Remediation Costs ... 4-8
 4.3.2 Calculating Avoided Remediation Costs 4-8
4.4 Establishing Avoided Releases ... 4-11
 4.4.1 Avoided Releases Using an Alternative Baseline 4-14
4.5 Benefits from Avoided Releases and Reduced Release Severity 4-16
 4.5.1 Avoided Release Remediation 4-16
 4.5.2 Reduction in Release Severity 4-17
 4.5.3 Total Avoided Remediation Costs from Avoided Releases and Reduced Release Severity .. 4-19
 4.5.4 Benefits from Avoided Releases and Reduced Release Severity under the Alternative Baseline Scenario 4-20
 4.5.5 Avoided Costs by Requirement 4-22
4.6 Avoided Vapor Intrusion Damages ... 4-25
4.7 Avoided Product Loss ... 4-26
4.8 Human Health Benefits ... 4-27
4.9 Avoided Acute Exposure Events and Large-Scale Releases 4-29
4.10 Ecological Benefits ... 4-30
4.11 Measuring Benefits through Housing Price Changes 4-34
4.12 Conclusion ... 4-35
 4.12.1 Summary of Positive Impacts under the Alternative Baseline Scenario 4-36

CHAPTER 5. DISTRIBUTIONAL IMPACTS AND CONSIDERATIONS 5-1

5.1 Introduction ... 5-1
5.2 Economic Impacts ... 5-1
 5.2.1 Distribution of UST Systems by Industry Sector 5-3
 5.2.2 Market Dynamics in the Retail Motor Fuels Sector 5-3
5.2.3 Assessment of Market Exits and Employment Impacts .. 5-8
5.2.4 Assessment of Public Sector Cost Savings Related to Avoided Releases 5-16
5.2.5 Economic Impact Summary .. 5-19

5.3 Energy Impact Analysis ... 5-20
5.4 Regulatory Flexibility Analysis ... 5-21
5.4.1 Small Business Screening Analysis .. 5-22
5.4.2 Small Business Supplemental Analysis .. 5-23
5.4.3 Impacts to Small Governments .. 5-24

5.5 Screening Analysis to Inform Impacts on Minority and Low-Income Populations..... 5-26
5.5.1 Risk Assessment Population Analysis ... 5-27
5.5.2 Demographic Analysis .. 5-29
5.5.3 Summary and Limitations of the Analysis ... 5-33

5.6 Children’s Health Protection Analysis .. 5-34

CHAPTER 6. OTHER STATUTORY AND EXECUTIVE ORDER ANALYSES 6-1
6.1 Regulatory Planning and Review .. 6-1
6.2 Unfunded Mandates Analysis .. 6-2
6.3 Federalism Analysis ... 6-3
6.4 Tribal Governments Analysis .. 6-4
6.5 Joint Impacts of Rules ... 6-5

CHAPTER 7. COMPARISON OF COSTS, BENEFITS, AND OTHER IMPACTS 7-1
7.1 Cost Benefit Comparison ... 7-2
7.1.1 Net Costs of the Regulation: Potential Underestimates of Cost Savings and Benefits .. 7-4
7.1.2 Net Costs of the Regulation: Cost Savings to Public and Private Entities 7-4
7.1.3 Alternative Baseline: Potential Decreases in Future Cost Savings 7-6
7.2 Cost-Effectiveness Analysis ... 7-7
7.3 Costs and Beneficial Effects Under Alternative Discount Rates 7-7

Sources Cited

Appendices:

Appendix A: Configuration and Cost Assumptions for Airport Hydrant Fuel Distribution Systems (AHFDSs) and Field-Constructed Tanks (FCTs)
Appendix B: Estimation of Affected UST Universe and Baseline State Regulations
Appendix C: Analysis of Piping Replacement Thresholds
Appendix D: Methodology for Calculating Compliance Costs
Appendix E: Access Model Structure and Specifications
Appendix F: Analysis of Statistical Relationship between State Regulatory Programs and Confirmed Release Data
Appendix G: Expert Consultation: Selection and Data Collection Methodology
Appendix H: Expert Consultation: Responses and Interpretation
Appendix I: Methodology for Calculating Avoided Cleanup Costs and Summary Tables
Appendix J: Estimation of Future UST System and Release Universes for the Alternative Baseline Scenario
Appendix K: Methodology for Estimating Upper Bound Market Exit Scenario
Appendix L: Screening Analysis of Impacts on Small Entities
Appendix M: Screening Analysis of Environmental Justice Impacts
Appendix N: Cost Savings to State Financial Assurance Funds
Appendix O: UMRA Written Statement
Executive Summary

Overview

In 1984, Congress responded to the increasing threat to groundwater from leaking underground storage tank (UST) systems by adding Subtitle I to the Solid Waste Disposal Act (SWDA). SWDA required the U.S. Environmental Protection Agency (EPA) to protect the environment and human health from UST releases by developing a comprehensive regulatory program for UST systems storing petroleum or certain hazardous substances. In 1986, Congress amended Subtitle I of SWDA and created the Leaking Underground Storage Tank Trust Fund (LUST Trust Fund) to oversee and pay for cleanups at sites where the owner or operator is unknown, unwilling to pay, or unable to pay.

EPA promulgated the UST regulation in 1988 (40 CFR Part 280). This regulation set minimum standards for new tanks and required owners and operators of existing tanks to upgrade, replace, or close them. The 1988 regulation set deadlines for owners and operators to meet the new requirements. In 1988, EPA also promulgated a regulation for state program approval (40 CFR Part 281). EPA has not significantly changed these regulations since 1988. In 2005, the Energy Policy Act (EPAct) further amended Subtitle I of SWDA. EPAct requires states that receive federal Subtitle I money from EPA to meet certain requirements. EPA developed grant guidelines for states regarding: operator training; inspections; delivery prohibition; secondary containment; financial responsibility for manufacturers and installers; public record; and state compliance reports on government UST systems.

After Congress passed EPAct, EPA decided to revise the 1988 UST regulation (at 40 CFR Part 280), primarily to ensure parity in Indian country. Key EPAct provisions (such as secondary containment and operator training) apply to all states receiving federal Subtitle I money, regardless of their state program approval status. However, these key provisions do not apply in Indian country (or in states and U.S. territories that do not meet EPA’s operator training or secondary containment grant guidelines). In order to establish federal UST requirements similar to the UST secondary containment and operator training requirements of EPAct, EPA needed to revise the 1988 UST regulation. Without these changes, EPAct provisions will not apply in Indian country. These revisions will also fulfill the objectives of the EPA-Tribal UST Strategy (August 2006) in which both EPA and tribes recognized the importance of ensuring parity in implementing UST program requirements in states and territories, as well as in Indian country.1

EPA decided now is also an appropriate time to change the 1988 UST regulation to reflect technology improvements, address outdated requirements, and place a stronger emphasis on operations and maintenance. While EPA has issued many guidance documents and used various implementation approaches and techniques over the last 25 years, we have not made significant changes to the original 1988 UST regulation. Indeed, most states have passed requirements that go far beyond the 1988 UST regulation that provide greater environmental protection. These state regulations fully implement provisions of the EPAct and improve other

1 See http://www.epa.gov/oust/fedlaws/Tribal%20Strategy_08076r.pdf.
important areas of the 1988 UST regulation that have become outdated. Furthermore, while information on sources and causes of releases show that releases from tanks are less common than they once were, releases from piping and spills and overfills associated with deliveries have emerged as more common problems. Dispenser-related failures have also emerged as a leading source of releases. The lack of proper operation and maintenance of UST systems is a main cause of release from these areas. The final UST regulation places an emphasis on ensuring that equipment is properly maintained and working. It highlights the importance of operating and maintaining UST equipment so releases are prevented and detected early in order to avoid or minimize potential soil and groundwater contamination.

EPA worked diligently to ensure our regulatory development process was open and transparent. Over a two year period, we provided all stakeholders – state and tribal regulators; federal facilities; petroleum industry members, including representatives of owners and operators; equipment manufacturers; small businesses; local governments; and environmental and community groups – an opportunity to share their ideas and concerns through a variety of meetings, conference calls, and email exchanges. EPA thoroughly considered all input we received.

From this extensive stakeholder outreach, EPA compiled potential proposed changes to the UST regulation. EPA shared all ideas with stakeholders and gave them an opportunity to comment on each idea submitted. We then revised the list of potential changes and added items based on data, analysis, and consideration of costs and benefits. Ultimately, EPA identified the items in the proposed UST regulation as those which needed regulatory changes at the time; the proposed UST regulation was issued in November 2011 for a 90-day public comment period. EPA then extended this public comment period for an additional 60 days. EPA received submissions from over 190 commenters. Based on these comments, EPA has revised the 2011 proposed UST regulation and is now finalizing the UST regulation, as described below.

Regulatory Changes

EPA is revising the 1988 UST regulation to: establish federal requirements similar to certain key provisions of the EPAct; ensure owners and operators perform proper operation and maintenance; address UST systems deferred in the 1988 UST regulation; update the regulation to encompass current technology and practices; and make technical and editorial corrections. Specifically, EPA is requiring the following set of revisions (hereafter referred to as the Selected Option):

- Establish federal requirements for secondary containment and operator training similar to those established by EPAct for states that receive federal Subtitle I money
- Add operation and maintenance requirements

- Walkthrough inspections
- Overfill prevention equipment inspections
- Spill prevention equipment tests
- Containment sump tests
- Operability tests for release detection equipment

- Address UST systems deferred in the 1988 UST regulation
 - Remove release detection deferral for emergency generator tanks (EGTs)
 - Remove deferrals for airport hydrant fuel distribution systems (AHFDSs) and UST systems with field-constructed tanks (FCTs)

- Provide for other changes to improve release prevention and detection and program implementation
 - Require testing after repairs to spill and overfill prevention equipment and secondary containment
 - Eliminate flow restrictors in vent lines as an overfill prevention option for all new tanks and when overfill prevention equipment is replaced
 - Require closure of lined tanks that cannot be repaired according to a code of practice
 - Address responses to interstitial monitoring alarms
 - Retain vapor monitoring and groundwater monitoring as methods of release detection for tanks and piping (for those installed before the effective date of today’s final UST regulation) only if owners and operators demonstrate proper installation and performance through a site assessment
 - Require notification of ownership change
 - Establish requirements for demonstrating compatibility with fuels containing greater than E10 and greater than B20

- Make general updates to the UST regulation
 - Reference newer technologies, including explicitly adding statistical inventory reconciliation (SIR) and continuous in-tank leak detection (CITLD) as release detection methods
 - Update codes of practice listed in the UST regulation
 - Remove old upgrade and implementation deadlines
 - Make editorial and technical corrections

- Revise the state program approval regulation (40 CFR Part 281) to be consistent with the above revisions

3 In the final UST regulation, EPA is also addressing the 1988 UST regulatory deferrals of wastewater treatment tank systems that are not part of a wastewater treatment facility regulated under sections 402 or 307(b) of the Clean Water Act, USTs containing radioactive material, and emergency generator UST systems at nuclear power generation facilities regulated by the Nuclear Regulatory Commission. However, because these regulatory changes will not result in any incremental costs to the regulated community, this RIA does not factor these systems into any part of the analysis.
In addition to the Selected Option, EPA considered two other regulatory alternatives, described as Alternative 1 and Alternative 2. Alternative 1 is overall more stringent than the Selected Option. Alternative 2 is overall less stringent than the Selected Option. Exhibit ES-1 summarizes the requirements under each alternative.

<table>
<thead>
<tr>
<th>Requirement Description</th>
<th>Options Considered For The Final UST regulation</th>
<th>Selected</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>30-day</td>
<td>30-day (as proposed in Nov 2011)*</td>
<td>Quarterly</td>
<td></td>
</tr>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>3 year</td>
<td>Annual</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>3 year</td>
<td>Annual</td>
<td>3 year</td>
<td></td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>3 year</td>
<td>Annual</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and secondary containment</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>Required</td>
<td>Required</td>
<td>No change from existing regulation</td>
<td></td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection equipment</td>
<td>Annual (plus annual check of sumps)</td>
<td>Annual (as proposed in Nov 2011)*</td>
<td>Annual (plus annual check of sumps)</td>
<td></td>
</tr>
<tr>
<td>Add SIR/CTILD to regulation with performance criteria</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Groundwater and vapor monitoring for release detection</td>
<td>Continue to allow with site assessment 5-year phase out (as proposed in Nov 2011)*</td>
<td>No change from existing regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove release detection deferral for emergency generator tanks</td>
<td>Required</td>
<td>Required (as proposed in Nov 2011)*</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Requirements for demonstrating compatibility with fuels >E10 and >B20</td>
<td>Required</td>
<td>Required</td>
<td>Required (as proposed in Nov 2011)*</td>
<td>No change from existing regulation</td>
</tr>
<tr>
<td>Remove deferrals for airport hydrant fuel distribution systems and UST systems with field-constructed tanks</td>
<td>Regulate under alternative release detection requirements</td>
<td>Require AHS/FCT notify implementing agency and report releases (with no other requirements)</td>
<td>Maintain deferral</td>
<td></td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Secondary containment</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
</tbody>
</table>

* In the 2011 proposed UST regulation, these changes generally consisted of more or stricter requirements than what is in the final UST regulation. For example, the 30-day walkthrough inspections in the 2011 proposed UST regulation included monthly check of sumps. Please see the 2011 proposed UST regulation for details.

EPA designed this assessment in accordance with the Office of Management and Budget’s (OMB) requirements for regulatory review under Executive Order 12866 (as amended by Executive Order 13258), which applies to any significant regulatory action. This document also fulfills these requirements:
• Regulatory Flexibility Act, as amended by Small Business Regulatory Enforcement Fairness Act of 1996
• Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations
• Executive Order 13045, Protection of Children From Environmental Health Risks and Safety Risks
• Unfunded Mandates Reform Act of 1995
• Executive Order 13175, Consultation and Coordination With Indian Tribal Governments
• Executive Order 13132, Federalism
• Executive Order 13211, Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use

Summary Of Findings

Within the constraints of data availability, EPA in this analysis identified all quantifiable and qualitative impacts for the UST regulation. EPA obtained sufficient data to identify, by state, the number of units likely to be affected by each change in the final UST regulation. In our analysis, we use these data to assess the compliance costs imposed upon units and relevant state governments. In conducting these analyses, EPA also assessed the sensitivity of outcomes to key assumptions. Separately, the analysis monetizes a number of impacts of the final UST regulation including: avoided costs generated by avoided releases and reduction in severity of releases; avoided product loss; and avoided vapor intrusion damages. This analysis quantifies, but does not value, groundwater impacts. Finally, due to data and resource limitations, EPA was unable to quantify or value in this analysis human health benefits or ecological impacts, but addresses these qualitatively.

In addition to identifying costs and positive impacts, EPA in this analysis also examined the economic and distributional impacts of the final UST regulation. The economic impact analysis includes the final UST regulation’s effect on facility closures, employment, and energy output and cost. In the analysis of the final UST regulation’s distributional impacts, we examined small business impacts, effects on minority and low-income populations, impacts on children’s health, and potential impacts on state financial assurance funds. Finally, EPA’s analysis considered the final UST regulation’s impacts related to certain executive orders and statutes, including the Unfunded Mandates Reform Act, tribal governments, and federalism.

The main conclusions of this analysis are:

• **Compliance costs**4 – EPA estimates $160 million in annual compliance costs for the final UST regulation, including costs of $130 million for conventional UST systems and EGTs; $10 million for AHFDSs; $11 million for FCTs; $5.5 million

4 Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.
for owners and operators to read the final UST regulation; and less than $1.0 million in state government administrative costs. Compliance costs range from approximately $70 million under Alternative 2 to $290 million under Alternative 1.

- **State and local government costs** – Annual state and local government costs, including compliance costs to UST systems owned or operated by state and local governments, state program approval costs, state costs for processing ownership changes, and one-time notification costs for previously deferred systems, are approximately $6.8 million. These costs range from approximately $3.6 million under Alternative 2 to $14 million under Alternative 1.5

- **Avoided costs** – Avoided remediation costs associated with conventional UST systems form the majority of positive impacts from the final UST regulation.6 EPA estimates that the final UST regulation will avoid total costs of $310 million per year (range: $120 million per year to $530 million per year) under the Selected Option. This includes: $300 million (range: $110 million to $510 million) in avoided remediation costs from avoided releases and avoided groundwater contamination incidents; $4.5 million (range: $1.7 million to $7.9 million) in avoided vapor intrusion remediation costs; and $3.1 million (range: $860,000 to $6.5 million) in avoided product loss. Total avoided costs are $450 million (range: $210 million to $670 million) under Alternative 1 and $230 million (range: $45 million to $420 million) under Alternative 2.7

- **Benefits** – Due to data and resource constraints, EPA was unable to quantify or monetize many of the final UST regulation’s benefits, including human health and ecological benefits. EPA estimates that the final UST regulation could potentially protect 50 billion to 240 billion gallons of groundwater each year.8 Categories of nonmonetizable or nonquantifiable benefits that are qualitatively discussed in this analysis include: avoidance of human health risks, mitigation of acute exposure

5 If all applicable state and local government costs were incurred in the first year, rather than annualized and discounted, state and local governments would incur approximately $3.8 million in costs under the Selected Option. This includes $0.2 million for states to apply for state program approval and to read the regulations, $0.2 million for states to process one-time notifications of AHFDSs and FCTs and ownership changes that occur in the first year, and $3.6 million for state and local government owners and operators of UST systems to comply with requirements that come into effect in the first year (approximately 80 percent of which would be for state and local government owners and operators to read the final UST regulation).

6 For purposes of this analysis, “avoided remediation costs” include avoided administrative, response, remediation, and oversight costs.

7 Note that due to modeling and data limitations, EPA was unable to estimate avoided remediation costs associated with avoided releases and avoided groundwater contamination from AHFDSs and FCTs. In addition, EPA’s estimates of avoided remediation costs do not include non-use values that individuals may place on the existence of uncontaminated water supply.

8 See chapter 4.10 for details on how this estimate was derived.
events and large-scale releases (e.g., releases from AHFDSs and FCTs9), protection of ecological biota, and avoided property devaluation.

- **Compliance costs and avoided costs under the alternative baseline** – Under the alternative baseline scenario that assumes declines in the universes of both UST systems and releases over time, EPA estimates $160 million in annual compliance costs for the final UST regulation. Estimated costs do not change substantially under the alternative baseline scenario and range from $70 million under Alternative 2 to $290 million under Alternative 1. EPA also estimates total avoided costs of $210 million (range: $81 million to $360 million) under the Selected Option in the alternative baseline scenario. These avoided costs range from $160 million (range: $31 million to $290 million) under Alternative 2 to $310 million (range: $140 million to $460 million) under Alternative 1.

- **Average economic impacts** – Motor fuel retailers, which account for roughly 80 percent of UST systems, are expected to bear approximately 70 percent of the total costs under the Selected Option. To establish how the final UST regulation may impact the market, EPA examined whether the final UST regulation imposes a cost greater than the average after-tax profit margin of 1.8 percent for motor fuel retailers.10 Using this benchmark, we estimate approximately 19 firms may exit the market if they cannot pass costs through to customers. This number represents less than 0.1 of one percent of the total universe of 148,000 facilities. In comparison, between 2005 and 2013, the number of gas station facilities decreased by an average of 2,024 stations per year.

- **State financial assurance funds** – Decreases in release frequency and severity may decrease payments required of state financial assurance funds by $160 million or more per year under the Selected Option.11 To the extent that these funds are maintained by taxes other than those assessed on UST operators, decreases in these payments effectively represent a reallocation of costs from public entities to the private entities responsible for releases.

9 For example, an estimated 300,000 to 500,000 gallons of fuel were released from a 2.1 million gallon underground FCT at a fuel depot in Portsmouth, VA. Free product was found within 20 feet of a nearby creek in 1987. The release was attributed to tank or piping failures. Another example is Pease Air Force Base, where jet fuel was delivered to the runway apron via an underground fueling system. Historical leakage from the system contaminated soil and groundwater, forming groundwater plumes at many sites along the system. A site release study identified 60 to 70 release points with varying degrees of severity along the refueling system line with free product found under the apron at closure.

10 When costs exceed facility profits, it is likely that in the long-term, the facility would exit the market. After-tax profit margin based on 2009 data reported to the IRS (see chapter 5.2.3).

11 See chapter 5.2.4 for details on how this estimate was derived.
Assessment Of Compliance Costs

For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs for the following reasons:

- The regulatory requirements generally focus on additional testing and inspection of existing equipment and do not reflect large-scale investments in equipment or significant changes to operations at the facility level. In addition, the facilities affected by the final UST regulation are distributed with relative geographic uniformity for consumers and producers.

- Given the small per-facility costs (approximately $715 per year for the average facility), closures or changes in market structure represent an unlikely response to the final UST regulation. According to the 2007 Economic Census, average revenues in the retail motor fuel sales sector were approximately $3.8 million; the corresponding cost-to-sales ratio for the average facility is less than one-tenth of one percent. Therefore, it is unlikely that significant changes to production or consumer behavior will affect social costs.

- The short- and long-run impacts of the final UST regulation are not likely to differ significantly. Testing and inspection requirements may offer some opportunities for owners and operators to reduce costs by learning over time, but they are not likely to reduce costs enough to facilitate large-scale equipment upgrades.

EPA’s calculation of total incremental compliance costs for UST facilities reflects two key components: identifying specific measures necessary for compliance at individual facilities and calculating costs associated with each of these measures. To estimate these costs, EPA developed a compliance cost model that identifies incremental equipment and labor requirements for an individual system. Based on the baseline equipment use profile, existing state regulations, and anticipated responses to the final UST regulation, the model then generates system-specific estimates of compliance costs. Compliance costs include labor and capital costs associated with new equipment and installation, inspection, testing, and recordkeeping. The model also includes other compliance costs, such as those associated with more frequent detection of equipment failure and repair of equipment. Some component costs are specific to individual UST system configurations – for example, AHFDSs or FCTs – while others are consistent across all system types. Exhibit ES-2 summarizes the findings of our analysis of compliance costs.
Exhibit ES-2

<table>
<thead>
<tr>
<th>Category</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems</td>
<td>$130</td>
<td>$280</td>
<td>$63</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs)</td>
<td>$2.0</td>
<td>$2.3</td>
<td>$2.0</td>
</tr>
<tr>
<td>Airport Hydrant Fuels Distribution Systems (AHFDSs)</td>
<td>$10</td>
<td>$0.017</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$11</td>
<td>$0.066</td>
<td>$0.0</td>
</tr>
<tr>
<td>Cost to Owners/Operators to Read Regulation</td>
<td>$5.5</td>
<td>$5.5</td>
<td>$5.5</td>
</tr>
<tr>
<td>State Government Administrative Costs</td>
<td>$0.12</td>
<td>$0.12</td>
<td>$0.12</td>
</tr>
<tr>
<td>Total Annual Compliance Costs</td>
<td>$160</td>
<td>$290</td>
<td>$70</td>
</tr>
</tbody>
</table>

a Cost estimates were derived using a seven percent discount rate.
b Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.
c Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.
d The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories (see Exhibit ES-6). Costs shown here reflect the administrative costs for state governments to read the final UST regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.
e Totals may not add up due to rounding.

Assessment Of Cost Savings And Benefits

Avoided remediation costs among conventional UST systems and EGTs provide the basis for a substantial portion of the beneficial impacts associated with the final UST regulation. Avoided remediation costs of the final UST regulation represent cost savings that accrue to owners, operators, and public entities charged with remediating releases at regulated facilities. EPA obtained remediation costs from a survey of state UST cleanup programs and estimates of the distribution of releases by UST system area from internal research.\(^\text{12}\) EPA identified four UST technical experts who provided professional judgment regarding the final UST regulation’s effects on reduction in release frequency (number of releases per year) and release severity (as measured by groundwater incidents averted). This body of knowledge allowed EPA to estimate total avoided costs, as well as avoided costs per requirement. EPA also estimated avoided costs associated with vapor intrusion and product loss, though these avoided costs are not allocated across requirements.\(^\text{13}\) Finally, the analysis provides qualitative discussion of avoided acute events and exposure (including large-scale releases, such as those from AHFDSs and FCTs), avoided human health risks, ecological benefits, and avoided property devaluation. These findings are summarized in Exhibit ES-3 below.

\(^\text{13}\) These costs were not allocated because we did not ask the experts to estimate quantitatively how different regulatory requirements would specifically affect vapor intrusion or product loss. Vapor intrusion frequency and cost data rely on general information we received from several states and are typically recorded as additional remedial activities at some groundwater sites. The likelihood of vapor intrusion, however, is driven by proximity of receptors and by geology and is not predictably related to the size or age of a plume. Product loss estimates rely on data from Florida and other sources for typical release sizes and are mapped to the estimates of avoided releases.
Exhibit ES-3

Summary Of Positive Impacts

<table>
<thead>
<tr>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetized Avoided Costs Associated With Conventional USTs And EGTs ($ millions, present value 2012)<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents<sup>b</sup></td>
<td>$330</td>
<td>$110</td>
<td>$260</td>
<td>$510</td>
<td>$300</td>
<td>$110 - $510</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$4.3</td>
<td>$1.7</td>
<td>$4.1</td>
<td>$7.9</td>
<td>$4.5</td>
<td>$1.7 - $7.9</td>
</tr>
<tr>
<td>Product loss</td>
<td>$2.3</td>
<td>$0.86</td>
<td>$2.9</td>
<td>$6.5</td>
<td>$3.1</td>
<td>$0.86 - $6.5</td>
</tr>
<tr>
<td>Total<sup>c</sup></td>
<td>$330</td>
<td>$120</td>
<td>$270</td>
<td>$530</td>
<td>$310</td>
<td>$120 - $530</td>
</tr>
</tbody>
</table>

Non-Monetized Impacts^d						
Groundwater protected (billion gallons)	130	50	120	240	130	50 - 240
Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)^e	n/e	n/e	n/e	n/e	n/e	n/e
Ecological benefits^e	n/e	n/e	n/e	n/e	n/e	n/e
Human health risks^e	n/e	n/e	n/e	n/e	n/e	n/e

ALTERNATIVE 1

<table>
<thead>
<tr>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetized Avoided Costs Associated With Conventional USTs And EGTs ($ millions, present value 2012)<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents<sup>b</sup></td>
<td>$490</td>
<td>$200</td>
<td>$410</td>
<td>$650</td>
<td>$440</td>
<td>$200 - $650</td>
</tr>
<tr>
<td>Vapor intrusion - low assumptions</td>
<td>$5.9</td>
<td>$2.5</td>
<td>$5.9</td>
<td>$9.1</td>
<td>$5.9</td>
<td>$2.5 - $9.1</td>
</tr>
<tr>
<td>Product loss</td>
<td>$2.6</td>
<td>$0.78</td>
<td>$4.1</td>
<td>$7.6</td>
<td>$3.8</td>
<td>$0.78 - $7.6</td>
</tr>
<tr>
<td>Total<sup>c</sup></td>
<td>$500</td>
<td>$210</td>
<td>$420</td>
<td>$670</td>
<td>$450</td>
<td>$210 - $670</td>
</tr>
</tbody>
</table>

Non-Monetized Impacts^d						
Groundwater protected (billion gallons)	180	74	180	270	170	74 - 270
Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)^e	n/e	n/e	n/e	n/e	n/e	n/e
Ecological benefits^e	n/e	n/e	n/e	n/e	n/e	n/e
Human health risks^e	n/e	n/e	n/e	n/e	n/e	n/e

ALTERNATIVE 2

<table>
<thead>
<tr>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetized Avoided Costs Associated With Conventional USTs And EGTs ($ millions, present value 2012)<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents<sup>b</sup></td>
<td>$210</td>
<td>$44</td>
<td>$220</td>
<td>$410</td>
<td>$220</td>
<td>$44 - $410</td>
</tr>
<tr>
<td>Vapor intrusion - low assumptions</td>
<td>$2.6</td>
<td>$0.56</td>
<td>$3.2</td>
<td>$6.0</td>
<td>$3.1</td>
<td>$0.56 - $6.0</td>
</tr>
<tr>
<td>Product loss</td>
<td>$1.5</td>
<td>$0.36</td>
<td>$2.5</td>
<td>$5.2</td>
<td>$2.4</td>
<td>$0.36 - $5.2</td>
</tr>
<tr>
<td>Total<sup>c</sup></td>
<td>$220</td>
<td>$45</td>
<td>$220</td>
<td>$420</td>
<td>$230</td>
<td>$45 - $420</td>
</tr>
</tbody>
</table>

Non-Monetized Impacts^d						
Groundwater protected (billion gallons)	78	17	96	180	92	17 - 180
Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)^e	n/e	n/e	n/e	n/e	n/e	n/e
Ecological benefits^e	n/e	n/e	n/e	n/e	n/e	n/e
Human health risks^e	n/e	n/e	n/e	n/e	n/e	n/e

^a Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.
Summary Of Positive Impacts

1. Expert 2 provided responses that generate benefits that are relatively low compared to estimated costs, unlike the other three experts. Conversations with this expert indicated that this discrepancy may be due to his assumptions about partial noncompliance. See Section 4.5.3 and Appendix H for additional discussion.

2. Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

3. Due to data and resource constraints, EPA was unable to monetize some of the positive impacts of the final UST regulation. Chapter 4 provides a qualitative discussion of these benefits.

4. Benefits not estimated are denoted by n/e.

Comparison Of Compliance Costs And Positive Impacts

Exhibit ES-4 summarizes the compliance costs and positive impacts of the final UST regulation. The majority of measurable positive effects occur as avoided remediation costs. As discussed in Chapter 4, avoided costs provide a reasonable measure of the positive effects of the final UST regulation.

<table>
<thead>
<tr>
<th>Exhibit ES-4</th>
<th>Comparison Of Annual Compliance Costs And Cost Savings[^ad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Avoided Costs[^a]</td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents: average value (range of all values in italics)</td>
<td>$300 ($110-$510)</td>
</tr>
<tr>
<td>Vapor intrusion: average value (range of all values in italics)</td>
<td>$4.5 ($1.7-$7.9)</td>
</tr>
<tr>
<td>Product loss (range of all values in italics)</td>
<td>$3.1 ($0.86-$6.5)</td>
</tr>
<tr>
<td>Annual Compliance Costs</td>
<td></td>
</tr>
<tr>
<td>Conventional UST systems[^b]</td>
<td>$130</td>
</tr>
<tr>
<td>Emergency generator tanks (EGTs)</td>
<td>$2.0</td>
</tr>
<tr>
<td>Airport hydrant fuel distribution systems (AHFDSs)</td>
<td>$10</td>
</tr>
<tr>
<td>UST systems with field-constructed tanks (FCTs)</td>
<td>$11</td>
</tr>
<tr>
<td>Cost to owners/operators to read UST regulation</td>
<td>$5.5</td>
</tr>
<tr>
<td>State government administrative costs[^c]</td>
<td>$0.12</td>
</tr>
<tr>
<td>Total Annual Avoided Costs</td>
<td>$310 ($120-$530)</td>
</tr>
<tr>
<td>Total Annual Compliance Costs[^d]</td>
<td></td>
</tr>
<tr>
<td>Total Annual Compliance Costs (range of all values in italics)</td>
<td>$160</td>
</tr>
<tr>
<td>Net Cost (Savings) To Society[^e]</td>
<td></td>
</tr>
<tr>
<td>[Total Compliance Costs Less Total Avoided Costs] (range of all values in italics)</td>
<td>($160)</td>
</tr>
<tr>
<td>$39 - ($370)</td>
<td>$81 - ($380)</td>
</tr>
<tr>
<td>Non-Monetized Benefits[^e]</td>
<td></td>
</tr>
<tr>
<td>Groundwater protected (billion gallons)</td>
<td>130 (50-240)</td>
</tr>
<tr>
<td>Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Ecological benefits</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Human health risks</td>
<td>Not estimated</td>
</tr>
</tbody>
</table>

[^a]: Avoided costs are estimated for conventional UST systems and emergency generator tanks only. Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.

[^b]: Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

[^c]: The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state operations.
Exhibit ES-4

Comparison Of Annual Compliance Costs And Cost Savings\(^{d,e}\)
governments to read the final UST regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of existence for AHFDS and UST systems with FCTs.

\(^d\) Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.

\(^e\) Due to data and resource constraints, EPA is unable to monetize some of the positive impacts of the final UST regulation. Chapter 4 of this document provides a qualitative discussion of these benefits.

\(^f\) The results show that all but one of the four estimates of cost savings for conventional systems exceed total regulatory costs (including FCT and AHFDS systems). As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. However, this expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with the assumption of 100 percent compliance in the cost estimates. As a result, this low-end estimate of potential cost savings likely understates the cost savings that would be associated with a consistent, 100 percent compliance scenario. See Chapter 4 and Appendix H for detailed discussion of how these assumptions affect net benefits of the final UST regulation as calculated using responses from Expert 2.

\(^g\) Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

Exhibit ES-5 summarizes the compliance costs and positive impacts of the final UST regulation under an alternative baseline where universes of UST systems and releases are assumed to decrease at a declining rate over time. Compliance costs do not change substantially under the alternative baseline, while estimates of avoided costs decrease by approximately 31 percent, as the universe of releases contracts substantially under the alternative baseline. In this scenario, annual net savings to society for the Selected Option average $60 million per year.

Exhibit ES-5

Comparison Of Annual Compliance Costs And Cost Savings Under Alternative Baseline\(^{c,e}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Annual Avoided Costs(^{a,b}) (range of all values in italics)</td>
<td>$220 ($81-$360)</td>
<td>$310 ($140-$460)</td>
<td>$160 ($31-$290)</td>
</tr>
<tr>
<td>Total Annual Compliance Costs(^c)</td>
<td>$160</td>
<td>$290</td>
<td>$70</td>
</tr>
<tr>
<td>Net Cost (Savings) To Society(^{c,d}) (range of all values in italics) [Total Compliance Costs Less Total Avoided Costs]</td>
<td>($60) ($210)</td>
<td>($25) ($170)</td>
<td>($87) ($220)</td>
</tr>
</tbody>
</table>

\(^a\) Avoided costs are estimated for conventional UST systems and emergency generator tanks only.

\(^b\) Due to data and resource constraints, EPA is unable to monetize some of the positive impacts of the final UST regulation. Chapter 4 of this document provides a qualitative discussion of these benefits.

\(^c\) Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.

\(^d\) The results show that all but one of the four estimates of cost savings for conventional systems exceeded total regulatory costs (including FCT and AHFDS systems). As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. However, this expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with the assumption of 100 percent compliance in the cost estimates. As a result, this low-end estimate of potential cost savings likely understates the cost savings that would be associated with a consistent, 100 percent compliance scenario. See Chapter 4 and Appendix H for detailed discussion of how these assumptions affect net benefits of the final UST regulation as calculated using responses from Expert 2.

\(^e\) Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.
Economic Impacts

EPA’s assessment of the economic impacts associated with this final UST regulation focused on the retail motor fuels sector, which accounts for approximately 80 percent of UST owners or operators. In this analysis, EPA describes supply and demand dynamics within the retail motor fuels market and the likely economic responses to increased compliance costs. Our screening assessment finds that average estimated facility-level costs of $715 may result in the market exit of approximately 19 firms, if these firms cannot pass any regulatory costs through to customers. This represents less than 0.1 of one percent of existing retail motor fuel facilities, and an even smaller fraction of all facilities affected by the final UST regulation. In comparison, approximately 2,024 facilities per year closed over the period between 2005 and 2013.

To address uncertainty related to the distribution of costs among UST facilities, we also constructed a worst-case sensitivity analysis, which identified the maximum number of facilities that could face significant economic impacts due to regulatory costs. We defined the worst case as the scenario where the highest possible cost occurred for the smallest facilities. We found that up to 4,500 facilities may exit the market in this unlikely worst-case scenario, representing 3 percent of existing retail motor fuel facilities and a similar rate to annual historical market exits. The limited magnitude of impacts even in the worst-case scenario suggests that the final UST regulation will not affect existing consolidation trends in the retail motor fuels industry, retail motor fuel prices, or consumption.

In addition, EPA’s analysis suggests that the final UST regulation could result in a reallocation of costs from the public to private parties responsible for releases. Preventing releases under this UST regulation would increase compliance costs to facility owners, but the avoided releases would in many cases reduce remediation demand for taxpayer-funded state funds. This is likely to improve behavioral incentives, as the parties most likely to cause releases will also be responsible for preventing them. As discussed in Chapter 5, this reallocation could result in savings to state financial assurance funds in excess of $160 million per year.

Other Regulatory And Distributional Issues

As part of our analysis, we assessed the final UST regulation’s potential impacts related to:

- **Energy impacts** – The final UST regulation will not have significant adverse effects on energy supply, distribution, or use, including impacts on price and foreign supplies. It is, therefore, not a significant energy action under Executive Order 13211, Actions Concerning Regulations That Affect Energy Supply, Distribution, or Use (May 18, 2001).

14 Census data on number of facilities per firm indicate that virtually all firms earning less than $250,000 per year in 2007 had only one facility. We therefore use “firm” and “facility” interchangeably in this context. See chapter 5.2.3 for details.

15 For additional information regarding this issue, see Chapter 5.
- **Regulatory flexibility** – EPA’s analysis determined that approximately 634 small entities (less than 1 percent of the universe of affected small entities) may experience economic impacts that exceed 1 percent of revenues, but only 19 of these entities would exit the market as a result of incurring costs greater than or equal to total profits. For various reasons, and especially due to different system configurations for smaller facilities, the actual number of affected entities is likely to be even fewer than the number estimated by the analysis. In comparison, this number is smaller than the recent industry consolidation rate of approximately 2,024 facilities per year in the retail motor fuels sector. The final UST regulation is unlikely to have a significant economic impact on a substantial number of small businesses or small governments.

- **Small government impacts** – The final UST regulation is not expected to have significant small government impacts. EPA’s assessment of costs to state and local governments indicated that no government-owned UST facilities will experience costs that exceed 1 percent of revenues.

- **Impacts on minority and low-income populations** – Because the final UST regulation would increase regulatory stringency and reduce the number and size of releases, the final UST regulation is not expected to have any disproportionately high and adverse human health or environmental effects on minority or low-income populations, or on any community.

- **Children’s health protection** – Because the final UST regulation is expected to reduce exposure to contaminated groundwater by reducing the number and size of releases, EPA does not expect the final UST regulation to have a disproportionate environmental health risk effect on children, as defined in Executive Order 13045, *Protection of Children from Environmental Health Risks and Safety Risks* (62 FR 19885, April 23, 1997). Moreover, while the risk assessment did not specifically measure exposure to children, it is unclear that children are disproportionately affected in the baseline. For example, adults could be the more sensitive receptor for cancer effects of contaminated groundwater due to the longer potential exposure from showering (inhalation of vapors) compared to children (ingestion of water while bathing), particularly those under age 5 who are assumed to take more baths and fewer showers.

- **Regulatory planning and review** – Pursuant to the terms of Executive Order 12866 (58 FR 51735, October 4, 1993), EPA determined the final UST regulation is an economically significant regulatory action because it may have an annual effect on the economy of $100 million or more, as defined under part 3(f)(1) of the Order. Findings of the regulatory cost analysis in Chapter 3 indicate the final UST regulation is projected to result in aggregate annual compliance costs of approximately $160 million under the Selected Option, $290 million under Alternative 1, and $70 million under Alternative 2.
• **Unfunded mandates analysis** – The final UST regulation is subject to the requirements of sections 202 and 205 of the Unfunded Mandates Reform Act (UMRA), because it contains federal mandates that may result in the expenditure by state, local, and tribal governments or by the private sector of $100 million or more in any one year. Exhibit ES-6 provides references for EPA’s analyses responding to UMRA requirements under which this final UST regulation is subject.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Location In This Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of provision of federal law under which rule is being promulgated</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Assessment of costs and benefits to state, local, and tribal governments and the private sector</td>
<td>Chapters 3 and 4</td>
</tr>
<tr>
<td>Assessment of the effect on health, safety, and the natural environment</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Assessment of the extent to which such costs may be paid with federal financial assistance</td>
<td>Chapter 3; no Federal assistance is anticipated</td>
</tr>
<tr>
<td>Assessment of the extent to which there are available federal resources to carry out this mandate</td>
<td>Chapter 3; no Federal resources are anticipated</td>
</tr>
<tr>
<td>Estimates of future compliance costs</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Estimates of disproportionate budgetary effects on any type of government or private sector segment</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Estimates of the effect on the national economy</td>
<td>Chapters 3 and 5</td>
</tr>
</tbody>
</table>

• **Federalism** – Executive Order 13132, *Federalism* (64 FR 43255, August 10, 1999), defines policies that have federalism implications to include regulations with substantial direct effects on states, on the relationship between the federal government and states, or on the distribution of power and responsibilities among the various levels of government. EPA typically considers a policy to have federalism implications if it results in aggregate expenditures by state or local governments of $25 million or more in any one year. As Exhibit ES-7 below indicates, EPA does not expect any of the regulatory options to have significant federalism implications.

<table>
<thead>
<tr>
<th>Summary Of Annual State And Local Government Costs<sup>b</sup></th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Compliance Costs<sup>a</sup></td>
<td>$5.4</td>
<td>$11.0</td>
<td>$2.8</td>
</tr>
<tr>
<td>State Compliance Costs<sup>a</sup></td>
<td>$1.3</td>
<td>$2.9</td>
<td>$0.70</td>
</tr>
<tr>
<td>State Government Administrative Costs</td>
<td>$0.12</td>
<td>$0.12</td>
<td>$0.12</td>
</tr>
<tr>
<td>Total State And Local Governments Costs<sup>c</sup></td>
<td>$6.8</td>
<td>$14.0</td>
<td>$3.6</td>
</tr>
</tbody>
</table>

^a State and local government compliance costs are included in the total compliance costs presented in Exhibit ES-2.

^b Cost estimates were derived using a seven percent discount rate.

^c Total may not sum due to rounding.
• **Tribal governments analysis** – Executive Order 13175, *Consultation and Coordination With Indian Tribal Governments* (65 FR 67249, November 9, 2000), requires EPA to develop an accountable process to ensure meaningful and timely input by tribal officials in the development of regulatory policies that have tribal implications. EPA consulted with tribal officials early in the process of developing this UST regulation to welcome meaningful and timely input into its development. EPA began its consultation with tribes on possible changes to the UST regulation shortly after the passage of the Energy Policy Act of 2005. In addition to our early consultation with tribes, EPA again reached out to the tribes as we started the official regulatory process and throughout the development of the UST regulation. EPA sent letters to leaders of over 500 tribes, as well as to tribal regulatory staff, inviting their participation in developing the regulation. EPA heard from both tribal officials who work as regulators as well as representatives of owners and operators of UST systems in Indian country. The tribal regulators raised concerns about ensuring parity of environmental protection between states and Indian country. The changes to the UST regulation are needed to ensure parity between UST systems in states and in Indian country. This final UST regulation will ensure installed equipment is working properly and protects the environment from potential releases.

As part of this analysis, EPA concluded that the final UST regulation will have tribal implications to the extent that tribally-owned entities with UST systems on Indian country would be affected. However, it will neither impose substantial direct compliance costs on tribal governments, nor preempt tribal law. Total costs to owners and operators of tribally-owned UST systems are approximately $0.67 million.

• **Joint impacts of regulations** – Facilities in the UST system universe are affected by a number of existing regulations, including state regulations and Spill Prevention, Control, and Countermeasure (SPCC) regulations. At the time of the 1988 UST regulation, completely buried tanks greater than 42,000 gallons and located near navigable waters of the United States or adjoining shorelines were subject to both the UST regulation and SPCC regulation. Currently, a subset of UST systems in the universe is regulated by SPCC; these include EGTs, AHFDSs, and FCTs. To the extent that the requirements imposed on these UST systems via the final UST regulation are more or less stringent than the SPCC regulation currently governing them, the final UST regulation may cause an increase or a reduction in overall inspection and monitoring requirements and costs for these UST systems. To account for this, EPA generated baseline assumptions for these systems using information from the Department of Defense, the owner of the majority of all AHFDSs and FCTs. EGTs are assumed to incur all incremental costs beyond state regulatory baseline costs; to the extent that these systems are regulated under SPCC, this may overstate costs. EPA does not believe that the final UST regulation creates a serious inconsistency or interferes with any other actions planned or undertaken by other agencies.
Chapter 1. Introduction

This document presents an analysis by the U.S. Environmental Protection Agency (EPA) Office of Underground Storage Tanks (OUST) of the costs, benefits, and economic impacts of the final targeted changes to the underground storage tank (UST) regulation. The final UST regulation serves the purpose of strengthening the existing UST regulation by increasing the emphasis on proper operation and maintenance of UST systems and improved maintenance of release detection equipment. The changes anticipated under this final UST regulation also acknowledge improvements in technology over the last 25 years, including the ability to perform release detection for many tank systems that were previously deferred.

1.1 Background

In 1984, Congress responded to the increasing threat to groundwater from leaking UST systems by adding Subtitle I to the Solid Waste Disposal Act (SWDA). SWDA required EPA to protect the environment and human health from UST releases by developing a comprehensive regulatory program for UST systems storing petroleum or certain hazardous substances. In 1986, Congress amended Subtitle I of SWDA and created the Leaking Underground Storage Tank Trust Fund (LUST Trust Fund) to oversee and pay for cleanups at sites where the owner or operator is unknown, unwilling to pay, or unable to pay.

EPA promulgated the UST regulation in 1988 (40 CFR Part 280). This regulation set minimum standards for new tanks and required owners and operators of existing tanks to upgrade, replace, or close their existing tanks. The 1988 regulation set deadlines for owners and operators to meet the new requirements. By 1998, owners and operators had to meet new UST system requirements, upgrade their existing UST systems, or close them. Owners and operators who chose to upgrade had to ensure that every UST system had spill prevention equipment (e.g., spill buckets), overfill prevention equipment, and was protected from corrosion. In addition, owners and operators were required to monitor their UST systems for releases using release detection (phased in during the 1990s depending on the year of installation of each UST system). Finally, owners and operators were required to have financial responsibility (phased in through 1998) to ensure that they are financially able to pay for any releases that occur. No significant changes have been made to these requirements since 1988.

In 1988, EPA also promulgated a regulation for state program approval (40 CFR Part 281). Since states are the primary implementers of the UST program, EPA wanted to set up a process where state programs could operate in lieu of the federal program if certain requirements were met. This regulation describes the minimum requirements states must meet to have their regulations operate in lieu of the federal regulation.

In 2005, the Energy Policy Act (EPAct) further amended Subtitle I of SWDA. The EPAct requires states that receive federal Subtitle I money from EPA to meet certain requirements. EPA developed grant guidelines for states regarding: operator training; inspections; delivery prohibition; secondary containment; financial responsibility for manufacturers and installers; public record; and state compliance reports on government UST systems.
1.2 Need for Regulatory Action

After Congress passed EPAct, EPA decided to revise the 1988 UST regulation (at 40 CFR Part 280), primarily to ensure parity in Indian country. Key EPAct provisions (such as secondary containment and operator training) apply to all states receiving federal Subtitle I money, regardless of their state program approval status; but these key provisions do not apply in Indian country (or in states and U.S. territories that do not meet EPA’s operator training or secondary containment grant guidelines). In order to establish federal UST requirements similar to the UST secondary containment and operator training requirements of EPAct, EPA decided to revise the 1988 UST regulation. Without these changes, EPAct provisions will not apply in Indian country. These revisions will also fulfill the objectives of the EPA-Tribal UST Strategy (August 2006) in which both EPA and tribes recognized the importance of ensuring parity in implementing UST program requirements in states and territories, as well as in Indian country.16

EPA decided that this is also an appropriate time to change the 1988 UST regulation to reflect technology improvements, address outdated requirements, and place a stronger emphasis on operations and maintenance. While EPA has issued many guidance documents and used various implementation approaches and techniques over the last 25 years, we have not made significant changes to the original 1988 UST regulation. Indeed, most states have passed requirements that go far beyond the 1988 UST regulation that provide greater environmental protection. These state regulations fully implement provisions of the EPAct and improve other important areas of the 1988 UST regulation that have become outdated.

Furthermore, while information on sources and causes of releases show that releases from tanks are less common than they once were, releases from piping and spills and overfills associated with deliveries have emerged as more common problems.17 In addition, failures of equipment and operations at the dispenser have emerged as one of the leading sources of releases. The lack of proper operation and maintenance of UST systems is a main cause of release from these areas. Data also indicate that release detection equipment only detects about one quarter of all releases.18 While some of those releases occur in areas not required to have release detection equipment, other releases that should be detected are not because of problems with the operation and maintenance of the release detection equipment.

18 About 50 percent of all releases go undetected because they occur in areas where release detection is not required (and therefore is not designed to detect a release). Approximately half of the remaining 50% that should be detected still go undetected partly because of issues with operation and maintenance of the release detection equipment. (U.S. Environmental Protection Agency, Office of Underground Storage Tanks. “Petroleum Releases at Underground Storage Tank Facilities in Florida.” March 2005. p. 26.)
Since the beginning of the UST program, preventing petroleum releases into the environment has been one of the program’s primary goals. EPA and our partners have made major progress in reducing the number of new releases, but over 5,000 releases are still discovered each year. Because existing publicly-funded mechanisms and institutions frequently cover at least part of the costs of release remediation, many owners and operators of UST systems do not bear the full costs of their actions. Petroleum releases thus represent a negative externality caused by UST system operators, as the individuals and firms that cause releases do not bear their full costs. This represents a failure of the market to fully internalize the cost to society of operating an UST system: private costs do not equal social costs. A combination of revised technical standards and inspection and testing requirements represents the most appropriate method for reducing the number of future releases and mitigating the impact of existing negative externalities.

In revising the 1988 regulation, EPA wanted to make sure the regulation development process was open and transparent and that all stakeholders had an opportunity to share their ideas as well as their concerns. From the beginning of this process, EPA recognized the concerns about costs on owners and operators and was committed to limiting the requirements for retrofits. We reached out to all stakeholders, including state and tribal regulators, federal facilities, members of the petroleum industry including representatives of owners and operators as well as equipment manufacturers, small businesses, local governments, and environmental and community groups. Over a two-year period, we held conference calls, solicited comments and provided multiple opportunities for stakeholders to share their ideas as well as for us to keep them informed of where we were in the process.

From this extensive stakeholder outreach, EPA compiled potential proposed changes to the UST regulation. EPA shared all ideas with stakeholders and gave them an opportunity to comment on each idea. We then revised the list of potential changes and added items based on data, analysis, and consideration of costs and benefits. Ultimately, EPA identified the items in the proposed UST regulation as those which needed regulatory changes at the time; the proposed UST regulation was issued in November 2011 for a 90-day public comment period. EPA then extended this public comment period for an additional 60 days. EPA received submissions from over 190 commenters. Based on these comments, EPA revised the 2011 proposed UST regulation and is now finalizing the UST regulation, as described below.

1.3 Summary of the Final UST regulation

EPA is revising the UST regulation to: establish federal requirements that are similar to certain key provisions of the Energy Policy Act; ensure owners and operators perform proper operation and maintenance; address UST systems deferred in the 1988 UST regulation; update the regulation to current technology and practices; and make technical and editorial corrections.

19 We refer here to mechanisms other than those whose specific purpose is to fund remediation for new releases from UST systems. For example, if owners and operators in a particular state are compelled to participate in a fund operated by a public (or private) entity, and the contributions made directly by the owners and operators are equal to all the remediation costs, such a policy overcomes the market failure. However, when taxpayers are required to cover any portion of remediation costs through general funds or revenues obtained for other purposes, the negative externality will not be rectified.
Specifically, EPA is requiring the following set of revisions (hereafter referred to as the Selected Option):

- Establish federal requirements for secondary containment and operator training similar to those established by EPAct for states that receive federal Subtitle I money

- Add operation and maintenance requirements
 - Walkthrough inspections
 - Overfill prevention equipment inspections
 - Spill prevention equipment tests
 - Containment sump tests
 - Operability tests for release detection equipment

- Address UST systems deferred in the 1988 UST regulation20
 - Remove release detection deferral for emergency generator tanks
 - Remove deferrals for airport hydrant fuel distribution systems (AHFDSs) and UST systems with field-constructed tanks (FCTs)

- Provide for other changes to improve release prevention and detection and program implementation
 - Require testing after repairs to spill and overfill prevention equipment, and secondary containment
 - Eliminate flow restrictors in vent lines as an overfill prevention option for all new tanks and when overfill prevention equipment is replaced
 - Require closure of lined tanks that cannot be repaired according to a code of practice
 - Address responses to interstitial monitoring alarms
 - Retain vapor monitoring and groundwater monitoring as methods of release detection for tanks and piping (for those installed before the effective date of today’s final UST regulation) only if owners and operators demonstrate proper installation and performance through a site assessment
 - Require notification of ownership change
 - Establish requirements for demonstrating compatibility with fuels containing greater than E10 and greater than B20

- Make general updates to the UST regulation

20 In the final UST regulation, EPA is also addressing the 1988 regulatory deferrals of wastewater treatment tank systems that are not part of a wastewater treatment facility regulated under sections 402 or 307(b) of the Clean Water Act, USTs containing radioactive material, and emergency generator UST systems at nuclear power generation facilities regulated by the Nuclear Regulatory Commission. However, because these regulatory changes will not result in any incremental costs to the regulated community, this RIA does not factor these systems into any part of the analysis.
Reference newer technologies, including explicitly adding statistical inventory reconciliation (SIR) and continuous in-tank leak detection (CITLD) as release detection methods.

- Update codes of practice listed in the UST regulation
- Remove old upgrade and implementation deadlines
- Make editorial and technical corrections

- Revise the state program approval regulation (40 CFR Part 281) to be consistent with the above revisions

1.4 Alternative Regulatory Options

In addition to assessing the impacts of the Selected Option, this document assesses the costs, benefits, and economic impacts of two regulatory alternatives, as outlined in Exhibit 1-1. Please refer to the preamble for a discussion of the rationale behind the development of these two alternatives.

While some of the regulatory requirements remain constant across all alternatives, EPA evaluated variations in the subset of proposed requirements that change across alternatives. The differences between the three regulatory options considered in this regulatory impact analysis are described in Exhibit 1-1.

Note that each option (i.e., Selected, Alternative 1, and Alternative 2) considered by EPA contains a set of new requirements that does not vary across these options. EPA believes the requirements in this set represent, at a minimum, changes that need to be included in the final UST regulation. Specifically, these requirements are:

- Testing after repairs to spill and overfill prevention equipment, and interstitial spaces
- Adding SIR/CITLD to regulation with performance criteria
- Reporting and testing for interstitial alarms
- Removing the deferral for release detection for emergency generator tanks
- Notification of ownership change
- Closure of lined tanks that cannot be repaired according to a code of practice; and
- Requiring operator training and secondary containment

21 As explained in the introduction, operator training and secondary containment are being finalized in order to ensure parity in program implementation among states and in Indian country.
Exhibit 1-1

Options Considered For The Final UST regulation

<table>
<thead>
<tr>
<th>Requirement Description</th>
<th>Options</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>30-day</td>
<td>30-day (as proposed in Nov 2011)</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>3 year</td>
<td>Annual</td>
<td>Not required</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>3 year</td>
<td>Annual</td>
<td>3 year</td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>3 year</td>
<td>Annual</td>
<td>Not required</td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and secondary containment</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>Required</td>
<td>Required</td>
<td>No change from existing regulation</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection equipment</td>
<td>Annual (plus annual check of sumps)</td>
<td>Annual (as proposed in Nov 2011)</td>
<td>Annual (plus annual check of sumps)</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulation with performance criteria</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Groundwater and vapor monitoring for release detection</td>
<td>Continue to allow with site assessment</td>
<td>5-year phase out (as proposed in Nov 2011)</td>
<td>No change from existing regulation</td>
</tr>
<tr>
<td>Remove release detection deferral for emergency generator tanks</td>
<td>Required</td>
<td>Required (as proposed in Nov 2011)</td>
<td>Required</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Requirements for demonstrating compatibility with fuels >E10 and >B20</td>
<td>Required</td>
<td>Required (as proposed in Nov 2011)</td>
<td>No change from existing regulation</td>
</tr>
<tr>
<td>Remove deferrals for airport hydrant fuel distribution systems and UST systems with field-constructed tanks</td>
<td>Regulate under alternative release detection requirements</td>
<td>Require AHS/FCT notify implementing agency and report releases (with no other requirements)</td>
<td>Maintain deferral</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

In the 2011 proposed regulation, these changes generally consisted of more or stricter requirements than what is in the final UST regulation. For example, the 30-day walkthrough inspections in the 2011 proposed UST regulation included monthly check of sumps. Please see the 2011 proposed UST regulation for details.

Many of the requirements in the final UST regulation will not immediately impose new costs upon UST owners or operators. For example, new requirements for periodic testing of equipment do not require owners or operators to perform those tests at the time the regulation comes into effect; depending on the requirement, owners or operators may have up to three years to satisfy the new requirements. EPA’s analysis accounts for this delay in its estimate of costs by discounting the costs associated with each requirement as shown in Exhibit 1-2. EPA

22 Please refer to the preamble section for each requirement for a discussion of the implementation periods.
assumes that the monetized positive impacts associated with these requirements accrue at the end of the year in which costs occur since some beneficial impacts may lag requirements.23

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Number of years until effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>3a</td>
</tr>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>3</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>3</td>
</tr>
<tr>
<td>Containment sump testing7</td>
<td>3</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
<td>3b</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>3c</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems (Subparts B, C, D and H)24</td>
<td>3</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks (Subparts B, C, D and H)9</td>
<td>3</td>
</tr>
<tr>
<td>EPAct-related Provision</td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>3</td>
</tr>
</tbody>
</table>

Please refer to the preamble section for each requirement for a discussion on the rationale behind the delayed implementation periods.

a This requirement is effective immediately under Alternative 1.

b This requirement is effective after one year under Alternative 1. In addition, under Alternative 1, groundwater and vapor monitoring are eliminated as release detection methods and must be phased out within five years.

c This requirement is effective after one year under Alternative 1.

Finally, EPA is including a set of revisions and clarifications that are not expected to have any economic impact, due to either the nature of the requirement or the interaction between the new UST regulation and existing regulation. The only cost associated with these clarifications and changes is the cost of reading the new regulation. These revisions include:

- Updating the regulation to reference newer technologies
- Updating the codes of practice listed in the regulation

23 EPA does not have data to suggest any particular length of lag for each requirement; for this analysis, we assume that benefits accrue at the end of the year in which costs occur. Chapters 3 and 4 provide detailed descriptions of the methods used to assess costs and beneficial impacts.

24 Removing deferrals for airport hydrant fuel distribution systems and field-constructed tanks will require these systems to comply with Subpart B, C, D, E, G, H, and J of 40 CFR Part 280 (as described in Subpart K). The final UST regulation requires these systems to comply with Subparts B, C, D, H, and J after 3 years, while compliance with Subparts E and G would be required immediately.
• Updating the regulation to remove old upgrade and implementation deadlines
• Updating the regulation for editorial and technical corrections
• Revising the State Program Approval regulation (40 CFR Part 281) to be consistent with the above revisions

1.5 Scope of Analysis

Within the constraints of data availability, this analysis attempts to capture all quantifiable and qualitative impacts of the final UST regulation. EPA obtained sufficient data to identify, by state, the number of units likely to be affected by each change in the regulation. The analysis uses these data to assess the compliance costs on these units and relevant state governments. In conducting these analyses, EPA also assessed the sensitivity of outcomes to key assumptions. Separately, the analysis monetizes a number of positive impacts of the regulation, including the avoided costs generated by avoided releases and reduction in severity of releases, avoided product loss, and avoided vapor intrusion damages. This analysis quantifies, but does not value, groundwater impacts. Finally, due to data and resource limitations, this analysis was unable to quantify or value human health benefits or ecological impacts, but addresses these qualitatively.

In addition to identifying costs and the positive impacts of the regulation, this analysis also examines the economic and distributional impacts of the regulation. The economic impact analysis includes the final UST regulation’s effect on facility closures, employment, and energy output and cost. The analysis of the distributional impacts of the regulation examines the effect of a reduction in releases on state financial assurance funds, impacts on children’s health, small business impacts, and impacts on low-income and minority populations. Finally, this analysis considers the final UST regulation’s impacts related to certain executive orders and statutes, including the Unfunded Mandates Reform Act, tribal governments, and federalism.

1.6 Report Organization

To support the development of the final UST regulation, EPA designed and conducted this analysis of the regulation’s costs, benefits, and economic impacts consistent with the requirements of Executive Order 12866, and OMB Circular A-4.25 Data, methods, and results of this analysis are presented in the following chapters:

• \textit{Chapter 2: Universe of UST Systems Affected by the Final UST regulation}. This chapter identifies a profile of the entities that may be affected by the final UST regulation.

• \textit{Chapter 3: Assessment of Compliance Costs}. This chapter summarizes the methods employed by EPA to assess the cost impacts of the final UST regulation.

• **Chapter 4: Assessment of Benefits and Cost Savings.** This chapter presents estimates of the benefits and avoided costs of the final UST regulation.

• **Chapter 5: Distributional Impacts and Considerations.** This chapter summarizes the assessment of distributional impacts of the final UST regulation, including economic and energy impacts, effects on small businesses and governments, impacts on low-income and minority populations, and children's health effects.

• **Chapter 6: Other Statutory and Executive Order Analyses.** This chapter summarizes analyses required by certain statutes or executive orders, including regulatory planning and review, impacts created by unfunded mandates, federalism implications, effects on tribal governments, and joint impacts of the final UST regulation in the context of existing regulations.

• **Chapter 7: Comparison of Costs, Benefits, and Other Impacts.** This chapter summarizes and compares the costs, cost savings, and benefits of the final UST regulation.

• **Appendices.** We present the details of methods and assumptions we employ in a number of appendices.
Chapter 2. Universe of UST Systems Affected by the Final UST regulation

This regulatory impact analysis addresses the effects of the final regulatory changes on four types of UST systems: conventional UST systems with prefabricated tanks that store and dispense petroleum products; emergency generator tank systems that store fuel for occasional use; UST systems with field-constructed tanks that are typically designed to store large volumes of fuel; and airport hydrant fuel distribution systems that provide large volumes of fuel to aircraft using underground distribution systems.

This chapter describes the universe of systems, facilities, firms, and sectors that are likely to be affected by the final regulatory changes, and documents the extent to which state regulations already require compliance with the final UST regulation.

2.1 Types of Entities Affected by the Final UST regulation

The four types of UST systems that are potentially affected by the final UST regulation are characterized as follows:

- **Conventional UST systems (conventional USTs):** These systems include the universe of facilities and tanks that are currently subject to existing regulations, along with ancillary equipment (e.g., piping, dispensers, sumps, spill prevention equipment, and release detection equipment). The majority of these systems store and dispense petroleum products and are typically found at gas stations. A limited number store other hazardous substances, but the regulatory impact analysis does not consider these UST systems separately. These UST systems are subject to all requirements under 40 CFR Part 280.

- **Emergency generator tank systems (EGTs):** Emergency generator tank systems refer to the tanks and piping for systems that provide longer-term storage of fuel for occasional use as a back-up fuel supply. These tanks are currently deferred from 40 CFR Part 280 Subpart D (release detection) but are subject to all other requirements under 40 CFR Part 280. The final UST regulation does not address emergency tanks at nuclear power plants, which are regulated by the Nuclear Regulatory Commission under 10 CFR Part 50, appendix A.

- **UST systems with field-constructed tanks (FCTs):** Field-constructed tanks are underground bulk storage tanks that are built on-site because they are too large to be pre-fabricated. All identified field-constructed tanks currently in operation are owned by federal facilities and mainly serve operations at military bases. These tanks are currently deferred from all regulation under 40 CFR Part 280, except for Subparts A and F, but are typically subject to regulation under the Oil Pollution

26 Because tanks storing hazardous substances are also currently subject to the 1988 UST regulation under 40 CFR Part 280, this analysis assumes that incremental costs and benefits associated with the final UST regulation will be comparable to the costs and benefits associated with other conventional UST systems. Although hazardous substance tanks are not included in the total number of active petroleum UST systems, EPA roughly estimates that less than one percent of all active regulated UST systems contain hazardous substances.

27 See 40 CFR 280.10 Subpart A – Applicability.

- **Airport Hydrant Fuel Distribution Systems (AHFDSs):** Airport hydrant fuel distribution systems are systems that include one or more tanks (either above-ground or underground), underground piping, and underground ancillary equipment used to fuel aircraft. These systems do not typically have a dispenser at the end of the piping run, but instead have a pressurized hydrant (fill stand). Large commercial and military airports employ these systems, but most commercial systems have only above-ground storage tanks and are thus not affected by the final UST regulation. These systems are currently deferred from all regulation under 40 CFR Part 280, except for Subparts A and F, but are typically subject to regulation under 40 CFR Part 112.

2.2 Configuration of Average Conventional UST System

Conventional UST systems reflect a relatively consistent configuration of standard equipment. While facility size and complexity vary significantly, this analysis assumes that a typical (average) conventional UST system is configured as follows (Exhibit 2-1):

<table>
<thead>
<tr>
<th>Assumed Average Configuration For A Conventional UST System</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Component</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Pipes per tank</td>
</tr>
<tr>
<td>Feet per pipe</td>
</tr>
<tr>
<td>Fill pipes (per tank)</td>
</tr>
<tr>
<td>Spill prevention equipment (per fill pipe)</td>
</tr>
<tr>
<td>Under-Dispenser Containment (UDC) (per tank)</td>
</tr>
<tr>
<td>Turbine sumps (per tank)</td>
</tr>
</tbody>
</table>

These assumptions best characterize motor fuel retailers, which represent approximately 80 percent of the 577,981 conventional UST systems in operation in 2013. EGT systems and other conventional UST systems used to store fuel or hazardous substances are likely to have

30 The remaining 20 percent of conventional UST systems consist of EGTs and tanks used for storing and dispensing fuel in commercial settings, hospitals, manufacturing, transportation, communications and utilities, and agriculture. See Exhibit 2-3 for details.
systems with similar components but less complex dispenser systems. The configurations of FCTs and AHFDSs are considered separately, and are described in detail in Appendix A. **Exhibit 2-2** provides an illustration of an UST system at a retail motor fuel establishment. Note that in this exhibit, the “dispenser sump” is a specific form of under-dispenser containment, and the “spill bucket” is an example of spill prevention equipment.

Exhibit 2-2

Configuration of Retail Motor Fuel UST System

2.3 **UST Universe Size and Distribution Across Sectors**

The December 2013 *Semi-Annual Report of UST Performance Measures* reports a universe of 577,981 active petroleum tanks (UST systems) in the United States and its
territories. This total includes conventional UST systems and emergency generator tank systems. Estimates based on state data suggest that approximately 3.0 percent, or 17,339 of the 577,981 active UST systems, are emergency generator tanks.

In addition to EGT and conventional UST systems, the final UST regulation addresses UST systems with FCTs and AHFDSs. While these two types of systems are deferred under current EPA regulation, a subset may be regulated by individual states and included in the total estimate of tanks provided by those states. For the purpose of this analysis, however, these two universes are considered to be separate from the 577,981 tanks identified in the 2013 EPA report. The total universe of UST systems with FCTs and AHFDSs includes approximately 334 UST systems with FCTs, and 74 AHFDSs (each hydrant system is supported by an average of roughly eight linked tanks) operated by the U.S. Department of Defense (DoD), 12 FCTs operated by the U.S. Department of Energy (DoE) and 10 AHFDSs operated at commercial airports.

Most UST systems in the United States are located at motor fuel retail establishments (i.e., gas stations), and virtually all retail motor fuel establishments use UST systems. Approximately 148,000 (147,902) retail fueling sites operated in the United States in 2013. Of these, approximately 127,000 included convenience stores.

An analysis of state data by EPA concludes that the average retail motor fuel establishment has 3.07 tanks (UST systems). Assuming approximately 3.07 UST systems per

32 Data indicate that the universe of UST systems has declined steadily over the past two decades. To consider the impacts of declining universe sizes on the results of this analysis, we construct and evaluate an alternative baseline for compliance costs and avoided costs in Chapters 3.4.1 and 4.4.1, respectively.

33 See: Industrial Economics, Inc. “Detailed Assessment of UST Universe by Tank Use and Industry Sector,” Work Assignment 1-25, Task 6, January 23, 2009. The number of EGTs is assumed to be approximately 3.0 percent of all active UST systems based on the weighted average from four state databases.

34 Based on a meeting with Department of Defense in March 2013 and supplemental information provided to EPA in April 2013. In addition, EPA identified 10 commercial airports with AHFDSs subject to the final UST regulation. DoE FCTs were identified from: U.S. Department of Energy. “U.S. Department of Energy Underground Storage Tank (UST) Compliance Strategy Report,” July 31, 2006. This report identifies 12 DoE FCTs in South Carolina. See Appendix A for additional information.

36 Ibid.

37 A 2006 analysis of 13 state UST databases performed for EPA estimated that the average retail motor fuel establishment (i.e., facility) has 3.13 tanks. Adjustments to reconcile various estimates of the current universe of USTs with industry estimates of the number of UST systems currently in place at retail motor fuel facilities further decreases the number of tanks per UST system operating in retail motor fuel settings to 3.07 tanks per retail motor
facility and 147,902 facilities, 454,774 UST systems, or 79 percent of all active UST systems, are associated with retail motor fuel establishments.

In addition to traditional motor fuel retailers, big-box retailers, or hypermarkets, represent a growing segment of the retail motor fuel seller market. This category (NAICS code 452910) includes stores operated by Wal-Mart, Costco, and other large companies. Collectively, these firms operate approximately 5,100 filling stations; each station is likely to have at least three UST systems.38

Other industry sectors that report use of UST systems include agriculture (crop production and animal production), commercial (wholesale trade, retail trade, accommodation, and food services), communications and utilities (wired telecommunications carriers and electric power generation, transmission, and distribution), hospitals, manufacturing, transportation, local and state government operations, and federal facilities run by the U.S. Departments of Defense and Energy. Collectively these sectors comprise approximately 120,000 UST systems, including those in the government sector (Exhibit 2-3). In many cases, firms in these sectors use UST systems for fueling fleets of vehicles such as school buses, delivery trucks, or rental cars. In other cases, UST systems store fuel for operations or emergency use, used oil, or hazardous substances.

Facilities in sectors other than retail motor fuel have, on average, between 1.5 and 2.0 UST systems at the facilities that use UST systems. The actual number of UST systems at a specific facility, however, is likely to vary significantly depending on facility size and focus.39

Results of an analysis of public UST records of 54 states and territories performed for EPA suggest that the average number of UST systems per facility (across all sectors that use conventional UST systems or EGTs), is approximately 2.71.40

40 Skeo Solutions. “Summary of Key Data from State Public Record Postings,” Work Order 1006, Table 1, October 25, 2013.
Exhibit 2-3

Summary Of Universe Of UST Systems By Sector

<table>
<thead>
<tr>
<th>Industry Sector</th>
<th>NAICS</th>
<th>Number of Facilities with UST Systems</th>
<th>Number of UST Systems</th>
<th>Number of Facilities with UST Systems</th>
<th>Number of UST Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail Motor Fuel Sales</td>
<td>447</td>
<td>161,768</td>
<td>481,108</td>
<td>147,902</td>
<td>454,774</td>
</tr>
<tr>
<td>Commercial (wholesale trade, retail trade, accommodation, and food services)</td>
<td>42, 44-45, 72 (excluding 447)</td>
<td>21,652</td>
<td>49,793</td>
<td>27,356</td>
<td>47,068</td>
</tr>
<tr>
<td>Institutional (hospitals only)</td>
<td>622</td>
<td>2,220</td>
<td>3,631</td>
<td>2,098</td>
<td>3,432</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>31-33</td>
<td>8,822</td>
<td>14,536</td>
<td>8,339</td>
<td>13,740</td>
</tr>
<tr>
<td>Transportation (air, water, truck, transit, pipeline, and airport operations)</td>
<td>481, 483-486, 48811</td>
<td>8,153</td>
<td>14,422</td>
<td>7,707</td>
<td>13,633</td>
</tr>
<tr>
<td>Communications and Utilities (wired telecommunications carriers; and electric power generation, transmission, and distribution)</td>
<td>5171, 2211</td>
<td>6,641</td>
<td>9,738</td>
<td>6,278</td>
<td>9,205</td>
</tr>
<tr>
<td>Agriculture (crop and animal production)</td>
<td>111, 112</td>
<td>847</td>
<td>1,534</td>
<td>801</td>
<td>1,450</td>
</tr>
<tr>
<td>Local governments</td>
<td>n/e</td>
<td>24,458</td>
<td>n/e</td>
<td>23,119</td>
<td></td>
</tr>
<tr>
<td>State governments</td>
<td>n/e</td>
<td>6,114</td>
<td>n/e</td>
<td>5,780</td>
<td></td>
</tr>
<tr>
<td>Federal government</td>
<td>n/e</td>
<td>6,114</td>
<td>n/e</td>
<td>5,780</td>
<td></td>
</tr>
<tr>
<td>Total: Conventional UST systems and EGTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCTs: Department of Defense</td>
<td>Government jurisdiction</td>
<td>239</td>
<td>239</td>
<td>334</td>
<td>334</td>
</tr>
<tr>
<td>FCTs: Department of Energy</td>
<td>Government jurisdiction</td>
<td>--</td>
<td>--</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>AHFDSs: Department of Defense</td>
<td>Government jurisdiction</td>
<td>162</td>
<td>1,296</td>
<td>71</td>
<td>592</td>
</tr>
<tr>
<td>AHFDSs: Commercial Airports</td>
<td>4581</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>Total: FCTs and AHFDSs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>401</td>
<td>1,535</td>
<td>430</td>
<td>1,002</td>
<td></td>
</tr>
</tbody>
</table>

*Analysis based on 2009 column (see note a above), adjusted to reflect 2013 universe of 577,981 UST systems. All sector adjustments proportional except retail motor fuel sales, which reflects the 2013 estimate of 147,902 facilities with UST systems from National Association of Convenience Stores, Who Sells America’s Fuel? Accessed at: http://www.nacsonline.com/YourBusiness/FuelReports/GasPrices_2014/Retail-Operations/Pages/Who-Sells-Americas-Fuel.aspx. The NACS Retail Fuels report noted 152,995 total facilities dispensing motor fuel commercially, of which 5,093 are hypermarketers and not included in the retail motor fuel sales category. (See also: Industrial Economics, Inc. “Preliminary Assessment and Scoping of Data Related to Potential Revisions to the UST Regulations.” Work Assignment 1-25, Tasks 2-4 November 20, 2008.)

*See: ICF. “Economic Impact Analysis of Additional Mechanisms for Local Government Entities to Demonstrate Financial Responsibility for Underground Storage Tanks.” December 1992. Exhibit 3-1. Estimates of local government UST systems adjusted using the 1987 Census of Governments. Consistent with this analysis, the number of government UST systems is assumed to be two percent of all 2013 UST systems owned by state and federal governments and four percent of all 2013 UST systems owned by local governments.

*The totals shown are the sum of the number of facilities of the rows above. These estimates are used only to establish distribution of facilities across sectors based on available data.

*This number assumes that there are eight tanks per AHFDS. For more detail on assumptions for AHFDSs, see Appendix A.
2.4 Universe of Facilities and Systems Potentially Affected by Final UST Regulation

EPA expects that all facilities or UST systems in the universe of conventional UST systems will be required to comply with one or more regulatory changes in the final UST regulation, but the number of facilities and systems affected by each specific regulatory change will vary depending on the extent of current (baseline) state regulations and the type of equipment currently in use.

To estimate the number of systems that will be required to comply with each regulatory change, EPA reviewed publicly available data about state regulations, combined with data from a limited sample of states and equipment providers about the use of different technologies for release prevention and detection.41

Exhibit 2-4 identifies the total number of UST systems that could potentially be affected by each regulatory change in the final UST regulation, based on the baseline technology currently in place in the universe of systems. Exhibit 2-4 identifies the number of UST systems or facilities with relevant technologies, the type of system (i.e., conventional UST and EGT systems, facilities with conventional UST systems or EGTs, AHFDSs, or FCTs), the proportion of the relevant universe of UST systems with the technology, a summary of the assumptions that define the number of affected units, and the source of those assumptions. Note that changes for AHFDSs, EGTs, and FCTs affect only those universes of facilities, and EPAct-related provisions affect only facilities and UST systems in Indian country.42 See Appendix B for detailed descriptions of the values and sources used in each calculation. The estimates in Exhibit 2-4 do not reflect baseline state regulations (e.g., whether a state already requires spill prevention equipment testing). As discussed later in this chapter, some baseline state requirements satisfy requirements of the final UST regulation.

41 E2, Incorporated. Memoranda and analyses submitted under Contract EP-W-05-018, “U.S. Environmental Protection Agency. Underground Storage Tanks/Leaking Underground Storage Tanks Analytical and Technical Support.” Where gaps existed in the analyses, EPA used the best professional judgment of its UST system technical experts. All supporting materials not included in the appendices can be found in the docket for the final UST regulation.

42 EPA assumes that all states have adopted EPAct-related provisions in the baseline, consistent with existing guidance.

<table>
<thead>
<tr>
<th>Regulatory Change</th>
<th>Universe</th>
<th>Proportion of Total Universe Affected Annually</th>
<th>Number of Potentially Affected Systems (Annual)</th>
<th>Assumptions</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>Facilities with Conventional UST systems and EGTs</td>
<td>100.0%</td>
<td>213,277 facilities</td>
<td>All facilities require periodic walkthrough inspections.</td>
<td>Not applicable – all facilities require inspections.</td>
</tr>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>Conventional UST systems and EGTs</td>
<td>100.0%</td>
<td>577,981 systems</td>
<td>Percentage of UST systems with overfill prevention equipment.</td>
<td>EPA, Incorporated, Task Order No. 3003, TDD #7: across 10 states, 99.8% of systems had overfill prevention equipment; EPA conservatively assumes all UST systems have overfill prevention equipment.</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>Conventional UST systems and EGTs</td>
<td>90.0%</td>
<td>520,183 systems</td>
<td>One-to-one spill prevention equipment to tank ratio; 10 percent have self-monitoring mechanism and do not need monitoring.</td>
<td>EPA estimate based on information discussions with service contractors and inspectors.</td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>Conventional UST systems and EGTs</td>
<td>18.3%</td>
<td>105,771 systems</td>
<td>Pipes that use interstitial monitoring and do not use continuous sensors, pressure, vacuum, or liquid-filled leak detection monitoring mechanisms.</td>
<td>EPA, Incorporated, Task Order No. 3003, TDD #5, Table 13.</td>
</tr>
<tr>
<td>Spill prevention equipment inspection after repair</td>
<td>Conventional UST systems and EGTs</td>
<td>2.5%</td>
<td>14,450 systems</td>
<td>Spill prevention equipment requires fix once every four years; repairs are used as the fix 10 percent of the time.</td>
<td>EPA, Incorporated, Task Order No. 3003, TDD #7: across 10 states, 99.8% of systems had overfill prevention equipment; EPA conservatively assumes all UST systems have overfill prevention equipment; repair/replace frequencies are EPA assumptions.</td>
</tr>
<tr>
<td>Overfill prevention equipment test after repair</td>
<td>Conventional UST systems and EGTs</td>
<td>2.0%</td>
<td>11,560 systems</td>
<td>Overfill prevention equipment requires fix once every five years; repairs are used as the fix 10 percent of the time.</td>
<td>EPA estimated that only a small (10%) percentage of overfill devices were repaired rather than replaced based on verbal conversations with service contractors. PEI provided the five-year estimate based on information compiled from their members. This was also supported by answers from 3 vendors dated 11/8/12.</td>
</tr>
<tr>
<td>Secondary containment test after repair</td>
<td>Conventional UST systems and EGTs</td>
<td>3.3%</td>
<td>19,324 systems</td>
<td>Tanks and pipes that use interstitial monitoring and do not use continuous sensors, pressure, vacuum, or liquid-filled leak detection monitoring mechanisms. Includes five percent of tanks and 90 percent of piping that use interstitial monitoring. Assumes 20 percent of pipes and five percent of tanks require repair every year.</td>
<td>EPA, Incorporated, Task Order No. 3003, TDD #5, Table 13; repair/replace frequencies are EPA assumptions.</td>
</tr>
</tbody>
</table>
Exhibit 2-4

Potential Number And Type Of Units Affected By Each Requirement

<table>
<thead>
<tr>
<th>Regulatory Change</th>
<th>Universe</th>
<th>Proportion of Total Universe Affected Annually</th>
<th>Number of Potentially Affected Systems (Annual)</th>
<th>Assumptions</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill</td>
<td>Conventional UST systems and EGTs</td>
<td>13.5%</td>
<td>78,256 systems</td>
<td>13 percent of new UST systems would have installed flow restrictors in vent lines, and 13 percent of existing UST systems with replaced overfill prevention equipment would have installed flow restrictors in vent lines. Assumes five percent turnover of UST systems, a 19 percent test fail rate for flow restrictor, and that 90 percent of fixes require replacement of the flow restrictor.</td>
<td>Information on number of new UST systems that would install flow restrictors provided by Robert Penkes, PEI, in August 2009; remainder from E², Incorporated, Task Order No. 3003, TDD #21.</td>
</tr>
<tr>
<td>prevention equipment is replaced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests – ATG</td>
<td>Conventional UST systems and EGTs</td>
<td>33.7%</td>
<td>194,548 systems</td>
<td>UST systems that use automatic tank gauges.</td>
<td>E², Incorporated, Task Order No. 3003, TDD #5, Table 11.</td>
</tr>
<tr>
<td>Operability tests – interstitial monitoring</td>
<td>Conventional UST systems and EGTs</td>
<td>18.8%</td>
<td>108,499 systems</td>
<td>UST systems that use interstitial monitoring (excluding five percent that conduct manual testing of the interstice).</td>
<td>E², Incorporated, Task Order No. 3003, TDD #5, Table 11.</td>
</tr>
<tr>
<td>Operability tests – line leak detection</td>
<td>Conventional UST systems and EGTs</td>
<td>27.5%</td>
<td>159,221 systems</td>
<td>Pressurized piping systems that use electronic line leak detectors.</td>
<td>E², Incorporated, Task Order No. 3003, TDD #5, Table 11.</td>
</tr>
<tr>
<td>Operability tests – groundwater and vapor monitoring</td>
<td>Conventional UST systems and EGTs</td>
<td>4.5%</td>
<td>25,968 systems</td>
<td>UST systems that use vapor monitoring and/or groundwater monitoring as their sole release detection method(s).</td>
<td>E², Incorporated, Task Order No. 3003, TDD #5, Table 11.</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>Conventional UST systems and EGTs</td>
<td>4.5%</td>
<td>25,968 systems</td>
<td>UST systems that use vapor monitoring and/or groundwater monitoring as their sole release detection method(s). Universe affected phases in over five years.</td>
<td>E², Incorporated, Task Order No. 3003, TDD #5, Table 11.</td>
</tr>
<tr>
<td>(Alternative 1 only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add SIR/CITLD to regulation with performance criteria</td>
<td>Conventional UST systems and EGTs</td>
<td>0.5%</td>
<td>2,809 systems</td>
<td>13 percent of UST systems use SIR; 15 percent of these use qualitative methods. Of these, 25 percent are assumed to incur costs to comply.</td>
<td>E², Incorporated, Task Order No. 3003, TDD #5, Table 11.</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>Conventional UST systems and EGTs</td>
<td>2.4%</td>
<td>14,003 systems</td>
<td>Weighted average annual percentage of UST systems and piping that experience an interstitial monitoring alarm. Assumes 20 percent of tanks and 18 percent of pipes use interstitial monitoring, and that three percent of tanks and 10 percent of pipes experience an alarm in a given year.</td>
<td>E², Incorporated, Task Order No. 3003, TDD #5, Tables 11 and 13.</td>
</tr>
<tr>
<td>Remove release detection deferral for emergency generator tanks</td>
<td>EGTs</td>
<td>3.0%</td>
<td>17,339 systems</td>
<td>UST systems assumed to be emergency generator tanks.</td>
<td>Based on review of over 15 state databases and discussions with several state UST program representatives.</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory Change</td>
<td>Universe</td>
<td>Proportion of Total Universe Affected Annually</td>
<td>Number of Potentially Affected Systems (Annual)</td>
<td>Assumptions</td>
<td>Source</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>AHFDSs</td>
<td>100.0%</td>
<td>81 facilities</td>
<td>All airport hydrant fuel distribution systems, including 71 DoD systems and 10 commercial airport systems.</td>
<td>Meeting with U.S. Department of Defense (DoD) in March 2013 and supplemental information provided to EPA in April 2013, plus information based on public comments and additional EPA research to identify commercial airport systems potentially affected. See Appendix A for additional information.</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>Facilities with Conventional UST systems and EGTs</td>
<td>10.1%</td>
<td>21,505 facilities</td>
<td>Annual number of facilities that change ownership.</td>
<td>E², Incorporated, Task Order No. 3003, TDD #27.</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>Conventional UST systems and EGTs</td>
<td><0.1%</td>
<td>80 systems</td>
<td>Annual number of lined UST systems that cannot be repaired</td>
<td>E², Incorporated, Task Order No. 3003, TDD #17, Table 1 and E², Incorporated, Task Order No. 3003, TDD #5.</td>
</tr>
<tr>
<td>Requirements for demonstrating compatibility with fuels > E10 and > B20</td>
<td>Conventional UST systems and EGTs</td>
<td>0.04%</td>
<td>234 systems</td>
<td>0.4 percent of conventional UST systems and EGTs use fuels E >10 or B > 20, assume 10 percent can demonstrate compatibility</td>
<td>Based on the count of UST systems from OUST’s mid-year and end-year reports, plus the U.S. Department of Energy’s (DoE’s) Alternative Fuels Data Center listing the amount of stations selling E85 fuel.</td>
</tr>
</tbody>
</table>

EPAAct-related Provisions

| Operator training | UST Facilities in Indian country | 100.0% | 966 facilities | All facilities in Indian country. | Not applicable – applies to all facilities in Indian country. |
| Secondary containment - new and replaced tanks | UST systems in Indian country | 36.2% | 947 systems^b | Approximately 72.4 percent of systems in Indian country are single-walled. Analysis assumes midpoint of time horizon until all units are | E², Incorporated, Tribal Data Analysis, July 2007. |
Exhibit 2-4

Potential Number And Type Of Units Affected By Each Requirement

<table>
<thead>
<tr>
<th>Regulatory Change</th>
<th>Universe</th>
<th>Proportion of Total Universe Affected Annually</th>
<th>Number of Potentially Affected Systems (Annual)</th>
<th>Assumptions</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold for pipe replacement rather than repair</td>
<td>UST systems in Indian country</td>
<td>30.2%</td>
<td>789 systems(^{b})</td>
<td>Piping replaced every five years, where 60.3% are single-walled. Analysis assumes midpoint of time horizon until all units are replaced (year 10, 50 percent of universe affected).</td>
<td>E2, Incorporated, Tribal Data Analysis, July 2007.</td>
</tr>
<tr>
<td>Under-dispenser containment for all new dispensers</td>
<td>UST systems in Indian country</td>
<td>48.5%</td>
<td>1,270 systems(^{b})</td>
<td>Approximately 97 percent of systems require under-dispenser containment. Analysis assumes midpoint of time horizon until all units are replaced (year 10, 50 percent of universe affected).</td>
<td>E2, Incorporated, Tribal Data Analysis, July 2007, Industrial Economics, “Preliminary Assessment and Scoping of Data Related to Potential Revisions to the UST Regulations; Tasks 2-4, Work Assignment 1-25,” November 20, 2008, Appendix A, and OUST End-of-Year reports.</td>
</tr>
</tbody>
</table>

\(^{a}\) Figures in this column are calculated assuming that the average number of UST systems per facility is approximately 2.71, per: Skeo Solutions, “Summary of Key Data from State Public Record Postings,” Work Order 1006, Table 1, October 25, 2013.

\(^{b}\) The affected universes presented for these items reflect 50 percent of ultimately affected systems or facilities. Because these requirements take effect over time and future costs are discounted, we present the universe affected at year 10 as a central estimate. In addition, we adjust unit costs to reflect the fact that the total cost of these requirements grows as the number of affected systems or facilities increases.

2.5 Facilities and Systems Affected by Final UST regulation

Many states currently have baseline regulations consistent with one or more requirements in the final UST regulation. As a result, only a portion of the universe of potentially affected facilities will be required to change practices to comply with each regulatory change. Whereas **Exhibit 2-4** displays the number of units that may potentially be subject to each requirement, **Exhibit 2-5** identifies, based on EPA’s review of baseline state regulations, the number of units that will be subject to these requirements as a result of the final UST regulation. For nearly all requirements, some portion of the potentially affected universe is already in compliance with the final regulatory changes. For example, in cases where a state’s regulatory baseline already requires activities commensurate with the regulatory requirement under a given regulatory option of this final regulation, UST systems within that state are not considered to be “systems affected” by the regulatory option in question, because these systems would not incur any incremental requirements or associated costs under the final regulation. Section B.2 of Appendix B, and the tabular summary of state regulatory requirements on pages B-10 through B-16, contain the complete set of information on state regulatory baselines as they pertain to the regulatory requirements of the final regulation, and provide an accounting of which states are considered by the cost estimation modeling in this RIA to have state regulatory baselines in full, partial, or non-
compliance with each regulatory requirement of the final regulation. The tabular summary on pages B-10 through B-16 of Appendix B indicates the frequency or presence of the regulatory requirement according to each state’s regulatory baseline. As indicated above, by comparing these frequencies or requirements with those in each regulatory option of the final regulation (as shown in Exhibit 1-1), it is possible to determine whether UST systems in a given state are subject to a particular regulatory requirement under a given regulatory option, based on whether the regulatory baseline of the state in question accords with the regulatory requirement under that regulatory option. If the state regulatory baseline is as stringent, or more stringent, than what is required under the regulatory option (Exhibit 1-1), then UST systems in that state are not considered affected by that particular regulatory requirement (and appear in Exhibit 2-4 but not in the “systems affected” column of Exhibit 2-5). Otherwise, the systems are considered to be affected (and appear in both Exhibit 2-4 and the “systems affected” column of Exhibit 2-5).

Alternative Option 2 will affect the smallest number of systems. Among the specific regulatory changes, walkthrough inspections and spill prevention equipment tightness testing affect the largest number of UST systems in all scenarios.\(^{43}\) In contrast, several regulatory changes (e.g., closure of irreparable lined tanks and pipe replacement requirements) are likely to affect only a small number of systems.

The distribution of incremental impacts of the regulation also depends on the distribution of baseline technologies across states with different baseline regulations. Facilities and systems in states with fewer current regulations may bear a greater proportion of costs and benefits than facilities and systems in states with extensive baseline regulations. A key limitation of available baseline data is that baseline technology data is not available at the state level. For example, it is possible that facilities and systems with specific release detection technologies (e.g., automatic tank gauges (ATGs)) may not be distributed evenly across all states. However, estimates of the percentage of systems using ATGs are available only at the national level. As a result, the regulatory scenarios in Chapters 3 (Compliance Costs) and Chapter 4 (Benefits and Cost Savings) reflect regulatory changes required by an “average” facility in a state under the final UST regulation, assuming that all systems reflect the national profile of existing technologies. Analyses of economic impacts and small businesses in Chapter 5 (Distributional Analyses) assess the possible distribution of compliance impacts related to this uncertainty.

\(^{43}\) Walkthrough inspections are estimated at a facility level; the number of UST systems estimated as affected by these regulations is 555,003. Note that even those states that currently require walkthroughs do so on a monthly basis, rather than a 30-day basis. This RIA considers facilities in those states to be affected by this regulatory requirement; however, it applies to these facilities only the incremental cost between conducting monthly inspections over a one-year period and conducting 30-day inspections over a one-year period (i.e., a fraction of the cost of one inspection).
<table>
<thead>
<tr>
<th>Description</th>
<th>Universe of Potentially Affected Systems</th>
<th>Systems Affected by Selected Option</th>
<th>Systems Affected by Alternative Option 1</th>
<th>Systems Affected by Alternative Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>213,277 (facilities)</td>
<td>204,798 (facilities)</td>
<td>204,798 (facilities)</td>
<td>128,986 (facilities)</td>
</tr>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>577,981 (facilities)</td>
<td>354,769 (facilities)</td>
<td>395,802 (facilities)</td>
<td>N/A</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>520,183 (facilities)</td>
<td>388,641 (facilities)</td>
<td>418,547 (facilities)</td>
<td>388,641 (facilities)</td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>105,771 (facilities)</td>
<td>80,324 (facilities)</td>
<td>95,366 (facilities)</td>
<td>N/A</td>
</tr>
<tr>
<td>Overfill prevention equipment test after repair</td>
<td>14,450 (facilities)</td>
<td>14,306 (facilities)</td>
<td>14,306 (facilities)</td>
<td>14,306 (facilities)</td>
</tr>
<tr>
<td>Secondary containment test after repair</td>
<td>11,560 (facilities)</td>
<td>11,280 (facilities)</td>
<td>11,280 (facilities)</td>
<td>11,280 (facilities)</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>19,324 (facilities)</td>
<td>14,426 (facilities)</td>
<td>14,426 (facilities)</td>
<td>14,426 (facilities)</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests – ATG</td>
<td>194,548 (facilities)</td>
<td>190,854 (facilities)</td>
<td>190,854 (facilities)</td>
<td>190,584 (facilities)</td>
</tr>
<tr>
<td>Operability tests – interstitial monitoring</td>
<td>108,499 (facilities)</td>
<td>106,438 (facilities)</td>
<td>106,438 (facilities)</td>
<td>106,438 (facilities)</td>
</tr>
<tr>
<td>Operability tests – line leak detection</td>
<td>159,221 (facilities)</td>
<td>156,197 (facilities)</td>
<td>156,197 (facilities)</td>
<td>156,197 (facilities)</td>
</tr>
<tr>
<td>Operability tests – groundwater and vapor monitoring</td>
<td>25,968 (facilities)</td>
<td>25,475 (facilities)</td>
<td>N/A</td>
<td>25,475 (facilities)</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>25,968 (facilities)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulation with performance criteria</td>
<td>2,809 (facilities)</td>
<td>2,756 (facilities)</td>
<td>2,756 (facilities)</td>
<td>2,756 (facilities)</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>14,003 (facilities)</td>
<td>10,634 (facilities)</td>
<td>10,634 (facilities)</td>
<td>10,634 (facilities)</td>
</tr>
<tr>
<td>Remove release detection deferral for emergency generator tanks</td>
<td>17,339 (facilities)</td>
<td>10,977 (facilities)</td>
<td>10,977 (facilities)</td>
<td>10,977 (facilities)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>81 (facilities)</td>
<td>56 (facilities)</td>
<td>56 (facilities)</td>
<td>N/A</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>346 (facilities)</td>
<td>198 (facilities)</td>
<td>198 (facilities)</td>
<td>N/A</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>21,505 (facilities)</td>
<td>3,220 (facilities)</td>
<td>3,220 (facilities)</td>
<td>3,220 (facilities)</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>80 (facilities)</td>
<td>57 (facilities)</td>
<td>57 (facilities)</td>
<td>57 (facilities)</td>
</tr>
<tr>
<td>Requirements for demonstrating compatibility with fuels > E10 and > B20</td>
<td>234 (facilities)</td>
<td>234 (facilities)</td>
<td>577,981 (facilities)</td>
<td>N/A</td>
</tr>
<tr>
<td>EPAAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>966 (facilities)</td>
<td>966 (facilities)</td>
<td>966 (facilities)</td>
<td>966 (facilities)</td>
</tr>
<tr>
<td>Secondary containment - new and replaced tanks</td>
<td>947 (facilities)</td>
<td>947 (facilities)</td>
<td>947 (facilities)</td>
<td>947 (facilities)</td>
</tr>
<tr>
<td>Threshold for pipe replacement rather than repair</td>
<td>789 (facilities)</td>
<td>0 (facilities)</td>
<td>0 (facilities)</td>
<td>0 (facilities)</td>
</tr>
<tr>
<td>Under-dispenser containment for all new dispensers</td>
<td>1,270 (facilities)</td>
<td>1,270 (facilities)</td>
<td>1,270 (facilities)</td>
<td>1,270 (facilities)</td>
</tr>
</tbody>
</table>

The universe of affected systems for these requirements varies because some states have current requirements that differ in frequency and ensure baseline compliance in some regulatory scenarios but not others.

b The affected universes presented for these items reflect 50 percent of ultimately affected systems or facilities. Because these requirements take effect over time and future costs are discounted, we present the universe affected at year 10 as a central estimate. In addition, we adjust unit costs to reflect the fact that the total cost of these requirements grows as the number of affected systems or facilities increases.

c The number of affected systems differs from the universe of potentially affected systems for this requirement; however, as indicated in Appendix B, this RIA does not apply state baseline regulatory requirements to any system for this requirement. The number of affected systems is smaller than the number of potentially affected systems because some systems to which this requirement applies are EGTs, and the application of regulatory requirements to these systems is covered in the
Exhibit 2-5

<table>
<thead>
<tr>
<th>Description</th>
<th>Universe of Potentially Affected Systems</th>
<th>Systems Affected by Selected Option</th>
<th>Systems Affected by Alternative Option 1</th>
<th>Systems Affected by Alternative Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>requirement for removing the release detection deferral for EGTs, and affects the numbers shown for this requirement as well.</td>
<td>d Universe affected phases in over five years.</td>
<td>e The universe of potentially affected units is 81 systems, or 632 tanks (at eight tanks per system for the 71 DoD-owned systems, plus an additional 64 tanks at the 10 commercial airport systems).</td>
<td>f As part of the requirements for demonstrating compatibility with fuels > E10 and > B20 proposed in November 2011, all UST systems must maintain equipment records. While 234 represents the number of UST systems subject to demonstrating compatibility with fuels > E10 and > B20 under the Selected Option, all (577,981) UST systems would be subject to the requirement to maintain equipment records under Alternative Option 1.</td>
<td>g EPA’s screening analysis shows that a requirement to replace piping if more than 50 percent of it requires repairs would likely generate no net costs, as owners or operators would ordinarily pursue replacement under those circumstances. See Appendix C for details.</td>
</tr>
</tbody>
</table>
Chapter 3. Assessment of Compliance Costs

3.1 Introduction

This chapter describes EPA’s analysis of the social costs associated with the final UST regulation. OMB guidance suggests that an analysis that relies on measures of opportunity cost and willingness to pay provides a holistic basis for assessing the total cost of any regulation. Specifically, a social cost analysis should focus on measuring changes in consumer and producer surplus by considering the market responses to compliance costs (e.g., changes in demand and supply). Along with the administrative costs incurred by the government, changes in producer and consumer surplus reflect the true cost to society of adopting a set of regulatory measures.

For this regulatory impact analysis, EPA uses a combination of direct compliance costs and state oversight costs to approximate social costs. In this context, compliance costs represent a reliable indicator of social costs for the following reasons:

- The regulatory requirements generally focus on additional testing and inspection of existing equipment, and do not reflect large-scale investments in equipment or significant changes to operations at the facility level. In addition, the facilities affected by the regulation are distributed with relative geographic uniformity for consumers and producers.

- Given the small per-facility costs of the regulation (approximately $715 for the average facility, as documented in this chapter), closures or changes in market structure represent an unlikely response to the regulation. Therefore, it is unlikely that significant changes to production or consumer behavior will affect social costs.

- The short- and long-run impacts of the regulation are not likely to differ significantly. Testing and inspection requirements under the regulation may offer some opportunities for owners and operators to reduce costs by learning over time, but they are not likely to reduce costs enough to facilitate large-scale equipment upgrades.

For these reasons, compliance costs are likely to be a reasonable approximation of social costs over both the short- and long-run. This chapter presents EPA’s compliance cost methodology and results, and summarizes the calculation of government oversight costs. The chapter also provides a discussion of key uncertainties and several brief sensitivity analyses. An analysis of the potential economic impacts of the final UST regulation is presented in Chapter 5, and a sensitivity analysis that evaluates the effects of alternative interest rates is presented in Chapter 7.

3.2 Compliance Cost Methodology

In this chapter, EPA presents its methodology for estimating incremental compliance costs of the final UST regulation beyond the current baseline costs of existing federal and state...
regulation of underground storage tanks. EPA’s analysis focuses on the specific incremental costs that occur as a consequence of the regulation. Throughout this chapter, the analysis distinguishes between three types of costs:

- **System-level**: Costs that occur at the individual UST tank level, including ancillary equipment.
- **Facility-level**: Costs that occur at the level of a facility that owns several USTs; typically 2.71 times the system-level cost to reflect UST ownership by the average facility.
- **Unit costs**: System-level costs related to a particular requirement. For example, the requirement to provide notification of ownership change has a unit cost of approximately $14.

Calculation of total incremental compliance costs for UST facilities reflects two key steps: identifying specific measures necessary for compliance at individual facilities, and calculating costs associated with each of these measures. To estimate these costs, EPA developed a compliance cost model that identifies incremental equipment and labor requirements for an individual system. Based on the baseline equipment, existing state regulations, and anticipated responses to the regulation, the model then generates system-specific estimates of compliance costs. Compliance costs include the labor and capital costs associated with new equipment and installation, inspection, testing, and recordkeeping. The model also includes other compliance costs, such as those associated with more frequent detection of equipment failure and repair of equipment. Some component costs are specific to individual UST system configurations—for example, airport hydrant fuel distribution systems or UST systems with field-constructed tanks—while others are consistent across all system types.

We calculate the compliance costs of the final UST regulation by measuring three factors: the proportion of facilities or UST systems with specific technologies (i.e., the portion of systems that require specific types of upgrades or tests, described in Exhibit 2-4 and Section B.1 of Appendix B); the regulations already in place in each state (i.e., baseline regulations, described in Exhibit 2-5 and Section B.2 of Appendix B); and, the unit cost to comply with each element of the regulation (described in this Chapter, specifically Exhibit 3-1, as well as Appendix D).

An important limitation of our analysis is that we do not have data on the distribution of UST technologies. Consider the following from Exhibit 2-5: under the Selected Option, we estimate that overfill prevention tests will be a new requirement for 354,769 systems, and spill prevention equipment tests will be a new requirement for 388,641 systems. These requirements could together affect as few as 388,641 systems if all systems that are affected by overfill

prevention testing are a subset of the systems that are affected by spill prevention testing. In the absence of additional information, it is equally plausible that these two requirements affect the entire universe of USTs if they overlap as little as possible.

EPA has not identified any information that could allow us to reliably narrow the universe of affected USTs to a number smaller than the entire universe. Further, EPA’s review of state data suggests that facilities in all states will be subject to some cost under the final UST regulation.45 Consequently, when considering the average cost of the regulation on a facility or UST system basis, we divide the total cost by the number of facilities or systems in the entire universe.46

3.2.1 Categories of Compliance Costs Analyzed

This analysis includes the following categories of compliance costs: operation and maintenance costs; capital costs; and implicit capital costs, or “time value of money costs” associated with earlier detection of equipment failure. Because the final UST regulation focuses on operational improvements, operation and maintenance costs constitute the majority of the compliance costs identified in this analysis. These costs are relatively frequent, recurring costs that mainly involve a service activity. Operation and maintenance activities include the labor and materials costs associated with maintenance of equipment, routine testing, and inspection (whether performed by the owner, operator, or a contractor). This analysis assumes that UST

45 The discounted cost per UST system ranges from less than $100 in one state to over $310, with costs in 20 states and territories falling between $290 and $320, costs in another 17 states and territories falling between $230 and $270, and costs in another six states and territories between $210 and $230. The remaining 13 states and territories have per-system costs between $75 and $200, with all but two states or territories having costs upwards of $130 per system. These costs are calculated by considering the regulatory baseline in each state, and the unit costs of each regulatory requirement not already required by the regulatory baseline in a given state. From the example above, states with low per-UST system costs are those with regulatory baselines that substantially overlap with the requirements of the final regulation, while those with the highest costs are those where most or all of the requirements of the final regulation are not already required by the state. Note that the figures presented here assume an average distribution of technologies across states, such that the only variant in UST system costs per state is the existing extent of each state’s regulatory baseline.

46 We address uncertainty in the distribution of technology and costs with a set of sensitivity analyses in section 3.5 of this chapter, and we consider the economic impacts of different distributions of costs in Chapter 5. Our analysis indicates that approximately 81 percent of all facilities incur costs below the average per-facility cost (calculated by dividing total costs by total facilities) and 18 percent of facilities incur per-facility costs in excess of 110 percent of this calculation of average per-facility cost. The remaining one percent of facilities incur costs within the range of 100-110 percent of average per-facility costs.

The cost estimates reported in the RIA and used in the analysis in this footnote do not incorporate high-end technology costs; they reflect the market costs for widely available technologies. The analysis in this footnote represents a worst-case cost scenario only as relates to impacts on small facilities, in order to consider potential business and employment impacts (see Section 5.2.3). To do this, it examines the combined impact of two distinct, high-cost assumptions: 1) that a given subset of UST systems are located in the state or states with the state regulatory baselines that overlap or accord least with the final regulation, and thus incur the highest compliance costs; and 2) that this same subset of UST systems has or uses the technologies for which regulatory costs are highest. The analysis concludes that even under this bounding scenario in which the smallest, oldest facilities are universally located in states with low baseline regulatory requirements, employment and business impacts are limited. The Chapter 3 cost analysis assumes that the technology distribution of UST systems is similar across states, reflecting standard turnover in facilities and equipment.
facility owners and operators pay in full for these costs when they occur (that is, they do not obtain financing and pay over time). Some of the operation and maintenance activities included in the final UST regulation take the form of recurring requirements occurring less frequently than once per year: for example, overfill prevention equipment inspections are required every three years under the Selected Option. We calculate the total incremental annual cost of these recurring requirements by assuming that an equivalent portion of the universe incurs the cost associated with each such recurring requirement every year: for overfill prevention equipment inspections, we assume one third of the affected universe of UST systems must undergo this inspection each year, such that all UST systems have complied within each three-year inspection period.

Because the final UST regulation does not focus on broad equipment requirements, capital costs represent a small portion of the total compliance costs for this regulation. Capital costs address the purchase and installation of new equipment, such as installing a new double-walled UST or under-dispenser containment. Total capital costs typically include installation, labor, and initial service required to ensure the new equipment is fully functioning. EPA assumes that UST owners and operators finance these compliance costs over the life of the equipment; all capital costs are calculated over a regulatory time horizon of 20 years. The following examples characterize the three types of capital cost calculations that are relevant to this regulatory analysis:

Existing equipment replacements: An UST system owner or operator must upgrade an existing system with new equipment to comply with a requirement under the regulation (e.g., facilities with EGTs may be required to install release detection equipment when the deferral is removed). The incremental compliance cost is the total cost of the new equipment and installation (including removal of existing equipment). Any additional (incremental) operation and maintenance costs are also included.

47 Certain one-time costs that occur only once over the regulatory time horizon (e.g., one-time spending on initial operator training for personnel at existing facilities) are also annualized over 20 years.

48 As noted in Exhibit 1-2, a number of recurring operations and maintenance requirements will not immediately impose costs on UST owners and operators as they may have up to three years (depending on the requirement) to comply with the initial testing or inspection requirement. Where applicable, we discount the annual cost associated with each such requirement by the length of this implementation delay at a seven percent discount rate (consistent with OMB’s guidance on discount rate), to account for the fact that owners and operators are not required to conduct the first test or inspection immediately. Chapter 7 also presents results for the Selected Option using a three percent discount rate.

49 Due to a lack of data on the distribution of ages of UST systems and planned retirements/replacements of existing systems, EPA assumes that owners and operators amortize all capital costs over a 20-year expected regulatory horizon to be consistent with the 20-year expected lifetime of an UST system. Note that this annualization timeframe specifically applies only to UST system (i.e., tank) components; for other associated equipment with a lifetime other than 20 years, EPA assumes that a proportion of the universe is affected per year. For example, EPA assumes that piping is replaced every five years; i.e., one-fifth of the universe must replace it every year. The central analysis uses a seven percent discount rate, consistent with: U.S. Office of Management and Budget. Circular No. A-94. Revised October 29, 1992. Other discount rates are considered in Chapter 7.

50 This approach may overstate costs, as it does not account for the age of existing equipment (depreciation). Owners and operators typically plan for new capital expenditures over the lifetime of existing equipment, recording depreciation as operations consume its usefulness over time. If an owner or operator is close to
New equipment requirements: An operator is installing new or replacement equipment as an ordinary business expense. Under baseline regulations, *Equipment A* is compliant. However, new regulations require a higher level of compliance for new tank systems that can be satisfied at lowest cost by *Equipment B*. The incremental compliance cost to the operator of the equipment is the additional cost (if any) of purchasing, installing and operating *Equipment B* instead of *Equipment A*. The costs of this requirement reflect the timing of the normal replacement cycle for all equipment in the universe. For example, owners and operators installing new UST systems will be required to use technologies other than flow restrictors to ensure release prevention.

Time value of money (TVM) costs: Under baseline regulations, the average UST system requires inspection every three years. EPA estimates that the baseline three-year inspection, on average, identifies a hypothetical repair or replacement cost of $100 associated with certain equipment. For example, under the final UST regulation, a new annual test could discover the same issue sooner and require repair or replacement two years earlier than it would have been discovered in the baseline. In this example, while the repair expense is the same, the regulation generates a time value of money cost by requiring an owner or operator to incur the repair expenditure sooner.51

Costs to Regulated Universe to Review Regulation: This analysis assumes that all facility operators in the universe will be required to read the final UST regulation in order to comply with it. For conventional USTs and EGTs, we estimate that reading and understanding the final UST regulation will require 4.75 hours of labor from a manager at each facility. This equates to a one-time cost of approximately $271 for each facility, or $58 million. This is equivalent to an annual cost of $5.5 million under each regulatory option. For FCTs and AHFDSs, we assume these costs are subsumed in the management costs for these systems (see Appendix A for details).

EPA estimates that the final UST regulation will impose capital costs on the following components due to earlier detection of problems as a result of the new testing requirements:

- Overfill prevention equipment;
- Spill prevention equipment;
- Interstitial areas; and

51 There is significant uncertainty regarding whether total expenditures would increase or decrease over time. More frequent inspections may lead to more frequent repairs and replacements but may also reduce the severity and cost of the problems discovered.
• ATGs, interstitial monitors, vapor monitors, groundwater monitors, and line leak detectors.

The final UST regulation requires testing, in addition to inspections, for several UST system components. EPA assumes that testing adds value to baseline release prevention strategies in two ways: first, testing detects issues with an UST system that may not be detectable in inspections. Second, in some cases, testing will occur more frequently than baseline inspections and therefore may identify issues that occur between inspections. This analysis therefore considers two types of increased capital costs. First, EPA assumes that additional testing required under the final UST regulation will identify malfunctions that prior inspections would have overlooked, and will therefore mandate additional, incremental compliance costs related to equipment repair and replacement. Second, some baseline compliance costs will occur earlier than they would in the baseline, creating time value of money costs as owners and operators incur compliance costs earlier and forgo the use of such funds for other investments. The time value of money cost of incurring a repair sooner is estimated at seven percent, consistent with OMB’s guidance on discount rate. The use of a seven percent discount rate for these time value of money costs maintains consistency with the discount rates used for other cost and benefit calculations presented in this RIA, including amortization of capital costs and discounting costs associated with regulatory requirements with delayed implementations. For comparison, Chapter 7 presents results for the Selected Option using a three percent discount rate. See Appendix D for the detailed cost methodology.

The cost estimation methodology in this RIA focuses exclusively on the compliance costs incurred to comply with the regulatory requirements of the final regulation. This differs from the benefit estimation methodology (see Chapter 4), where benefits are monetized based on an estimated number of avoided releases, and the avoided remediation costs associated with those releases.

3.2.2 Estimation of System-Level Compliance Costs for UST Systems

Estimates of system-level compliance costs for each part of the final UST regulation are based on publicly available data on equipment, installation, and testing costs, information collected from professionals in industries that provide relevant equipment and services, and EPA’s professional judgment. Costs are estimated to occur according to the regulation implementation schedule identified in Exhibit 1-2; we use an annual discount rate of seven percent to adjust costs with compliance windows of more than one year.

Labor costs used in this analysis reflect labor-hour estimates from EPA Information Collection Request 1360.08 and EPA Information Collection Request 1360.12 for specific inspection and recordkeeping tasks. The cost of labor is based on Bureau of Labor Statistics (BLS) labor rates for skill categories appropriate to the retail sector and technical requirements of

the final UST regulation. In particular, EPA selected labor rates that correspond to categories of labor employed in the retail motor fuels sector (NAICS 447). EPA does not expect regulated entities to employ higher skilled workers to comply with this regulation.

The analysis adjusts these rates using a 12 percent overhead factor and a fringe benefits factor of 28.8 percent, which is specific to service-providing industries. For requirements that are likely to be satisfied by third-parties, such as testing, labor costs are included in the market prices (costs) of those services.

A broad explanation of the functionality of the compliance cost estimation model is provided below:

- First, for each regulatory requirement of the rule, the model identifies the number of UST systems are affected. Systems are affected if they have the proper technical components affected by the requirement and are located within a state where compliance with this requirement is not already part of the regulatory baseline. To the extent that UST systems are located in states whose regulatory baselines are in partial compliance with the rule, the cost model makes an appropriate adjustment such that the correct set of incremental costs are applied.

- Then, the cost model derives a set of unit costs for compliance with each regulatory requirement. These costs include labor costs as well as O&M (equipment) costs, and are broken down by one-time costs that are amortized versus annually-occurring costs. As described on page 3-2, some costs apply at the UST-system level, and others apply at the broader facility level (a facility may have more than one UST system). These costs can be seen in Exhibit 3-1.

- To estimate costs, the model then applies unit costs for each regulatory requirement to each applicable system. In some cases, the unit costs in Exhibit 3-1 for a given regulatory requirement are simply applied to the set of affected systems or facilities for that requirement in Exhibit 2-5. However, in many cases, state regulatory baselines interact with the regulation’s requirements in complex ways, such that this methodology must be adjusted. For example, UST facilities in states that require semiannual walkthrough inspections under their regulatory baselines incur lower costs than UST facilities in states that currently require no walkthrough inspections; the compliance cost model tracks these cases and applies the appropriate incremental cost as necessary.

53 Labor rates reflect: U.S. Bureau of Labor Statistics. "Occupational Employment and Wage S." May 2011. See Appendix D for the particular Standard Occupational Classification codes used. EPA does not use the costs in its Information Collection Request 1360.08 because those labor rates reflect all industries and do not represent typical costs to the majority of UST owners and operators.

55 For additional information on the derivation of the affected universe for each regulatory requirement, see Appendix B. Similarly, Appendix D contains derivations of the unit costs for each regulatory requirement, as well as
While the regulation’s impacts are not significant enough ($1 billion per year) to require a quantitative assessment of uncertainty, the RIA considers the uncertainty associated with key variables. However, the regulatory requirements modeled in this RIA generally do not lend themselves to a probabilistic assessment of uncertainty because most requirements consist of a task, such as an inspection or test, that has an established cost and must be performed according to a given schedule. Correspondingly, the system is not subject to broad uncertainty related to options for compliance. Moreover, the regulation requires that each such task be performed with a given frequency. Probabilistic uncertainty analyses, which best apply in cases where one of multiple outcomes may occur with a different probability weight for each outcome, do not directly apply to the requirements of this regulation.

To the extent that certain aspects of the cost estimation methodology are uncertain, this RIA includes various sensitivity analyses to address these:

- Input cost uncertainties are addressed by the analysis of alternative labor rates (Exhibit 3-6);

- Universe uncertainties, especially regarding the interaction between the uncertainty in which systems contain certain UST system components and which systems are located in states that do not currently require testing/inspection of those components, are addressed by the analysis of compliance cost scenarios (Exhibit 3-7); and

- Uncertainties regarding the potential of the rule to result in small business impacts are addressed via a “worst-case scenario” sensitivity analysis where the smallest (i.e., least-revenue) firms are assumed to be located in the states with the least-rigorous state regulatory baselines (i.e., thus incurring the highest incremental costs) (Section 5.2.3).

Because of the deterministic nature of the regulation in requiring each UST system meeting a given criterion to perform a certain task or undergo a certain inspection, probabilistic assessments of uncertainty are not directly applicable.

In addition, specific requirements under the final UST regulation are addressed as follows:

- For regulatory changes that take effect over time as equipment ages, the analysis assumes a constant rate of equipment replacement, and calculates a constant annual payment for the net present value of 20 years of replacement. Appendix D discusses the specific assumptions made in the analysis.

- To identify the total system-level compliance cost of removing deferrals from airport hydrant fuel distribution systems (AHFDSs) and field-constructed tanks.

broader descriptions of how the compliance cost model handles labor costs, time value of money costs, and other items of specific relevance to cost estimation for this regulation.
(FCTs), the analysis calculates both the direct costs of removing the deferral of these systems from the regulation under 40 CFR Part 280, and the additional costs of complying with other new regulatory options that apply to all systems (and become relevant when deferrals are removed). For example, under the final UST regulation, owners and operators of these systems must perform annual bulk line testing at prescribed rates or use an automatic tank gauge at prescribed leak rates. Appendix A discusses specific assumptions related to these tank populations.

- To estimate the total system-level compliance cost of removing the deferral from emergency generator tanks, the analysis calculates the cost of complying with specific changes that apply to the broader universe of conventional UST systems and become relevant when the deferral is removed. Removal of the deferral under the final UST regulation means that EGTs must comply with release detection requirements at 40 CFR Part 280, Subpart D.

Exhibit 3-1 presents the unit-level costs for the individual requirements in the final UST regulation.\(^{56}\)

\(^{56}\) See Appendix D for a detailed discussion of these costs.
Exhibit 3-1

Unit Costs For The Requirements In The Final UST regulation (Selected Option)\(^a\)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>ONE-TIME (^b) ($)</th>
<th>O&M (^c) ($)</th>
<th>REPAIR/REPLACEMENT COST (^d) ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$0.00</td>
<td>$16.99</td>
<td>$0.14</td>
</tr>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>$0.00</td>
<td>$228.91</td>
<td>$67.07</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>$0.00</td>
<td>$138.38</td>
<td>$37.53</td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>$0.00</td>
<td>$669.32</td>
<td>$86.97</td>
</tr>
<tr>
<td>Spill prevention equipment inspection after repair</td>
<td>$0.00</td>
<td>$363.42</td>
<td>$0.00</td>
</tr>
<tr>
<td>Overfill prevention equipment test after repair</td>
<td>$0.00</td>
<td>$400.71</td>
<td>$0.00</td>
</tr>
<tr>
<td>Secondary containment test after repair</td>
<td>$0.00</td>
<td>$188.23</td>
<td>$0.00</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>$420.37</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests – ATG</td>
<td>$0.00</td>
<td>$61.41</td>
<td>$9.40</td>
</tr>
<tr>
<td>Operability tests – interstitial monitoring</td>
<td>$0.00</td>
<td>$10.83</td>
<td>$9.73</td>
</tr>
<tr>
<td>Operability tests – electronic LLDs</td>
<td>$0.00</td>
<td>$61.41</td>
<td>$< 0.01</td>
</tr>
<tr>
<td>Operability tests – vapor monitoring</td>
<td>$0.00</td>
<td>$10.83</td>
<td>$1.20</td>
</tr>
<tr>
<td>Operability tests – groundwater monitoring</td>
<td>$0.00</td>
<td>$10.83</td>
<td>$0.62</td>
</tr>
<tr>
<td>Site assessment – vapor monitoring</td>
<td>$1,111.17</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Site assessment – groundwater monitoring</td>
<td>$935.56</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulation with performance criteria</td>
<td>$10.66</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Remove release detection deferral for emergency generator tanks</td>
<td>$296.94</td>
<td>$193.41</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>$128,828.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>$30,744.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>$0.00</td>
<td>$14.27</td>
<td>$0.00</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$41,802.90</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Requirements for demonstrating compatibility with fuels > E10 and > B20</td>
<td>$1.93</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Cost to owners/operators to read regulation</td>
<td>$271.12</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$303.64</td>
<td>$139.36</td>
<td>$0.00</td>
</tr>
<tr>
<td>Secondary containment - new and replaced tanks</td>
<td>$8,413.90</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Threshold for pipe replacement rather than repair</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Under-dispenser containment for all new dispensers</td>
<td>$1,914.27</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

\(^a\) Cost estimates were derived using a seven percent discount rate.
\(^b\) One-time costs presented here are not shown in annual terms. For the purposes of estimating total annual costs for the final UST regulation, these one-time expenditures are annualized over 20 years at a seven percent interest rate.
Exhibit 3-1

<table>
<thead>
<tr>
<th>Unit Costs For The Requirements In The Final UST regulation (Selected Option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Operation and maintenance costs presented here are not shown in annual terms, but rather on per-incident terms. In other words, the cost for walkthrough inspections above is the unit cost per walkthrough inspection; the annual cost is the total cost conducting 30-day walkthrough inspections over an annual period.</td>
</tr>
<tr>
<td>`Time value of money costs due to earlier repair and replacement of equipment reflect costs of repair or replacement sooner than would have occurred in the baseline. For most requirements, these are costs that would occur and be identified by annual tests, i.e., they reflect one year’s worth of accumulated issues that require equipment repairs or replacements. Three requirements represent exceptions. TVM costs for overfill prevention and containment sump testing, which occur every three years under the Selected Option, represent the repairs and replacements over three years. In addition, TVM costs for walkthrough inspections represent the repairs and replacements identified on a monthly basis to match the requirement under the Selected Option. See Appendix D for additional details.</td>
</tr>
<tr>
<td>`The one-time cost presented is the cost of conducting a site assessment or well verification, weighted by the relatively likelihoods that a site assessment or well verification would be necessary to continue using vapor or groundwater monitoring as release detection. Note that a site assessment or well verification would be necessary for fewer than 25 percent of systems using vapor monitoring, and for fewer than 30 percent of systems using groundwater monitoring. The one-time costs presented here do not downward adjust the unit cost estimate to account for the possibility that a site assessment or well verification may not be necessary.</td>
</tr>
<tr>
<td>`The cost associated with this requirement would be the incremental cost difference between a tightness test (required in the baseline) and an interstitial integrity test (required by the final UST regulation). However, because the cost of an interstitial integrity test is less than the cost of a tightness test, we do not assign any cost to this requirement. See Appendix D for additional information.</td>
</tr>
<tr>
<td>`Because different subsets of EGTs are subject to different requirements, we present average unit costs that divide the total cost to the affected universe by the total number of affected units. O&M costs include any TVM costs associated with operability tests. See Appendix D for additional details.</td>
</tr>
<tr>
<td>`Because different subsets of AHFDSSs are subject to different requirements, and because different requirements applicable to AHFDSSs and FCTs include various types of one-time and O&M costs, we present average unit costs that divide the total cost to the affected universe by the total number of affected units. These costs include any TVM costs associated with operability tests. See Appendix A for additional details.</td>
</tr>
<tr>
<td>`We assume that this cost occurs in full for the systems that require closure of lined tanks in a given year, rather than annualizing it as described in note b above. See Appendix D for additional details.</td>
</tr>
<tr>
<td>`This includes an annualized cost of $0.01 related to the cost of storing records for the life of the UST system.</td>
</tr>
<tr>
<td>`We assume all facilities exceeding the 50 percent threshold for piping replacement would opt to replace piping in the baseline; costs are therefore zero. See Appendix C for detailed calculations.</td>
</tr>
</tbody>
</table>

3.3 Calculation of Incremental Compliance Costs

This analysis estimates the compliance cost of the final UST regulation by calculating the incremental cost of each regulatory change on the population of tank systems in every U.S. state and territory. This procedure relies on national estimates of the number of systems employing specific baseline technologies, as well as EPA’s assessment of the baseline regulatory requirements in each state and territory. The analysis categorizes compliance costs into one-time or operation and maintenance costs and amortizes one-time compliance costs over the 20-year regulatory time horizon. As a final step, it discounts annual compliance costs associated with several of the regulatory changes to delayed compliance horizons specified in the final UST regulation (e.g., overfill prevention equipment inspections must be performed within three years of the date the final UST regulation becomes effective).

57 For details regarding these assumptions, see Appendix B.
58 See footnote 49 for an explanation of the use of a 20-year time horizon.
To calculate compliance costs, EPA employs a number of assumptions, some of which likely overstate compliance costs:

- **Time value of money costs.** This analysis does not assume the rate at which problems occur in UST systems will decline as a result of the final UST regulation. The number and severity of problems will likely fall due to more frequent testing and inspections, but the rate of decline is uncertain and the analysis does not attempt to adjust for these changes. This likely causes the analysis to overestimate the costs of the final UST regulation.

- **Size of universe.** EPA’s analysis assumes that the number of UST systems in the universe remains constant over time, with new systems replacing closures. EPA’s end-of-year reporting data reveal that the universe of conventional UST systems has declined at a rate between one and three percent per year since 2000. Assuming this pattern continues, future annual compliance costs due to the final UST regulation are likely to be lower than estimated in this analysis. However, in absence of other data we assume new installations and upgrades will offset all closures, and annual compliance costs will remain constant. Impacts of assuming an alternative baseline universe of UST systems that declines over time are discussed in Sections 3.3.1 and 3.4.1.

- **Full compliance.** EPA assumes all owners and operators subject to each requirement will come into compliance. This ensures a high estimate of costs, as each system subject to the regulation implements the required measures and consequently incurs the related costs.

- **Timeliness of repairs.** EPA assumes all issues identified through testing of equipment will be properly addressed through immediate repair or replacement of equipment. This may overstate costs if owners or operators fail to address identified issues in a timely fashion.

- **Date on which costs are incurred.** EPA assumes all costs are incurred at the beginning of the year in which each requirement of the final UST regulation becomes effective. This may overstate costs that occur at the end of the time frame.

These combined assumptions help ensure that the total costs estimated in each scenario below are not likely to be understated, even in cases where some uncertainty is associated with unit cost estimates for equipment or testing. Two key areas of uncertainty that affect the distribution of costs are noted below.

- **Geographic distribution of technologies:** EPA lacks information on how UST systems with specific equipment (e.g., ATG) are distributed nationally. If most are located within states with existing applicable requirements, then costs could

be lower (conversely, if most are located in states with no existing applicable requirements, then costs could be higher). In the absence of this data, EPA assumes a uniform distribution of technologies across all states. EPA assesses the extent to which this assumption creates cost uncertainty at the end of this chapter.

- **Distribution of costs across systems:** EPA does not have information on how costs are likely to be distributed among the systems that are subject to new requirements. For example, a correlation among systems that require overfill prevention equipment inspections, spill prevention equipment testing, and secondary containment testing after repair would concentrate costs on these systems in ways that EPA’s primary assessment of costs does not capture. While this does not affect total cost estimates, EPA assesses the distributional consequences of an outcome where costs are highly-concentrated in Chapter 5.

3.3.1. Calculation of Incremental Compliance Costs Using an Alternative Baseline

EPA’s primary analysis assumes that the universe of UST systems stays constant over time. That is, the analysis assumes that when an UST system enters the universe, another exits, and vice versa. However, data show that the universe of UST systems has been declining over the past two decades (albeit at a slowing rate). Therefore, EPA also assesses compliance costs associated with the final UST regulation based on an alternative baseline that projects a declining universe.

To calculate the rate of universe decline, EPA mapped historical data on the universe of UST systems from 1991 through 2013 to an exponential one-phase decay function, which appears to most accurately represent the observed behavior of the UST system universe over time. Steep declines in the universe of UST systems in past years reflect increases in tank size as well as industry consolidation. However, these declines may be reaching functional limits, both because the number of fuel outlets needed to serve the population is considerable, and because tank sizes may be reaching a practical limit in their ability to be transported and installed.

The function used to project future UST universe sizes indicates that over a 20-year time period, the annual number of affected UST systems gradually declines to 574,045 UST systems.

60 To estimate future UST universe sizes, we used a single exponential decay function, which assumes that a quantity declines at a rate proportional to its value. This is an appropriate function given the singular and slowing rate of decline observed in the universe of UST systems over time. The equation for such an exponential singular decay function is \(Y = (Y_0 - P) \cdot e^{(-k \cdot X)} + P \), where \(P \) represents the “plateau,” or limit of the function and \(k \) represents the function’s half-life. (See Appendix J for additional details.)

62 While this alternative baseline assumes a steady decline in the number of UST systems, it is possible that the number of UST systems may actually increase in the future to trend with population growth and economic expansion as more people living in more areas may necessitate more retail motor fuel outlets.
The number of UST systems affected under this alternative baseline is approximately 99.8 percent of the size of the original baseline, which assumes a constant universe size of 577,981 UST systems over this period. As a result, compliance costs associated with the final UST regulation are only marginally smaller under this alternative baseline. See Appendix J for additional details.

3.4 Results of Assessment of Compliance Costs

Exhibit 3-2 presents a summary of the estimated incremental compliance costs associated with the final UST regulation by type of UST system affected. In all options, it is clear that the category of conventional UST systems will bear the largest proportion of compliance costs under the regulation. While compliance costs associated with removal of deferrals from EGTs are constant across regulatory scenarios, other costs vary substantially among the regulatory options. The model parameters used to produce the results discussed in this chapter are presented in Appendix E and were selected to reflect the selected and alternative options described in Chapter 1.

Exhibit 3-2

<table>
<thead>
<tr>
<th>Option</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems b</td>
<td>$130</td>
<td>$280</td>
<td>$63</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs)</td>
<td>$2.0</td>
<td>$2.3</td>
<td>$2.0</td>
</tr>
<tr>
<td>Airport Hydrant Fuel Distribution Systems (AHFDSs)</td>
<td>$10</td>
<td>0.017</td>
<td>0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$11</td>
<td>0.066</td>
<td>0.0</td>
</tr>
<tr>
<td>Cost to Owners/Operators to Read Regulation (conventional UST systems and EGTs)</td>
<td>$5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Total</td>
<td>$160</td>
<td>$290</td>
<td>$70</td>
</tr>
</tbody>
</table>

a Cost estimates were derived using a seven percent discount rate.
b Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

Exhibit 3-3 presents a disaggregation of compliance costs under each regulatory option. The following areas contribute significantly to the differences in compliance costs among the alternatives.

- **Release prevention**: The greatest difference in compliance costs between the Selected Option and Alternative 1 is related to release prevention; specifically, due to the combination of walkthrough inspections, overfill prevention equipment inspections, spill prevention equipment tests, and containment sump tests, testing after repairs, and the elimination of flow restrictors. These requirements account for 66 percent and 88 percent of compliance costs, respectively. This variation is

63 EPA assumes that owners and operators amortize all capital costs over a 20-year expected regulatory horizon to be consistent with the 20-year expected lifetime of an UST system.

64 Total release prevention costs are approximately $99 million under the Selected Option and $247 million under Alternative 1. Respectively, these costs round to $100 million, or 63 percent of total Selected Option costs, and $250 million, or 86 percent of total Alternative 1 costs.
largely dependent on the testing or inspection frequency required under each alternative, as well as the fact that compliance costs for AHFDSs and FCTs are considerably lower in Alternative 1. Under Alternative 2, overfill prevention equipment inspections and containment sump tests are not required, and release prevention costs total $38 million, compared to roughly $100 million under the Selected Option.

- **Removal of deferrals for AHFDSs and UST systems with FCTs:** Removal of deferrals for AHFDSs and FCTs is accompanied by tightness testing of equipment under the Selected Option. This tightness test drives most of the compliance cost associated with these systems. Under the Selected Option, total costs for these systems are $21 million, or approximately 13 percent of compliance costs.\(^{65}\) Under Alternative 1, only notification of the implementing agency and reporting of releases are required for these systems; correspondingly, total costs for these systems under Alternative 1 are below $0.1 million. Alternative 2 maintains the deferrals and therefore has no incremental compliance cost.

In total, these categories represent approximately 50 percent to 90 percent of the total compliance costs, depending on the option.

EPA determines average compliance costs per system by dividing the total cost of the final UST regulation by the total 577,981 systems in the regulated universe of conventional UST systems and EGTs. EPA’s analysis shows that the compliance cost for this final UST regulation is approximately $232 per system, or approximately $715 per typical facility among motor fuel retailers, the sector with the highest average number of UST systems per facility.\(^{66}\)

Exhibit 3-4 presents the same total costs as **Exhibit 3-3** but shows the number of systems affected and the cost of the requirement per affected system.\(^{67}\) The costs in **Exhibit 3-4** reflect annualized one-time costs, discounting, and adjustments for the adoption of certain requirements over time (e.g., elimination of flow restrictors for new and replaced tanks), and therefore differ from the unit costs presented in **Exhibit 3-1**. It is important to note that the unit costs in **Exhibit 3-4** cannot be summed to obtain a cost per system, as nearly all systems are already in compliance with some requirements of the final UST regulation.

\(^{65}\) Specifically, costs associated with AHFDSs total $10.4 million under the Selected Option, while costs associated with FCTs total $10.6 million. Together, these costs total to a rounded sum of roughly $21 million, or 13 percent of total Selected Option costs.

\(^{66}\) The $232 estimate excludes costs associated with removal of deferrals for AHFDSs and UST systems with FCTs, assumes 3.07 systems per retail motor fuel facility, and includes the annualized cost of $26 per facility for them to review the regulation. This approach does not address variability of baseline compliance across systems; to assess uncertainty associated with this approach, EPA presents a sensitivity analysis in Chapter 5.

\(^{67}\) For exhibits that show the disaggregation of compliance costs under each regulatory option as well as systems affected, see Appendix D.
Exhibit 3-3

Total Annual Compliance Costs Due To The Final UST regulation For UST Systems Affected
All values in $ thousands

<table>
<thead>
<tr>
<th>Description</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost</td>
<td>O&M</td>
<td>Total Cost</td>
</tr>
<tr>
<td>Release Prevention</td>
<td>(Annualized)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$0</td>
<td>$23,000</td>
<td>$23,000</td>
</tr>
<tr>
<td>Periodic testing/inspections of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
<td>$0</td>
<td>$64,000</td>
<td>$64,000</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Containment sumps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and secondary containment</td>
<td>$0</td>
<td>$12,000</td>
<td>$12,000</td>
</tr>
<tr>
<td>Elimination of flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>$2,500</td>
<td>$0</td>
<td>$2,500</td>
</tr>
<tr>
<td>Subtotal – Release Prevention</td>
<td>$2,500</td>
<td>$99,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods (incl. groundwater and vapor monitoring)</td>
<td>$0</td>
<td>$21,000</td>
<td>$21,000</td>
</tr>
<tr>
<td>Groundwater and vapor monitoring for release detection</td>
<td>$500</td>
<td>$0</td>
<td>$500</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulation with performance criteria</td>
<td>$3</td>
<td>$0</td>
<td>$3</td>
</tr>
</tbody>
</table>
Exhibit 3-3

Total Annual Compliance Costs Due To The Final UST regulation For UST Systems Affected

All values in $ thousands

<table>
<thead>
<tr>
<th>Description</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost (Annualized)</td>
<td>$250</td>
<td>$290</td>
<td>$250</td>
</tr>
<tr>
<td>O&M</td>
<td>$1,700</td>
<td>$2,000</td>
<td>$1,700</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$2,000</td>
<td>$2,300</td>
<td>$2,000</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Subtotal – Release Detection</td>
<td>$750</td>
<td>$290</td>
<td>$250</td>
</tr>
<tr>
<td>Subtotal – Other</td>
<td>$9,750</td>
<td>$26,000</td>
<td>$27,000</td>
</tr>
</tbody>
</table>

EPAct-related Provisions

<table>
<thead>
<tr>
<th>Description</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator training</td>
<td>$23</td>
<td>$23</td>
<td>$23</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>$980</td>
<td>$980</td>
<td>$980</td>
</tr>
<tr>
<td>Subtotal – EPAct-related Provisions</td>
<td>$1,000</td>
<td>$1,100</td>
<td>$1,100</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$9,800</td>
<td>$12,900</td>
<td>$12,900</td>
</tr>
</tbody>
</table>

Note: All costs are in thousands.
Exhibit 3-3

Total Annual Compliance Costs Due To The Final UST regulation For UST Systems Affected

All values in $ thousands a

<table>
<thead>
<tr>
<th>Description</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost (Annualized) O&M Total Cost</td>
<td>Capital Cost (Annualized) O&M Total Cost</td>
<td>Capital Cost (Annualized) O&M Total Cost</td>
<td></td>
</tr>
<tr>
<td>Additions for new units (beyond those included above) h</td>
<td>$5</td>
<td>$0</td>
<td>$5</td>
</tr>
<tr>
<td></td>
<td>$5</td>
<td>$0</td>
<td>$5</td>
</tr>
<tr>
<td>Total b</td>
<td>$9,800</td>
<td>$120,000</td>
<td>$160,000</td>
</tr>
<tr>
<td></td>
<td>$9,300</td>
<td>$280,000</td>
<td>$290,000</td>
</tr>
<tr>
<td></td>
<td>$6,700</td>
<td>$63,000</td>
<td>$70,000</td>
</tr>
</tbody>
</table>

| a Cost estimates were derived using a seven percent discount rate. |
| b Totals may not add due to rounding. Costs associated with the removal of deferrals for FCTs and AHFDSs or groundwater and vapor monitoring for release detection under Alternative 1 are included in the total columns only. |
| c Costs under the Selected Option include the cost of conducting a site assessment or well verification, weighted by the probability that one of these is necessary, as a one-time cost. For Alternative 1, costs include a five-year phase out of groundwater and vapor monitoring as release detection methods. Capital and O&M costs are aggregated in this line item for Alternative 1 because this requirement was modeled separately from the other requirements. See Appendix D for details. For Alternative 2, costs include only the cost of operability tests for these types of release detection. |
| d Costs related to removal of deferrals for the regulation of emergency generator tanks include the cost of removal of deferrals, installation and maintenance of ATG on approximately seven percent of systems, installation and maintenance of SIR on 60 percent of systems, and performing operability tests on all EGT systems. See Appendix D for details. |
| e The cost associated with this requirement would be the incremental cost difference between a tightness test (required in the baseline) and an interstitial integrity test (required by the final UST regulation). However, because the cost of an interstitial integrity test is less than the cost of a tightness test, we do not assign any cost to this requirement. See Appendix D for additional information. |
| f Airport hydrant fuel distribution systems include a capital cost because tanks associated with airport hydrant fuel distribution systems without existing ATGs are assumed to install ATGs to comply with the requirement. Similarly, the DoE UST systems with field-constructed tanks include a capital costs because these tanks are assumed to install ATGs to comply with the requirement. UST systems with field-constructed tanks without existing ATGs are assumed to conduct annual precision tightness tests to comply with the requirement. Capital and O&M costs are aggregated in these line items because various components of the compliance with release detection include both capital and O&M costs. See Appendix A for details. |
| g Although the closure of lined tanks represents a capital cost, we consider it an operation and maintenance cost as a modeling convenience. See Appendix D for details. |
| h As a simplifying assumption, EPA assumes that UST systems enter and exit the universe at a constant annual rate, such that the total number of UST systems in the universe does not change. We assume that operation and maintenance costs associated with these systems offset each other, as the number of entries equals the number of exits; however, new systems entering the universe will still incur incremental capital costs associated with certain requirements (e.g., a new emergency generator tank would need to install a release detection method). For modeling purposes, we account for these new units in the “Additions for new units.” The costs shown reflect the capital costs associated with new units for all but the following requirements: elimination of flow restrictors for new tanks, requirement of secondary containment for new tanks, and requirement of under-dispenser containment for new dispenser systems. |
Release Detection

<table>
<thead>
<tr>
<th>Description b</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost per System c</td>
<td>Cost per System c</td>
<td>Cost per System c</td>
</tr>
<tr>
<td></td>
<td>Systems Affected</td>
<td>Systems Affected</td>
<td>Systems Affected</td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$42</td>
<td>555,003</td>
<td>$96</td>
</tr>
<tr>
<td>Periodic testing/inspections of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
<td>$334</td>
<td>190,623d</td>
<td>$860</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Containment sumps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and secondary containment</td>
<td>$311</td>
<td>40,011</td>
<td>$311</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>$40</td>
<td>63,818</td>
<td>$40</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods d</td>
<td>$126</td>
<td>165,492</td>
<td>$144</td>
</tr>
<tr>
<td>Groundwater and vapor monitoring for release detection e</td>
<td>$59</td>
<td>25,475</td>
<td>$40</td>
</tr>
<tr>
<td>Add SIR/CITLD f to regulation with performance criteria</td>
<td>$1</td>
<td>2,756</td>
<td>$1</td>
</tr>
<tr>
<td>Remove release detection deferral for emergency generator tanks g</td>
<td>$181</td>
<td>10,977</td>
<td>$207</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms h</td>
<td>$0</td>
<td>10,634</td>
<td>$0</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral from airport hydrant fuel distribution systems f</td>
<td>$128,829</td>
<td>81</td>
<td>$214</td>
</tr>
<tr>
<td>Remove deferral from UST systems with field-constructed tanks f</td>
<td>$30,745</td>
<td>346</td>
<td>$192</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>$5</td>
<td>8,726</td>
<td>$5</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$41,803</td>
<td>57</td>
<td>$41,803</td>
</tr>
<tr>
<td>Requirements for demonstrating compatibility with fuels > E10 and > B20</td>
<td>$0</td>
<td>234</td>
<td>$2</td>
</tr>
<tr>
<td>Cost to owners/operators to read regulation</td>
<td>$9</td>
<td>577,981</td>
<td>$9</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$51</td>
<td>2,618</td>
<td>$51</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>$443</td>
<td>2,217j</td>
<td>$443</td>
</tr>
</tbody>
</table>

a) Important: these unit costs cannot be summed to obtain a total cost per system because nearly all systems are already in compliance with some requirements of the final UST regulation.

b) Costs under the Selected Option include the cost of operability tests for these types of release detection as the operation and maintenance cost, as well as the cost of conducting a site assessment or well verification, weighted by the probability that one of these is necessary, as a one-time cost. For Alternative 1, costs include a five-year phaseout of groundwater and vapor monitoring as release detection. For Alternative 2, costs include only the cost of operability tests for these types of release detection.

c) Costs related to removal of deferrals for the regulation of emergency generator tanks include the cost of removal of deferrals, installation and maintenance of ATG on approximately seven percent of systems, installation and maintenance of SIR on 60 percent of systems, and performing operability tests on all EGT systems. See Appendix D for details. Costs for emergency generator tanks are lower in Alternative 2 because operability tests are performed every 3 years versus every year under other options.

d) Because different subsets of AHFDSs are subject to different requirements, and because different requirements applicable to AHFDSs and FCTs include various types of one-time and O&M costs, we present average unit costs that divide the total cost to the affected universe by the total number of affected units. These costs include any TVM costs associated with operability tests. See Appendix A for additional details.

The cost associated with this requirement would be the incremental cost difference between a tightness test (required in the baseline) and an interstitial integrity test (required by the final UST regulation). However, because the cost of an interstitial integrity test is less than the cost of a tightness test, we do not assign any cost to this requirement. See Appendix D for more information.
3.4.1 Assessment of Compliance Costs under the Alternative Baseline Scenario

Exhibit 3-5 presents total annual compliance costs of the final UST regulation under the alternative baseline discussed in Section 3.3.1. Annual compliance costs are slightly less than those presented in Exhibit 3-2, reflecting the fact that the cumulative universe of affected systems in the alternative baseline is only marginally smaller than the universe in the original baseline. However, as Exhibit 3-5 shows, most cost reductions are within the rounding error of EPA’s estimates for annual compliance costs of the regulation.

<table>
<thead>
<tr>
<th>Option</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems b</td>
<td>$130</td>
<td>$280</td>
<td>$62</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs)</td>
<td>$2.0</td>
<td>$2.3</td>
<td>$2.0</td>
</tr>
<tr>
<td>Airport Hydrant Fuel Distribution Systems (AHFDSs)</td>
<td>$10</td>
<td>$0.017</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$11</td>
<td>$0.066</td>
<td>$0.0</td>
</tr>
<tr>
<td>Cost to owners/operators to read regulation</td>
<td>$5.4</td>
<td>$5.4</td>
<td>$5.4</td>
</tr>
<tr>
<td>Total</td>
<td>$160</td>
<td>$290</td>
<td>$70</td>
</tr>
</tbody>
</table>

* Cost estimates were derived using a seven percent discount rate.
* Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.
* Totals may not add exactly due to rounding.

3.5 Sensitivity Analyses

Certain aspects of EPA’s compliance cost estimates are characterized by significant uncertainty and are sufficiently large that deviations from chosen assumptions may have a measurable impact on cost estimates. In this section, the analysis evaluates the sensitivity of certain results to variation in key parameters. These sensitivity analyses include evaluations of:

- Total compliance costs to the final UST regulation under an alternative estimate of labor costs. Specifically, the analysis evaluates the effect of using higher labor rates, overhead costs, and fringe benefits factors, and lower average labor costs.

- Highest and lowest compliance cost scenarios for the distribution of technologies for overfill prevention equipment inspections, spill prevention equipment tests, and containment sumps tests. If facilities using these technologies are disproportionately located in states that do not already have similar regulations in place, costs could be higher than estimates presented in the earlier parts of this chapter. Similarly, if affected facilities are located in states that already have similar regulations in place, costs could be substantially lower than estimated.

3.5.1 Compliance Costs of the Final UST regulation Using Alternative Estimates of Labor Rates, Overhead Costs, and Fringe Benefits

For conventional UST facilities, EPA has selected labor, overhead, and fringe benefits rates that best reflect a “typical” UST facility. These labor rates are representative of skilled
labor costs at motor fuel retailers, which own and operate roughly 80 percent of the universe of UST systems. The use of these rates has a material impact on the estimated compliance cost of the final UST regulation because they drive the operation and maintenance costs associated with requirements for walkthrough inspections and operability tests.

To evaluate the impact of alternative labor rates on total compliance cost estimates, EPA considered two alternative scenarios. The first scenario is consistent with the OUST Information Collection Request 1360.12 and reflects labor rates reflective of economy-wide average wages, benefits, and overhead. This represents a high-end estimate because it also includes industries with highly skilled labor requirements and benefits (e.g., law firms). 68

The second scenario uses specific labor categories and costs representative of retail motor fuel establishments, but assumes that lower-level staff may complete walkthrough inspections.

Exhibit 3-6 presents the results for the three labor category scenarios. While one-time costs are not affected by the change in labor rates, operation and maintenance costs in the high-cost scenario are roughly $40 million higher than EPA’s primary estimate, totaling $200 million rather than $160 million (an increase of 25 percent). The majority of this increase is due to higher operation and maintenance costs related to walkthrough inspections and operability tests. In contrast, the low-end labor-rate cost estimate totals approximately $140 million, roughly $20 million (or 13 percent) lower than EPA’s central estimate. In addition to lower benefits and labor rates, this low-end estimate assumes that clerical-level personnel will perform walkthrough inspections. For AHFDSs and systems with FCTs, EPA uses constant industry average labor rates across all scenarios. 69

68 These labor categories were reported in U.S. Environmental Protection Agency. Information Collection Request Number 1360.12. February 2011. We used revised labor rates from those categories to reflect 2012 conditions. However, documentation in this analysis did not provide a reason for the use of economy-wide average labor rates, and our assessment of the universe suggests that retail-based rates are more appropriate.

69 This sensitivity analysis examines only the cost of obtaining labor with the skill sets needed to comply with the regulations. While it is possible that an owner/operator may opt to hire more highly-skilled workers to provide a range of skills beyond what is required for compliance, the broad availability of lower-priced labor and professional services in the market to achieve compliance render this unnecessary for compliance with the rule. Therefore, any acquisition of higher-skilled labor would represent a business decision that incorporates consideration of other factors not related to direct compliance, and is therefore not a cost imposed by the rule. While it may be beneficial for businesses to obtain workers with additional skills to improve their operations, EPA considers only the potential uncertainty of the cost of labor required to perform the required tasks under the rule. In other words, the alternate labor rates sensitivity analyses do not examine whether higher or lower labor rates include the acquisition or procurement of staff with different skill levels; rather, this sensitivity analysis assumes that staff skills are held constant at the level required for compliance with the rule, and that the uncertainty lies within the price at which these staff are available.
Exhibit 3-6

Compliance Cost Sensitivity Analysis: Alternative Labor Rates

<table>
<thead>
<tr>
<th>Description</th>
<th>Final UST Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Estimate ($ thousands)</td>
</tr>
<tr>
<td>Release Prevention</td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$11,000</td>
</tr>
<tr>
<td>Periodic testing/inspections of:</td>
<td></td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
<td>$63,000</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
<td></td>
</tr>
<tr>
<td>- Containment sumps</td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and secondary containment</td>
<td>$12,000</td>
</tr>
<tr>
<td>Elimination of flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>$2,500</td>
</tr>
<tr>
<td>Subtotal - Release Prevention</td>
<td>$89,000</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods (incl. groundwater and vapor monitoring)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Groundwater and vapor monitoring for release detection</td>
<td>$500</td>
</tr>
<tr>
<td>Add SIR/CHILD to regulation with performance criteria</td>
<td>$3</td>
</tr>
<tr>
<td>Remove release detection deferral for emergency generator tanks</td>
<td>$1,900</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$0</td>
</tr>
<tr>
<td>Subtotal - Release Detection</td>
<td>$22,000</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>$10,000</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>$11,000</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>$20</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$2,400</td>
</tr>
<tr>
<td>Requirements for demonstrating compatibility with fuels > E10 and > B20</td>
<td>< $0.1</td>
</tr>
<tr>
<td>Cost to owners/operators to read regulation</td>
<td>$2,400</td>
</tr>
<tr>
<td>Subtotal – Other</td>
<td>$26,000</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$120</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>$980</td>
</tr>
<tr>
<td>Subtotal - EPAct-related Provisions</td>
<td>$1,100</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$140,000</td>
</tr>
<tr>
<td>Additions for new units (beyond those included above)</td>
<td>$5</td>
</tr>
<tr>
<td>Total</td>
<td>$140,000</td>
</tr>
</tbody>
</table>
Exhibit 3-6

Compliance Cost Sensitivity Analysis: Alternative Labor Rates

a Cost estimates were derived using a seven percent discount rate.
e Walkthrough inspections under the Lower Estimate rely on clerical labor rates estimated using BLS Standard Occupational Code 53-6031, Service Station Attendants; under other scenarios, we use technical labor rates estimated using BLS Standard Occupational Code 53-1021, First-Line Supervisors/Managers of Helpers, Laborers, and Material Movers, Hand.
f Costs under the Selected Option consist of the cost of conducting a site assessment or well verification, weighted by the probability that one of these is necessary, as a one-time cost.
g The cost associated with this requirement would be the incremental cost difference between a tightness test (required in the baseline) and an interstitial integrity test (required by the final UST regulation). However, because the cost of an interstitial integrity test is less than the cost of a tightness test, we do not assign any cost to this requirement. See Appendix D for additional information.
h The labor rate used for these types of systems, where they are DoD-owned, is the latest ICR labor rate (similar to the upper estimate rate), except for a component of the Operator Training requirement, which uses the United States Air Force labor rate for pay grade E-6 over 3. For AHFDSs located at commercial airports, the labor rates used originate from BLS National Occupational Employment and Wages, May 2011 for NAICS 481100 (Scheduled Air Transportation) for Legal (23-1011), Managerial (11-0000), Technical (53-0000), and Clerical (43-000), except for a component of the Operator Training Requirement, which uses the hourly rate for a Fuel Distribution System Worker from December 2012, according to USAjobs.gov.

Totals may not add exactly due to rounding.

As a simplifying assumption, EPA assumes that UST systems enter and exit the universe at a constant annual rate, such that the total number of UST systems in the universe does not change. We assume that operation and maintenance costs associated with these systems offset each other, as the number of entries equals the number of exits; however, new systems entering the universe will still incur incremental capital costs associated with certain requirements (e.g., a new emergency generator tank would need to install a release detection method). For modeling purposes, we account for these new units in the “Additions for new units.” The costs shown reflect the capital costs associated with new units for all but the following requirements: elimination of flow restrictors for new tanks, requirement of secondary containment for new tanks, and requirement of under-dispenser containment for new dispenser systems.
3.5.2 Sensitivity Analysis of Distribution of Technologies for Overfill Prevention Equipment Inspections, Spill Prevention Equipment Testing, and Containment Sump Testing

Because data on the distribution of UST technologies (including release detection and prevention technologies) is available only at a national level, EPA is not able to identify how facilities and systems with certain technologies are distributed across different states. As a result, the cost analysis assumes that technologies are distributed uniformly across all states and territories. For systems that require overfill prevention equipment inspections, spill prevention equipment tests, and containment sump tests, actual compliance costs may differ substantially from EPA’s estimates if this assumption does not hold. For example, if facilities using these technologies are disproportionately located in states that do not already have similar inspection/testing requirements in place in the baseline, compliance costs could be higher than the estimates based on a uniform distribution presented in Exhibit 3-2 and Exhibit 3-3. Similarly, if affected facilities are concentrated in states that already have similar regulations in place in the baseline, then actual compliance costs could be substantially lower than estimates based on a uniform distribution.

To investigate the impact of the assumption of uniform distribution of technologies, EPA performed a bounding analysis of the two extreme cases of distribution. Exhibit 3-7 reports the possible range of values for three scenarios: one where compliance cost is the lowest (i.e., facilities are located in states that already satisfy the final UST regulation), the actual model scenario based on uniform distribution of technologies, and the scenario in which compliance costs are highest. Variation between the minimum and maximum cost scenarios totals approximately $30 million, or approximately 20 percent of the total compliance costs estimated for the regulation. EPA’s primary estimate of these costs is near the mid-point of the range of estimates.

<table>
<thead>
<tr>
<th>Regulatory change</th>
<th>Lower ($ millions)</th>
<th>Primary ($ millions)</th>
<th>Upper ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>$29</td>
<td>$29</td>
<td>$29</td>
</tr>
<tr>
<td>Spill prevention equipment testing</td>
<td>$17</td>
<td>$19</td>
<td>$25</td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>$0</td>
<td>$17</td>
<td>$22</td>
</tr>
<tr>
<td>Total</td>
<td>$45</td>
<td>$64</td>
<td>$75</td>
</tr>
</tbody>
</table>

Exhibit 3-7

Discounted Highest And Lowest Compliance Cost Scenarios For Technologies For Overfill Prevention Equipment Inspections, Spill Prevention Equipment Tests, And Containment Sump Tests

<table>
<thead>
<tr>
<th>Regulatory change</th>
<th>Lower ($ millions)</th>
<th>Primary ($ millions)</th>
<th>Upper ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overfill prevention equipment inspections</td>
<td>$29</td>
<td>$29</td>
<td>$29</td>
</tr>
<tr>
<td>Spill prevention equipment testing</td>
<td>$17</td>
<td>$19</td>
<td>$25</td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>$0</td>
<td>$17</td>
<td>$22</td>
</tr>
<tr>
<td>Total</td>
<td>$45</td>
<td>$64</td>
<td>$75</td>
</tr>
</tbody>
</table>

*Cost estimates were derived using a seven percent discount rate.

*Because the entire universe of systems will be required to perform overfill prevention equipment inspections, EPA does not expect any uncertainty related to the locations of affected systems.

*Totals may not sum due to rounding.

3.5.3 Summary of Sensitivity Findings

EPA’s sensitivity findings suggest that possible variation in labor rates is likely to produce the most significant impact on the estimated cost of the final UST regulation: plausible
selections for labor rates may reduce selected option costs by approximately $20 million (13 percent) or increase them by $40 million (25 percent). Separately, EPA has identified potential variation of approximately 20 percent related to the distribution of technologies involved in overfill prevention equipment inspections, containment sump testing, and spill prevention equipment testing. We note that each of these sensitivity analyses reflects variation compared with the primary estimates of costs presented throughout this chapter.

The estimates presented in the body of this chapter represent reasonable, conservative central tendencies for the costs of the final UST regulation.

3.6 State Government Administrative Compliance Costs

In addition to compliance costs related to the operation of UST systems, the final UST regulation will also impose new UST program administration requirements on state government agencies. Specifically, state government agencies will incur costs associated with new notification requirements, and costs associated with obtaining and reading the regulation. This section reviews state government costs associated with these activities.

Costs associated with obtaining and reading the regulation assume that 10 people will each take six hours to read the regulation in each state (using the legal labor rate for states of $47 per hour from OUST’s ICR 1360.08 inflated to 2012 dollars). In addition, based on the ICR, we assume that the reporting and recordkeeping burden for states to apply for State Program Approval (SPA) is approximately 28.5 hours (using the clerical labor rate for states of $26 per hour inflated to 2012 dollars). The total compliance cost in nominal terms is therefore approximately $219,000; the annualized compliance cost assuming the 20-year regulatory time horizon is approximately $21,000.71

State agencies that do not currently have a requirement for notification of changes in UST ownership or for at least an annual UST registration must also process a certain number of notices due to annual turnover in facility ownership. State government compliance costs for this activity assume a typical nominal recordkeeping cost of $32 per facility, based on OUST’s ICR 1360.08 inflated to 2012 dollars; compliance costs assume the use of existing recordkeeping systems. Eight states and territories do not currently have recordkeeping requirements consistent with the final UST regulation.72 These eight states and territories will incur approximately $100,000 per year, due to an annual turnover rate of approximately 10 percent in UST facility ownership.

Lastly, each state agency will incur costs to process the one-time notifications of existence for AHFDSs and FCTs. State government compliance costs for this activity assume a

70 In some cases, UST systems are directly owned or operated by local, state, and federal government entities. These costs are subsumed in the estimates of compliance costs presented earlier in this chapter.

71 Consistent with other parts of this regulatory impact analysis, we amortize one-time or capital costs over the regulatory time horizon of 20 years. If these costs are phased in over a three-year period, annual costs decrease to approximately $19,000.

72 These states are Arizona, Georgia, Idaho, North Carolina, North Dakota, Nevada, and South Carolina. The Virgin Islands will also incur these costs.
typical nominal recordkeeping cost of $32 per facility, based on OUST’s ICR 1360.08 inflated to 2012 dollars; compliance costs assume the use of existing recordkeeping systems. Based on the estimated universe of AHFDSs and FCTs, the total state processing cost in nominal terms is approximately $14,000; the annualized processing cost assuming the 20-year regulatory time horizon is approximately $1,300.

Total annualized state government administrative compliance costs sum to $120,000 per year. Note that under alternative baseline assumptions, these costs would decline by a very small percentage (less than one percent) as the universe of affected systems declines.

3.7 Summary – Total Annual Compliance Costs

In total, EPA estimates that the Selected Option for the final UST regulation will produce incremental costs of approximately $160 million per year compared to the current regulatory baseline. Exhibit 3-8 summarizes these costs per category. Regardless of the option, conventional UST systems will incur over 80 percent of these costs. Costs to AHFDSs and FCTs comprise approximately 14 percent and 0.03 percent of total costs under the Selected Option and Alternative 1, respectively.

<table>
<thead>
<tr>
<th>Category</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems</td>
<td>$130</td>
<td>$280</td>
<td>$63</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs)</td>
<td>$2.0</td>
<td>$2.3</td>
<td>$2.0</td>
</tr>
<tr>
<td>Airport Hydrant Fuels Distribution Systems (AHFDSs)</td>
<td>$10</td>
<td>$0.017</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$11</td>
<td>$0.066</td>
<td>$0.0</td>
</tr>
<tr>
<td>Cost to Owners/Operators to Read Regulation</td>
<td>$5.5</td>
<td>$5.5</td>
<td>$5.5</td>
</tr>
<tr>
<td>State Government Administrative Costs</td>
<td>$0.12</td>
<td>$0.12</td>
<td>$0.12</td>
</tr>
<tr>
<td>Total Annual Compliance Costs</td>
<td>$160</td>
<td>$290</td>
<td>$70</td>
</tr>
</tbody>
</table>

a Cost estimates were derived using a seven percent discount rate.
b Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.
c Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.
d The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.
e Totals may not add up due to rounding.

Under the alternative baseline universe assumption described in Section 3.3.1, EPA estimates that the Selected Option for the final UST regulation will produce incremental compliance costs of approximately $155 million per year compared to $156 million in annual costs in the primary analysis; the results of both the primary and alternative scenario round to $160 million in total annual social costs. Under Alternative 1, the alternative baseline universe assumption yields an estimate of approximately $286 million per year in incremental compliance costs, compared to $287 million in the primary analysis; the results in both the primary and
alternative scenarios round to $290 million in total annual social costs. Similarly, under Alternative 2, total annual social costs are approximately $70 million in both the alternative baseline scenario and the primary analysis.

Limitations of Compliance Cost Analysis

While EPA has taken steps to present a sound analysis of compliance costs, it recognizes that certain assumptions and limitations are inherent to this assessment.

Tank configuration: This analysis assumes that a particular configuration of equipment represents the average UST system. This assumption affects the compliance costs of the final UST regulation because systems with different configurations (e.g., more sumps per tank) could have different costs. Mischaracterizing this configuration may under- or overstate total costs as well as system-level costs.

System-level compliance costs: As discussed in Section 3.3, system-level compliance costs are based on public information, input from UST industry professionals, and EPA professional judgment, all of which are assumed to provide the most accurate available data at the time of this regulatory action. EPA recognizes that these data sometimes reflect only a small number of sources, and are therefore characterized by uncertainty.

As a result of these uncertainties, the precise cost of the final UST regulation may differ from the estimate generated by EPA’s analysis. The above sensitivity analyses, though not strictly additive, suggest that the outside range of cost uncertainty is less than 35 percent from EPA’s central estimates.73 Moreover, because EPA’s estimate is framed by a number of conservative assumptions (outlined in section 3.3), it is unlikely that this analysis understates the costs of the final UST regulation significantly.

73 The alternative labor rates sensitivity analysis in Exhibit 3-6 indicates that compliance costs may decrease by up to $20 million or increase by up to $40 million, depending on the set of labor rates specified. This reflects a range spanning from a total decrease of up to 13 percent ($20 million / $160 million) to a total increase of up to 25 percent ($40 million / $160 million). In addition, the technology distribution sensitivity analysis in Exhibit 3-7 indicates that compliance costs may be overstated by up to $19 million, or understated by up to $11 million. This reflects a range spanning from a total decrease of up to 12 percent ($19 million / $160 million) to a total increase of up to seven percent ($11 million / $160 million). Combining these ranges yields a total outside range of cost uncertainty of less than 35 percent around EPA’s central estimates: a potential total decrease of 25 percent (13 percent + 12 percent) to a potential total increase of 32 percent (25 percent + seven percent).
Chapter 4. Assessment of Cost Savings and Benefits

4.1 Introduction

The beneficial impacts of a regulatory change are typically measured in one of two ways: as “social benefits” or as avoided costs. Social benefits usually take the form of reduced environmental damage, reduced human health risk, and improvements in the value of environmental amenities. Benefits also include avoided costs associated with reduced need for cleanup and avoided costs of “averting behavior” (e.g., obtaining replacement water supplies). Ideally, social benefits reflect accurate measures of the total “willingness to pay” (WTP) of consumers to obtain improvements in environmental quality. In other cases, avoided costs (e.g., medical care) can be used to inform proxy estimates of WTP when direct estimates of WTP are unavailable. In the context of this regulation, EPA considers the avoided costs associated with reduced need for remediation (cleanup) of releases because avoided costs represent a real economic cost savings, and because reliable WTP estimates for the value of an avoided cleanup are not available. While avoided costs, or cost savings, could be subtracted from total costs and reported in Chapter 3, they do not typically accrue to the same parties that incur compliance costs. Therefore, for clarity of presentation, we examine them with other benefits and beneficial impacts in this chapter.

This chapter describes the approaches used to evaluate avoided remediation costs and other benefits. It first outlines several different methods attempted for measuring benefits and cost savings in the context of the proposed regulation, and describes the final selected method (expert consultation) in detail. Next, it provides a description of monetized cost savings, including avoided cleanup costs, avoided vapor damage cleanup estimates, and avoided product loss associated with anticipated reductions in releases and reductions in severity of releases. The chapter then presents a screening-level analysis of the quantity of groundwater potentially protected by the regulation. Finally, we provide a qualitative discussion of ecological, human health, and other social benefits.

4.2 Investigation of Empirical Methods for Measuring Cost Savings

The cost savings of the final UST regulation result from the reduced incidence and size of releases that would occur due to the new requirements. EPA examined a number of ways to use quantitative, empirical data on release rates, inspection effectiveness, and program performance to directly estimate the changes in releases that could be expected under the final UST regulation. This section describes the different data sources and methods considered, and the limitations of each.

4.2.1 Engineering Estimates and Literature

One approach to estimating the benefits of this regulation would be to develop an engineering model of the release rates associated with equipment and practices before and after the implementation of the regulation requirements. However, this approach would address only a small number of the final UST regulation components because most of the requirements are not focused on equipment modifications, but instead call for inspections, testing, and maintenance.
These are requirements for changes in human behavior, and are not easily measured using equipment testing.

This suggests that EPA could best measure benefits empirically by examining studies of how release rates change in response to more frequent inspection and testing. Therefore, in the context of the proposed regulation, EPA conducted a targeted review of engineering literature and studies on the effectiveness of testing and inspection programs. While we were unable to identify any studies directly applicable to the proposed UST regulation, we did identify several studies that examined the effects of better inspection and testing rates more generally. We summarize three key studies below.

- **California study of impact of secondary containment on UST system releases (2002):** This study examined whether use of secondary containment throughout UST systems resulted in differences in release rates. The study’s conclusions were hampered by a limited sample size, and authors note that releases from other parts of the systems may have affected results. The study did not find a significant relationship between secondary containment and release rates at sites, but did find that facility-level factors (e.g., improper installations) made it more likely than expected that all systems at a facility would either have or lack releases. While the study cannot be used to directly estimate the benefits associated with the proposed or final UST regulation, its conclusions suggest that regulations focusing on effective facility-level inspections may be well-targeted.

- **National Research Council study of effectiveness of state vehicle emissions inspection and maintenance programs (2001):** This study reviewed four state programs and one city program aimed at reducing motor vehicle emissions by requiring inspections and maintenance. While the study did not address UST systems, the structure of vehicle inspection programs is similar to the UST regulation in that both require owners/operators to undertake routine inspections and perform maintenance as needed. The study found that the programs had a measurable impact on ambient air quality, but did not identify whether the differences were statistically significant. The results do not provide a quantitative basis for estimating the impacts of the final UST regulation, but the study suggests that mandatory inspection programs can reduce emissions.

76 The study also concluded that the programs had more modest impacts than those predicted by air quality modeling, but this finding is of limited relevance to the current regulation, since no ambient conditions modeling has been conducted.
• **Environmental Results Program (ERP) data:** Data from several environmental results programs (ERPs) show a statistically significant improvement in verified compliance as a result of a combination of self-certification, technical assistance, and inspections. While these programs do not isolate the impact of specific regulatory changes, the results are consistent with other findings that programs that rely in part on self-implemented inspections and reporting can reduce noncompliance.

In general, the literature does not address UST inspection programs directly, and does not provide quantitative results that can be used to estimate the impacts of the final UST regulation. However, the literature does provide data that generally indicate that self-implementing inspection programs (with external validation) do have an impact on equipment maintenance, and generally lead to a reduction in environmental impacts. This suggests that some positive impact should be expected from the final UST regulation.

4.2.2 Statistical Analysis of State Release Data

A different approach to a robust analysis of benefits would be to develop a database of state UST regulations and reported release rates before and after the effective dates of regulations similar to the final UST regulation. With good quality data, it is possible to combine these regulations and reported release rates, and isolate the marginal impacts of various components of the final UST regulation. To collect detailed data at the facility level, however, would require visiting state UST programs individually and collecting detailed site inspection data from state case files and archives. Not only would such an effort be prohibitive in terms of available resources, but our current knowledge of the state programs suggests that variable inspection practices and changes in record-keeping practices over time may limit the ability of the exercise to provide robust results.

In the absence of site-specific data, however, we collected and examined data on state regulatory programs and reported releases from available aggregate sources at the time of the proposed regulation. Specifically, we identified and evaluated data from the following sources:

78 EPA conducted an updated targeted literature review in October and November 2013 to determine whether additional studies examining the impacts of testing and inspection programs on environmental outcomes had been published. The conclusions of these additional studies are consistent with those described in this section. Additional studies reviewed include: Yin, H. “The environmental and economic impacts of environmental regulations: The case of underground storage tank regulations.” January 1, 2006; and Musgrave, M. “The Illinois Underground Storage Tank Fund: Tanks for Nothing,” *Politics & Policy* 41(5): 765-787. October 2013. The additional studies reviewed did not directly comment on specific outcomes, in terms of environmental impacts, from UST inspection programs, but did discuss the effects of risk-based insurance and financial assurance programs, which require a degree of regular inspection and maintenance, on avoiding leaks from USTs.
• **Leak Autopsy Reports:** In 2004 and 2005, EPA released two draft “leak autopsy” studies (“the draft 23-state Autopsy Report” and a separate study examining the State of Florida). These studies examined the sources and extent of releases that occurred in systems that were compliant with the 1998 standards, and identifies the extent to which different baseline releases are associated with failures of equipment in different parts of the UST system (e.g., piping, overfill protection equipment).\(^79\)

• **State Regulatory and Report Data:** State programs are required to report aggregated information to EPA on the number of active UST systems, the number of inspections, and the number of confirmed releases reported in each six-month period.\(^80\) In addition, EPA obtained information about state regulatory programs and the effective dates for state requirements that are similar to the requirements of the proposed regulation.

Using the available data, EPA examined several different statistical approaches, focusing on regression analysis, to compile and examine a set of state-level data that included the number of UST systems in each state in a given year, the number of releases from UST systems in each year, the number of UST inspections conducted in each year, and the presence or absence of regulations designed to prevent releases.

Before conducting regression analysis on the data set of state USTs and releases, EPA first adjusted the data to account for a number of data quality concerns. Of particular concern was the relationship between states with low-frequency inspections and states reporting small numbers of confirmed releases. To ensure that the reported UST releases accurately reflected most or all releases taking place, EPA developed an index that scored each state based on the frequency of inspections. States that reported inspection rates less frequent than every five years, and/or inconsistent inspection frequencies over time, were removed from the sample, based on the assumption that release data from those states may be less reliable due to less frequent third party verification (i.e., state inspection) of system operations. In other words, we assume that owners/operators may be less inclined to report releases or properly maintain their equipment if they are in a state where inspections occur infrequently or inconsistently.

In conducting the analysis, however, EPA identified several fundamental problems with the available data, further limiting the value of a regression analysis approach. These include significant data availability and reliability issues related to the limited number of observations and programmatic changes among states that prevent the isolation of regulation-related impacts. Specifically:

\(^80\) Data can be accessed at: http://www.epa.gov/oust/cat/camar.chv.htm.
- **Consistent, accurate release data are not available.** It is likely that measurement error exists in the recording of confirmed releases across states (the dependent variable) and that it is related in some systematic way to the regulatory structure of the state or other explanatory variables (as opposed to random reporting error) in the analysis. In addition, state inspections vary in timing and focus across states; this, in turn, affects the consistency of third-party verified compliance and release information. While EPA attempted to account for this by selecting only states with a high frequency of inspections for inclusion in the analysis, the interaction between inspection frequency and degree and effectiveness of regulation creates sample selection problems (i.e., states with higher release rates due to limited regulation may also be states that do not conduct frequent inspections and therefore have less reliable data). Therefore, normal regression properties do not hold, and results may be biased in ways that do not allow for a reliable interpretation.

- **Many regulations consistent with the proposed UST regulation are currently in place in only a small number of states.** EPA addressed limited variation in the presence of regulations by dropping several regulatory variables from the analysis, but the resulting lack of variation and the small number of observations make it likely that regulatory indicators will proxy for other relevant characteristics of that state.

- **Study design is limited by available data.** Ideally, an analysis of the effectiveness of UST leak prevention regulations would employ observations from a large number of states over a time period that includes years before and after regulations were in place. Such “panel” data would allow for identification of impacts temporally and spatially. Panel data would also allow for fixed-effects estimation, which controls for any unobserved characteristics of states that might affect release rates (such as soil pH or climate), independent of any effect of regulation. Available data superficially appear to be panel data, since they provide information on the number or rate of releases from different states in multiple time periods, along with information on the presence or absence of UST regulations by state. However, for many regulations it is unclear both when the regulation was first promulgated and when the effects of the regulation would be expected to be fully realized (e.g., through inspections).

As discussed in more detail in Appendix F, quantitative analysis of annual UST releases by state did not reveal a consistent measure of the potential impact of release prevention regulations. The data limitations noted above prevented the use of the preferred method of fixed effects estimation using panel data. In the absence of fixed-effects estimation, the analysis cannot

81 As noted above, the only reliable approach to identify the relationship between inspection frequency, compliance, and number of releases would require a large-scale data collection effort. In absence of this, we use inspection frequency as an indicator of reliable data.

82 For example, several regressions found an apparent positive, statistically significant relationship between secondary containment requirements and the number of releases per year. However, empirical data from Florida indicate that secondary containment contributes to release reductions of as much as 50 percent.
reliably draw conclusions about the impacts of regulations on releases, independent of any unmeasured characteristics of states that could be affecting the number of releases in each state. In other words, in addition to data quality issues discussed above, the small number of states with specific UST release prevention regulations prevents identification of robust relationships between individual regulations and the number of releases per year.

However, through cross-sectional analysis, EPA was able to estimate that release rates in California and Florida – two states with mature UST regulation regimes – were about 55-65 percent less than one would expect based on release rates at other states during the time period examined. This difference could serve as an upper bound for the potential of leak prevention regulations to reduce the rate of UST releases.83

4.3 Final Methodology for Assessment of Positive Impacts: Expert Consultation

In the absence of applicable engineering models and limited empirical state data, we resorted to a consultation with four experts with experience in regulation of USTs and implementation of state inspection programs to estimate the individual effects of each regulatory change. The remainder of this chapter describes in detail the final methodology used to identify reductions in releases associated with the final UST regulation, and the calculation of cost savings associated with those avoided releases.

For the proposed regulation, to ensure that the assessment of regulatory effects relied on broad expertise in regulatory implementation, EPA developed a pool of technical experts with national reputations for leadership in implementation of underground storage tank regulatory programs, or with extensive expertise in assessing spill causation at UST sites. From this pool, several experts were interviewed and five experts were identified. Each of these identified experts has over 20 years of experience in the regulation, assessment, and/or remediation of underground storage tanks, including direction of state programs and implementation of regulations similar to some aspects of the proposed regulation. One of the five experts did not provide input consistent with EPA’s analytical methods, and as a result his quantitative estimates were not usable for the evaluation of the proposed regulation.84 As a result, for the final UST regulation, EPA consulted the remaining four experts to evaluate avoided costs.

83 Exhibit 6 in Appendix F shows the degree to which the actual number of releases in Florida and California in 2009, 2005, and from 2002 to 2006 is less than the number of releases that would be expected based on the release rates observed at other states. In 2005 and 2009, the years in which the dummy variable for California was statistically significant from zero, California had between 56 and 63 percent fewer releases than would be expected based on the regression analysis. In 2002-2006, when the period in which the dummy variable for Florida was statistically significant from zero, Florida had between 60 and 65 percent fewer releases than would be expected. EPA strongly cautions against generalizing these results beyond the states included in the analysis. However, these numbers do suggest an upper bound of potential avoided leaks associated with the operation of the mature, relatively stringent programs in both California and Florida.

84 This expert’s baseline estimate of releases was not consistent with EPA’s, and he was not able to provide information on how to extrapolate to EPA’s universe. In addition, his responses included apparent internal inconsistencies that could not be reconciled without collecting more information about baseline releases. The expert also provided clear opinions about the optimal regulatory structure and suggested that his answers were not reliable unless the regulatory language was amended to include specific technical requirements. This created additional uncertainty in the interpretation of his results.
EPA provided an identical set of written questions separately to each expert and conducted individual follow-up telephone interviews to clarify and verify responses. Appendix G provides a detailed explanation of the process EPA followed in identifying experts, more detailed information about the qualifications of the experts, the questions distributed to experts, and an explanation of the factors EPA considered when including and excluding expert feedback. Appendix H provides the experts’ responses to EPA’s questions.

Avoided Costs as a Measure of Beneficial Impacts

Avoided remediation costs represent the key beneficial impacts associated with the regulations. Avoided remediation costs represent cost savings that accrue to owners, operators and public entities charged with remediating releases at regulated facilities.85 While avoided remediation costs are not a direct measure of total willingness to pay for environmental improvements, and are therefore not equivalent to social benefits, they represent real cost savings due to reduced demand for baseline remediation.86

Calculation of Annual Positive Impacts

The analysis presents the positive effects of the final UST regulation as a constant, recurring, annual value for analytical convenience. The timing of the positive impacts of the regulation is uncertain for several reasons:

- As shown in Exhibit 1-2 in Chapter 1, the regulatory changes do not take effect simultaneously.

- Irrespective of when they take effect, the changes may require varying lengths of time to achieve full effect.

- EPA relies on its reported confirmed releases to calculate the reductions due to the final UST regulation. Confirmed releases recorded in a particular evaluation year vary significantly in severity and length of time undetected, which introduces variability in the extent to which costs are avoided each year.

- The final UST regulation includes activities such as: frequent inspections and equipment testing to prevent, identify and address releases; near-term shifts in technology; and long-term changes in technology. Each class of changes necessarily focuses on release avoidance and mitigation over different time horizons.

In the absence of detailed data characterizing releases by age and type, EPA assumes that implementation of the final UST regulation will have a uniform annual impact, with beneficial impacts realized on the last day of the year in which costs are incurred (i.e., a one-year delay). For equipment that is phased in over a period of time, we assume that positive impacts accrue at

85 Chapter 5 provides a more detailed discussion on the potential positive effect of the final UST regulation on state financial assurance funds.

86 Economists commonly define social benefits as the sum of individuals’ willingness to pay to obtain a good or service or avoid an unwanted outcome. Avoided remediation costs may not equal willingness to pay.
the same rate as installation and adjust those impacts so that they are constant over time, maintaining the one-year delay.

4.3.1 Avoided Remediation Costs

This section explains how EPA arrives at its estimates of avoided remediation costs. EPA first explains how it calculates avoided remediation costs based on the source of a release. This is followed by a discussion of the methods used to calculate the number of releases avoided and the number of releases for which severity is mitigated. Finally, the two elements are combined to estimate the total avoided remediation cost due to the final UST regulation.

4.3.2 Calculating Avoided Remediation Costs

This analysis values avoided releases according to their cost of remediation. EPA developed average remediation costs for the four general release size categories reported in the draft 23-state Autopsy Report. The four categories generally conform with classification conventions used by state LUST offices, and the autopsy reports presented leak frequency data for different UST system components for each of the categories. The four categories include:

- Local site extent with soil contamination;
- Local site extent with water contamination;
- Large site extent with soil contamination; and
- Large site extent with water contamination.

87 Although remediation costs at a specific site may vary widely across years (if they extend past a year), available data do not support characterization of a typical cost stream that could be applied to each site. For example, some sites may require immediate and expensive response actions, while other sites may require multi-year remediation with a long initial planning phase. We do not have any national or state-level data that could be used to characterize an “average” cost stream: a review of available state-by-state and national level data under Contract Number EP-W-07-011, Work Assignment 3-42 indicated that site-by-site data do not contain payment stream information, and furthermore, due to a multitude of factors influencing time-to-closure or remediation duration at a given site (e.g., groundwater contamination, MTBE contamination, eligibility for state funding, state priority ranking for site, etc.), an “average” cost stream cannot be effectively generalized. As a result, this analysis calculates an average annual cost based on total site remediation cost. Thus, benefits associated with avoided remediation are expressed in annual terms. See Appendix I for detailed explanation of the methodology used to develop remediation cost estimates.

88 We refer to avoided cleanup costs and avoided remediation costs interchangeably throughout this document.

89 Water contamination refers to both groundwater and surface water contamination, though groundwater contamination is more common than surface water contamination.

90 While no specific definition exists for a large site, the LUST Autopsy survey instruments used by the states generally define large sites as those with contamination that extends beyond the extent of construction excavation. In addition, EPA classified sites with off-site contamination as large sites.
EPA obtained remediation costs aligned with each of these size categories from a survey of state LUST offices and calculated average expected remediation costs for each of the release categories outlined in the draft 23-state Autopsy Report (Exhibit 4-1).\(^91\) Remediation costs associated with groundwater remediation are generally higher than costs for soil remediation. Administrative, response, and oversight costs were provided by New Hampshire, and remediation costs reflect an average of the costs provided by New Hampshire and Utah.\(^{92,93}\)

Exhibit 4-1

Remediation Cost Category	Site Size And Contamination Type			
	Small extent, soil only	Large extent, soil only	Small extent, Groundwater Contamination	Large extent, Groundwater Contamination
Typical administrative cost (public notification, fines, fees, etc)\(^c\)	$0	$0	$500	$3,700
Typical response cost (e.g., alerting and sending personnel, assessments and planning, immediate actions to stop the release)\(^c\)	$10,000	$10,000	$10,000	$10,000
Typical remediation cost\(^d\)	$14,800	$103,000	$98,500	$409,500
Typical oversight cost (e.g., monitoring)\(^c\)	$500	$1,000	$1,500	$5,000
Total typical cost per LUST category	**$25,300**	**$114,000**	**$110,500**	**$428,200**

Notes:

\(^a\) Costs shown are one-time costs associated with a site remediation and have been rounded to the nearest hundred dollars.

\(^b\) Costs are presented here in 2008 dollars. EPA inflates these costs to 2012 dollars for use in the analysis.

\(^c\) The costs presented for administrative, response, and oversight costs are based on New Hampshire data only.

\(^d\) The remediation costs shown represent the average costs from data provided by New Hampshire and Utah. Although New Mexico also reported costs, we excluded it for two reasons. First, groundwater cleanup cost estimates from New Mexico are much higher than those for other states ($2.5 million compared with $0.6 million or less for other states) but the state did not provide data on the number or type of sites that resulted in this high estimate of costs. Second, New Mexico has a relatively small number of UST systems (3,773 UST systems as of fiscal year 2013). As a result, New Mexico’s costs may be atypical and could skew results to overstate avoided costs.

Sources:

1. New Hampshire Department of Environmental Services, Underground Storage Tank Program, November 18, 2008.

\(^92\) To develop an avoided cleanup cost estimate, EPA collected data from Montana, New Hampshire, New Mexico, South Carolina, Utah, and Virginia, all of which use state financial assurance funds to pay for LUST remediation. Each state UST program office received a questionnaire requesting data on typical cleanup costs broken out by the four general release types; New Hampshire, New Mexico, South Carolina, Utah and Virginia provided responses. New Hampshire provided the most comprehensive set of information, including cleanup costs by category (i.e., administrative, response, remediation, and oversight), while New Mexico and Utah could only provide estimates of remediation costs. Virginia and South Carolina were unable to provide the detail required for this analysis, as neither state was able to break out costs by the extent of release (i.e., large or small).

\(^93\) New Mexico data are excluded from the calculation for two reasons. First, large-extent groundwater cleanup cost estimates from New Mexico are much higher than those for other states ($2.5 million compared with $0.6 million or less for other states) but the state did not provide data on the number or type of sites that resulted in this high estimate of costs. Second, New Mexico has a relatively small number of UST systems (3,773 UST systems as of fiscal year 2013). As a result, we believe that New Mexico may be atypical and could skew results to overstate avoided costs. We therefore do not include its results among the average avoided costs of remediation.
EPA then used the average cost data from states to develop weighted average costs associated with remediation of releases from different portions of the UST system, based on release frequency data for each source. Exhibit 4-2 presents, for each of the release sources identified in the draft 23-state Autopsy Report, the probability of a release by LUST category. Using the cost data from Exhibit 4-1, inflated to 2012 dollars, EPA estimates a weighted average avoided cost per release size by multiplying the cost per site by the probability of each release type. These are summed across the categories to obtain the weighted average cost by release source. The following section describes how this information is used to generate an estimate of incremental avoided costs.

94 U.S. Environmental Protection Agency, Office of Underground Storage Tanks. “Evaluation of Releases from New and Upgraded Underground Storage Tank Systems (peer review draft).” August 2004. Release probabilities were calculated using data for 580 spill events collected from 23 states during the development of EPA’s Autopsy report effort. Specifically, Figures 3, 16, 17, and 18 in the Autopsy Report provide data on the percent of releases by source, by extent, and by media affected for each extent (local or large). By multiplying the percent of total releases from a given source (e.g., piping), the percent of those releases affecting a given media type (e.g., soil), and the percent of releases affecting that medium that are of a given extent (e.g., local soil), EPA is able to generate the probability distributions in Exhibit 4-2. Note that these sources include California and Florida releases, and may therefore be skewed slightly if those more stringent and established programs have smaller releases. We are unable to adjust the data to correct for this, but its impact, if any, would likely be to reduce the average size and cost of baseline releases slightly, leading to an understatement of regulation-related cost savings.

95 For more information on this approach and the draft 23-state Autopsy report, see: Industrial Economics, Inc. "Methodology to Estimate Avoided Costs Associated with a Typical UST Leak.” October 27, 2008.

96 If we calculate a weighted-average cost per release where sources are weighted proportionally by their contribution to total releases, we obtain an overall average cost per release of approximately $152,000 in 2012 dollars (See Appendix I for details). This is generally consistent with ASTSWMO’s annual average cost estimate for site remediation of roughly $124,000 in 2012. ASTSWMO’s average site remediation value may understimate typical remediation costs because co-pays, deductibles, and other costs not paid by state funds are excluded. Additionally, because the ASTSWMO estimates depend on expenditures in a given year, these estimates tend to vary substantially over time. See: Association of State and Territorial Solid Waste Management Officials. State Fund Survey Results 2012.
4.4 Establishing Avoided Releases

To estimate the number of baseline releases that would be either avoided completely or reduced in severity as a result of the final UST regulation, experts responded to a common set of questions about potential impacts of the regulatory changes under consideration and participated in subsequent individual discussions of specific areas of uncertainty.

Each expert reviewed the requirements under consideration for the final UST regulation and estimated how they would affect the following dimensions of releases:97

1. Changes in total frequency (number) of annual confirmed releases;
2. Changes in the number of remaining releases that reach groundwater; and/or
3. Changes in the average quantity released among remaining releases.

Experts had the option of expressing reductions in release severity in terms of the percent reaching groundwater or volume (quantity) of product, depending on how they typically collected and reviewed release data. In addition, experts were given the option of expressing these changes either: 1) as a total national estimate that accounted for variation in existing regulation and technology among states and facilities, or 2) as a change applied to a specific

97 EPA did not provide experts with information about the universe of facilities or costs associated with remediation; experts did, however, have access to information about the number of confirmed releases in 2008, 2011, and 2012 and their distribution across different parts of the UST system (e.g., tanks, pipes, and STP areas). EPA uses confirmed releases as the baseline estimate of total releases because high quality data on total releases are not available, and release confirmation triggers the remediation costs that would be avoided.
Experts also estimated the sensitivity of results to changes in the frequency of regulatory requirements (e.g., the impact of inspections occurring at different intervals, consistent with different regulatory options) and noted synergies or dependencies between requirements, such as:

- Dependency between equipment upgrades and walkthrough inspections: Experts consistently noted that simply replacing equipment with newer technologies (e.g., requiring that new systems have secondary containment) is insufficient for preventing all releases. Regular visual inspections are necessary to identify potential problems and ensure timely maintenance when a release has not yet occurred.

- Synergy between equipment maintenance and walkthrough inspections: Experts noted that the combination of operability tests and visual (walkthrough) inspections would result in more avoided releases by identifying equipment problems quickly and ensuring effective maintenance.

- Dependency between operator training and walkthrough inspections: Experts noted that training alone is not adequate to ensure effective site maintenance, and walkthrough inspection requirements are not effective without trained staff.

Experts provided separate estimates of impacts for each regulatory requirement. EPA then used these requirement-specific estimates to calculate total avoided costs for the final UST regulation. It is important to note, however, that when considering relationships among regulatory requirements, experts differed in how they isolated and/or “allocated” impacts across specific requirements because the allocation of impacts across different regulatory requirements could potentially be interpreted in several ways (e.g., one expert might decide that inspections drove all impacts, while another might decide that testing was the primary factor). EPA therefore avoids emphasis on the requirement-specific estimates provided by each expert, and considers their results in total.

98 Experts were also asked to provide an estimate of the “total cumulative impact” for the final UST regulation in aggregate. This general estimate was used only to verify that the experts’ logic was internally consistent, and to identify areas of overlap or synergy among the regulatory requirements. Because of adjustments required to align expert responses with the combination of regulatory requirements ultimately selected for the final UST regulation (e.g., using experts’ sensitivity responses for tanks on tribal lands rather than their responses for tanks overall), we are unable to assess the magnitude of overlap or synergy. However, the fact that the average of the experts’ cumulative estimates is higher than the average of their requirement-specific totals indicates that they do not believe there is significant overlap among requirements. As a result, benefits are unlikely to be overstated due to overlap.

99 Note that EPA carefully examined and reviewed each requirement-specific estimate from each expert, and verified the results and assumptions with each expert, particularly in cases where results reflect a wide range. For detailed information on expert responses, see Appendix H.
In general, EPA applies the estimates presented by the experts to the number of affected units. In cases where reductions involved a range of values, EPA selected the midpoint of the range of values identified by each expert. Where experts’ comments reflect qualitative assumptions that substantially affect their quantitative estimates, the analysis acknowledges those factors as caveats to estimated rates of release avoidance. If these assumptions assume regulatory language more stringent or significantly different than the final language, the analysis does not include any benefits for that requirement.¹⁰⁰

To calculate the number of releases completely avoided as a result of potential regulatory changes, EPA combines the estimated reductions as identified by experts with a release distribution based on data from the draft 23-state Autopsy Report (see Appendix I for more detail). To estimate changes in release severity, the analysis uses the distribution of releases from the same report to quantify the number of groundwater releases avoided due to reduced release volume. Exhibit 4-3 provides a summary of our findings with respect to avoided releases. Experts’ responses suggest that the Selected Option will avoid approximately nine percent to 50 percent of 6,128 annual releases, or roughly 560 to 3,000 releases in the first evaluation year. In addition, as summarized in Exhibit 4-4, of the remaining releases, approximately 210 to 900 releases would be reduced in severity (i.e., these releases would occur but instead of reaching groundwater they would remain soil contamination only).¹⁰¹

<table>
<thead>
<tr>
<th>Expert</th>
<th>Avoided Releases</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>1,100</td>
<td>1,600</td>
<td>590</td>
</tr>
<tr>
<td>Expert 2</td>
<td>560</td>
<td>690</td>
<td>170</td>
</tr>
<tr>
<td>Expert 3</td>
<td>1,600</td>
<td>2,400</td>
<td>1,200</td>
</tr>
<tr>
<td>Expert 4</td>
<td>3,000</td>
<td>3,700</td>
<td>2,200</td>
</tr>
<tr>
<td>Average (Range)</td>
<td>1,600 (560-3,000)</td>
<td>2,100 (690-3,700)</td>
<td>1,000 (170-2,200)</td>
</tr>
</tbody>
</table>

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions.

¹⁰⁰ For example, Experts 1, 2, and 3 attributed reductions to the groundwater and vapor monitoring site assessment requirements; however, these experts also noted that they assumed the requirements would lead users to switch to another leak detection method. Because EPA’s cost analysis does not assume that users will necessarily switch methods, we conservatively removed the experts’ assumed reductions for this requirement.

¹⁰¹ EPA assumes that these groundwater releases will instead become soil releases. Hypothetically, if releases are proportionally split as 50 percent groundwater and 50 percent soil before the regulation takes effect, and if the regulation reduces groundwater contamination by 20 percent, releases would be split 40 percent groundwater and 60 percent soil after the regulation.
Avoided Groundwater Contamination Incidents

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>900</td>
<td>1,100</td>
<td>620</td>
</tr>
<tr>
<td>Expert 2</td>
<td>210</td>
<td>460</td>
<td>88</td>
</tr>
<tr>
<td>Expert 3</td>
<td>320</td>
<td>310</td>
<td>280</td>
</tr>
<tr>
<td>Expert 4</td>
<td>600</td>
<td>480</td>
<td>570</td>
</tr>
<tr>
<td>Average (Range)</td>
<td>510 (210-900)</td>
<td>600 (310-1,100)</td>
<td>390 (88-570)</td>
</tr>
</tbody>
</table>

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions.

4.4.1 Avoided Releases Using an Alternative Baseline

EPA’s primary analysis assumes that the universe of confirmed releases from UST systems remains constant over the time frame of the analysis. However, both the universe of UST systems and the release rate (defined as the number of confirmed releases divided by the number of UST systems in a given year) have declined over the last two decades. This is consistent with the regulatory context of the past 20 years, in which two key factors have been driving the number of releases. First, the universe of UST systems has been declining as older, smaller tanks have been replaced by newer, larger systems. Second, many of the confirmed releases reported in the 1990s and early 2000s were “legacy” releases associated with older systems that did not meet the technical standards under 40 CFR Part 280 (e.g., tanks that were installed prior to the promulgation of the UST regulation at 40 CFR Part 280). Many of these legacy releases are discovered when tanks are removed during property transactions and other development projects.

As the number of legacy releases has declined, the declining trend in total releases has “flattened” – trend data suggest that release rates have been approximately one confirmed release per hundred tanks in recent years. In addition, it is possible that confirmed releases may increase in future years, as UST systems continue to age, and as new fuel blends with potentially higher corrosivity are introduced into the industry. Given this uncertainty, EPA assumes in the primary analysis that release rates remain constant.

However, to address the uncertainty associated with the number of confirmed releases, EPA also assesses avoided costs under the final UST regulation using an alternative baseline that projects a continued decline in the release rate consistent with the recent historical trend, and also captures the decline in the number of UST systems as estimated in Chapter 3, Section 3.3.1. This represents a conservative avoided cost scenario because it does not account for the possibility that aging systems or changes in fuel could result in increases in the number of confirmed releases reported, or that the number of UST systems could increase (if, for example, an expanding economy or population growth demands more service locations).

102 See Appendix J for charts and data sources that demonstrate these two trends.
103 This decline in UST systems also captures the effects of declining gasoline use in recent years.
To estimate the rate of universe decline, EPA mapped historical data on the number of UST systems from 1991 through 2013 to an exponential one-phase decay function, which appears to most accurately represent the observed behavior of the UST system universe over time. EPA also mapped historical data on the release rate to a similar decay function. These two functions were then used to project future UST universe sizes as well as future release rates. We used the results from these two projections to estimate future number of confirmed releases.

The cumulative universe of releases over 20 years under this alternative baseline is approximately 69 percent of the number of cumulative releases over 20 years in the primary analysis. The alternative baseline contains proportionally fewer releases than UST systems because two separate declining trends, UST systems and release rate, are used to estimate the future decline in releases. This compounds the projected decline in releases.

Exhibits 4-5 and 4-6 provide a summary of our findings with respect to avoided releases and avoided groundwater contamination events, respectively, assuming the alternative baseline releases occur. The alternative baseline results in a reduction of roughly 31 percent of both avoided releases and avoided groundwater contamination relative to the original baseline. Correspondingly, in the alternative baseline scenario, approximately 390 to 2,100 releases are avoided under the Selected Option, compared to 480 to 2,600 under Alternative 1 and 120 to 1,500 under Alternative 2. Under the alternative baseline, approximately 140 to 620 groundwater contamination incidents would be avoided under the Selected Option, 210 to 790 under Alternative 1, and 61 to 430 under Alternative 2.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>760</td>
<td>1,100</td>
<td>410</td>
</tr>
<tr>
<td>Expert 2</td>
<td>390</td>
<td>480</td>
<td>120</td>
</tr>
<tr>
<td>Expert 3</td>
<td>1,100</td>
<td>1,700</td>
<td>840</td>
</tr>
<tr>
<td>Expert 4</td>
<td>2,100</td>
<td>2,600</td>
<td>1,500</td>
</tr>
<tr>
<td>Average (Range)</td>
<td>1,100 (390-2,100)</td>
<td>1,500 (480-2,600)</td>
<td>720 (120-1,500)</td>
</tr>
</tbody>
</table>

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions.

See Section 3.3.1.

To estimate future release rates, we used a single exponential decay function, which assumes that a quantity declines at a rate proportional to its value. This is an appropriate function given the singular and slowing rate of decline observed in the release rate over time. The equation for such an exponential singular decay function is \(Y = (Y_0 - P) \times e^{(-k\times t)} + P \), where \(P \) represents the “plateau,” or limit of the function and \(k \) represents the function’s half-life. See Appendix J for additional details.

We use release rates to project future number of releases (rather than use past trends in the number of confirmed releases) for two reasons: First, as the UST universe and release rate both appear to decline in a way approximating a single-decay exponential function, these projections can be used to estimate future number of releases without the added uncertainty of whether the release trend is truly a single-decay exponential function. In addition, using the release rate projections to estimate future releases yields a more conservative (lower) total number of releases than if we were to use the past trend in the number of releases, which leads to more conservative (lower) avoided remediation cost estimates in the alternative baseline.
Exhibit 4-6

Avoided Groundwater Contamination Incidents Under Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>620</td>
<td>790</td>
<td>430</td>
</tr>
<tr>
<td>Expert 2</td>
<td>140</td>
<td>320</td>
<td>61</td>
</tr>
<tr>
<td>Expert 3</td>
<td>220</td>
<td>210</td>
<td>190</td>
</tr>
<tr>
<td>Expert 4</td>
<td>420</td>
<td>330</td>
<td>390</td>
</tr>
<tr>
<td>Average</td>
<td>350</td>
<td>410</td>
<td>270</td>
</tr>
</tbody>
</table>

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions.

4.5 Benefits from Avoided Releases and Reduced Release Severity

Two sources of avoided costs constitute the majority of quantifiable positive impacts from the final UST regulation. First, some costs related to release remediation do not occur because a number of releases are altogether avoided. Second, some remaining releases are reduced in severity because of the regulatory requirements (e.g., through earlier detection from walkthrough inspections and improved operability of release detection equipment). To capture this dimension of avoided costs, the analysis relies on incremental avoided groundwater remediation costs—the cost to remediate a groundwater release less the cost to remediate a soil release—as groundwater releases are generally more costly to remediate than soil releases.

In addition to avoiding remediation costs, release prevention and mitigation results in a variety of other beneficial impacts, including:

- Avoided vapor intrusion damages;
- Avoided product loss;
- Human health benefits;
- Avoided acute exposure events and large-scale releases; and
- Ecological benefits (including protection of groundwater quality).

The following sections monetize, quantify, or otherwise describe these impacts.

4.5.1 Avoided Release Remediation

To determine the benefits of avoided releases, the analysis relies on the draft 23-state Autopsy Report’s distribution of releases by source (i.e., the part of the UST system that produces the release), and applies the reduction associated with each regulation to the
appropriate source to reduce the number of releases avoided by source.107,108 Each avoided release is valued according to the weighted average of remediation costs shown in Exhibit 4-2.109

Exhibit 4-7 presents the total avoided remediation costs under each regulatory option. We estimate that discounted benefits from avoided remediation costs range between approximately $68 million and $380 under the Selected Option, while avoided costs amount to between $82 million and $530 million under Alternative 1 and between $24 million and $290 million under Alternative 2. Consistent with OMB’s guidance on discount rates, this chapter presents results using a seven percent annual discount rate; for comparison, Chapter 7 presents results for the Selected Option using a three percent discount rate.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$140</td>
<td>$210</td>
<td>$80</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$68</td>
<td>$82</td>
<td>$24</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$190</td>
<td>$330</td>
<td>$160</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$380</td>
<td>$530</td>
<td>$290</td>
</tr>
<tr>
<td>Average (Range)</td>
<td>($190-$380)</td>
<td>($290-$530)</td>
<td>($140-$290)</td>
</tr>
</tbody>
</table>

Note: Cost estimates reflect a seven percent discount rate.

4.5.2 Reduction in Release Severity

EPA expects that the regulatory requirements will reduce the volume and duration of releases. As a result of the smaller quantity released and the shorter duration of the release, releases are assumed to be less likely to reach groundwater, thus reducing release severity. To assess the impact on remediation costs associated with reduced release severity, the analysis focuses on changes in the number of releases that would have involved groundwater in the baseline, but because of the final UST regulation, involve only soil. While this metric does not capture all of the release mitigation effects of the regulatory requirements, avoided groundwater contamination is likely to be among the most significant effects of the regulation. The difference in remediation costs between soil and groundwater releases is substantial: remediation cost for an average groundwater release is approximately $290,000, while an average soil release costs

107 We exclude the ‘Other’ category of releases from the draft 23-state Autopsy Report because it does not map to the reductions designated by the experts. Because ‘Other’ accounts for only 1 percent of releases in the study, we distribute those releases proportionally across the remaining release sources.

108 We use five system sources to identify release types: piping, dispenser, tank, sump turbine pump area, and delivery problems. We then assign each regulation’s effect to source types based on the regulation (e.g. spill bucket tightness tests are assumed to affect releases from delivery problems).

109 This approach assumes that avoided releases are well-represented by the distribution of release severity that is identified in the draft 23-state Autopsy Report.
approximately $74,000 to remediate.110 Remediation costs across release extent and medium contaminated range from $27,000 to $460,000 based on typical site remediation costs from New Hampshire and Utah.111

To estimate the number of releases that are reduced in severity, we use experts’ estimates of reductions in groundwater involvement and distribute them across release source, medium contaminated, and release extent.112 We distribute remaining releases according to the draft 23-state Autopsy Report results and calculate additional benefits from remediation due to reductions in groundwater contamination following the regulation. We calculate avoided costs from reduced release severity by subtracting the cost to remediate all remaining releases after the final UST regulation is in effect from the cost to remediate all remaining releases in the baseline. In both cases, we remove from consideration the same number of fully-avoided releases and consider only the avoided costs from shifting releases from groundwater to soil.

A key limitation of this approach may lead to a conservative estimate of the effects of the final UST regulation. The analysis assumes that the distribution of releases across size (i.e., extent) does not change as a consequence of changes in groundwater contamination. In reality, changes in the likelihood of groundwater contamination are probably (at least in part) a consequence of reductions in release volume and duration. The same reductions in release volume that lower the incidence of groundwater contamination would likely also reduce the number of large extent releases of all types and decrease the average size of smaller releases. That is, new requirements should both reduce the number of groundwater contamination events and large extent events of all types. Our model captures only changes in the number of times that groundwater would be contaminated, and does not consider cost savings associated with smaller soil-only sites or small groundwater contamination incidents. We therefore likely understate avoided remediation costs.113

Exhibit 4-8 displays EPA’s findings regarding discounted avoided costs due to the mitigation of groundwater incidents. The analysis calculates avoided remediation costs by taking the difference between estimated remediation costs before and after the regulatory changes are implemented. This difference accounts for both the reduction in groundwater release incidents as well as the increase in soil contamination events.114 EPA estimates that benefits from averted

110 These costs reflect a simple average of the costs to remediate a large extent and local extent release of each medium.

111 Release extent is classified in the draft 23-state Autopsy Report as either local or large. Releases that do not extend beyond the area excavated during remediation are considered local, while releases that extend beyond property lines are considered large. Extent does not explicitly involve a measure of release volume.

112 See Appendix I for details on the calculation of avoided costs.

113 A change in the distribution of releases could also potentially cause the “average size” and cost of soil-only releases to increase (because larger groundwater releases are eliminated but become “large” local soil-only releases). While this could result in higher average costs for local releases, (i.e., the cost savings for avoiding a groundwater release might be less than the difference between “average” groundwater and soil releases), the analysis also does not consider the cost savings associated with reducing the size of groundwater releases that still reach groundwater or the cost savings associated with reducing the size of soil releases.

114 This occurs because the analysis maintains the total number of releases constant: every groundwater release that is avoided still requires remediation as a soil release.
groundwater releases range from approximately $46 million to $190 million under the Selected Option, $80 million to $290 million under Alternative 1, and $20 million and $130 million under Alternative 2. Avoided costs from reduced groundwater contamination are additive to avoided costs from avoided releases.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$190</td>
<td>$290</td>
<td>$130</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$46</td>
<td>$120</td>
<td>$20</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$71</td>
<td>$80</td>
<td>$61</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$130</td>
<td>$120</td>
<td>$120</td>
</tr>
<tr>
<td>Average (Range)</td>
<td>($110-$190)</td>
<td>($80-$290)</td>
<td>($20-$130)</td>
</tr>
</tbody>
</table>

Note: Cost estimates reflect a seven percent discount rate.

4.5.3 Total Avoided Remediation Costs from Avoided Releases and Reduced Release Severity

Exhibit 4-9 displays the sum of avoided remediation costs across both avoided releases and mitigated groundwater incidents for all four experts. Because experts with the lowest estimate in one of these categories did not necessarily have similarly low estimates in the other, the range of total avoided costs is not equal to the sum of the ranges from Exhibits 4-7 and 4-8.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$330</td>
<td>$490</td>
<td>$210</td>
</tr>
<tr>
<td>Expert 2b</td>
<td>$110</td>
<td>$200</td>
<td>$44</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$260</td>
<td>$410</td>
<td>$220</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$510</td>
<td>$650</td>
<td>$410</td>
</tr>
<tr>
<td>Average (Range)</td>
<td>($300-$510)</td>
<td>($200-$650)</td>
<td>($44-$410)</td>
</tr>
</tbody>
</table>

aCost estimates were derived using a seven percent discount rate.
bExpert 2 provided responses that generate benefits that are relatively low compared to the other experts. Conversations with this expert indicated that he assumed partial noncompliance of at least 25 percent (that is, a compliance rate of at most 75 percent). To evaluate the potential magnitude of this inconsistency, we examined the impact of scaling Expert 2’s avoided remediation costs from 75 percent compliance to 100 percent compliance. This adjustment resulted in avoided remediation costs of greater than $150 million annually under the Selected Option, assuming a seven percent discount rate. See Appendix H for additional discussion.

Although the values generated by the experts’ responses cover a wide range, we note that the avoided cost estimates tend to spread evenly around the mean. Expert 4 consistently represents the high-end estimate of avoided costs, and Expert 2 consistently represents the low-
end. While we are not able to explain why Expert 4’s estimates are consistently higher than those of the other experts, we do note one source of uncertainty that applies to Expert 4’s estimates. The experience of most experts is related to implementing state regulatory programs, which directly consider the universe of confirmed releases evaluated in this analysis. However, the experience of Expert 4 considers system engineering and changes in UST-related equipment. As a result, Expert 4’s estimates consider all potential releases and then align these to EPA’s universe of confirmed releases. While this approach is methodologically sound, it requires one more assumption on the part of the expert to derive a total estimate.115

In contrast, Expert 2’s responses generate benefits estimates that are low compared to the responses of other experts. Comments provided by the expert indicated, and subsequent conversations with him verified, that he assumed a significant level of noncompliance with the regulations in deriving his estimates. His estimates assume that at least 25 percent of facilities will not correctly implement the requirements (that is, a compliance rate of at most 75 percent). The expert noted that this assumed level of compliance did not include intentional noncompliance, but did attempt to account for a lack of awareness or human error by owners/operators. This assumption is methodologically sound, but is not consistent with the full compliance assumed in our cost analysis. As a result, the values provided by Expert 2 may significantly understate benefits relative to costs. To evaluate the potential magnitude of this inconsistency, we scale Expert 2’s avoided remediation costs from 75 percent compliance to 100 percent compliance as a sensitivity analysis. This adjustment results in total avoided remediation costs greater than $150 million annually under the Selected Option, assuming a seven percent discount rate. Appendix H provides additional discussion of the effect of assumed noncompliance on the experts’ responses and potential net benefits of the final UST regulation.

4.5.4 Benefits from Avoided Releases and Reduced Release Severity under the Alternative Baseline Scenario

Exhibits 4-10 and 4-11 present avoided remediation costs associated with the avoided releases and avoided groundwater incidents shown in Exhibits 4-5 and 4-6 under the alternative baseline scenario. In the alternative baseline scenario, avoided release remediation costs range from $47 million to $260 million under the Selected Option, between $56 million and $370 million under Alternative 1, and between $17 million and $200 million under Alternative 2. Averted groundwater remediation costs, meanwhile, range from $32 million to $130 million under the Selected Option, $55 million to $200 million under Alternative 1, and $14 million to $92 million under Alternative 2. These alternative estimates represent conservative estimates of the potential value of avoided releases, because they do not consider possible factors that may lead to increases in the number of releases reported or the number of UST systems in the future.

115 The type of universe adjustment conducted by Expert 4 will not necessarily result in estimates that are overstated, and could instead result in estimates that are understated. The adjustment is noted here simply as an additional source of uncertainty unique to this expert.
Exhibit 4-10

Discounted Avoided Release Remediation Costs Under Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$94</td>
<td>$140</td>
<td>$56</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$47</td>
<td>$56</td>
<td>$17</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$130</td>
<td>$230</td>
<td>$110</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$260</td>
<td>$370</td>
<td>$200</td>
</tr>
<tr>
<td>Average</td>
<td>$130</td>
<td>$200</td>
<td>$95</td>
</tr>
</tbody>
</table>

(Range) ($47-$260) ($56-$370) ($17-$200)

Note: Cost estimates reflect a seven percent discount rate.

Exhibit 4-11

Discounted Avoided Groundwater Remediation Costs Under Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$130</td>
<td>$200</td>
<td>$92</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$32</td>
<td>$84</td>
<td>$14</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$49</td>
<td>$55</td>
<td>$42</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$89</td>
<td>$83</td>
<td>$85</td>
</tr>
<tr>
<td>Average</td>
<td>$75</td>
<td>$100</td>
<td>$58</td>
</tr>
</tbody>
</table>

(Range) ($32-$130) ($55-$200) ($14-$92)

Note: Cost estimates reflect a seven percent discount rate.

Exhibit 4-12 displays the sum of avoided remediation costs across both avoided releases and mitigated groundwater incidents under the alternative baseline scenario. Because experts with relatively lower estimates in one of these categories did not necessarily have similarly low estimates in the other, the range of avoided costs presented is not the sum of lower and higher bounds in Exhibits 4-10 and 4-11. As the cumulative release universe in the alternative baseline scenario is roughly 69 percent of cumulative releases in the original baseline, total avoided costs in the alternative baseline are approximately 31 percent lower than they are in the primary analysis.

Exhibit 4-12

Total Discounted Avoided Remediation Costs Under Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$230</td>
<td>$340</td>
<td>$150</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$79</td>
<td>$140</td>
<td>$31</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$180</td>
<td>$290</td>
<td>$150</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$350</td>
<td>$450</td>
<td>$280</td>
</tr>
<tr>
<td>Average</td>
<td>$210</td>
<td>$300</td>
<td>$150</td>
</tr>
</tbody>
</table>

(Range) ($79-$350) ($140-$450) ($31-$280)

Note: Cost estimates reflect a seven percent discount rate.
4.5.5 Avoided Costs by Requirement

Exhibit 4-13 presents overall avoided remediation costs by requirement for the Selected Option. The exhibit shows the avoided costs for each requirement based on experts’ responses to the effects of the individual requirements in the final UST regulation. Beneficial impacts are concentrated similarly to costs: the majority of avoided costs are captured by walkthrough inspections, overfill prevention equipment tests, spill bucket tightness tests, containment sump tests, and operability tests. Estimates in Exhibit 4-13 assume that cost savings associated with each regulatory requirement occur one year after implementation and reflect discounting. Similar exhibits presenting overall avoided remediation costs by requirement for Alternative 1 and Alternative 2 are included in Appendix I.

The model used by EPA to estimate avoided remediation costs is not designed to measure avoided costs from large-scale releases such as those typically associated with UST systems with FCTs and AHFDSs. Releases from these types of systems constitute a small portion of total releases, but may be large in volume and can result in significant groundwater impacts. Our analysis does not estimate the benefits associated with changes in operation of these systems. However, we include a qualitative discussion of these acute events later in this chapter.

<table>
<thead>
<tr>
<th>Description</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$140</td>
<td>$44</td>
<td>$130</td>
<td>$270</td>
<td>$150</td>
</tr>
<tr>
<td>Overfill prevention equipment inspection</td>
<td>$23</td>
<td>$1.1</td>
<td>$19</td>
<td>$25</td>
<td>$17</td>
</tr>
<tr>
<td>Spill prevention equipment testing</td>
<td>$16</td>
<td>$7.3</td>
<td>$36</td>
<td>$21</td>
<td>$20</td>
</tr>
<tr>
<td>Containment sump testing</td>
<td>$9.3</td>
<td>$18</td>
<td>$1.0</td>
<td>$9.7</td>
<td>$9.4</td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and secondary containment</td>
<td>$2.7</td>
<td>$11</td>
<td>$1.9</td>
<td>$7.9</td>
<td>$5.9</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
<td>$2.2</td>
<td>$7.5</td>
<td>$0.85</td>
<td>$1.5</td>
<td>$3.0</td>
</tr>
<tr>
<td>Subtotal - Release Prevention</td>
<td>$190</td>
<td>$89</td>
<td>$190</td>
<td>$330</td>
<td>$200</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
<td>$130</td>
<td>$13</td>
<td>$61</td>
<td>$170</td>
<td>$92</td>
</tr>
<tr>
<td>Groundwater monitoring site assessment</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Vapor monitoring site assessment</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Add SIR and CITLDS usage</td>
<td>$0.21</td>
<td>$0.00</td>
<td>$0.94</td>
<td>$0.56</td>
<td>$0.43</td>
</tr>
</tbody>
</table>

116 Some requirements, particularly those that target narrow subpopulations of the UST system universe, may generate higher avoided costs than this analysis suggests. Three sources of uncertainty drive these smaller universe results. First, EPA’s model is calibrated to estimate avoided costs for broad-based national changes at average facilities; extrapolation of these results to small populations may not reflect specific subpopulations (e.g., UST systems in Indian country). Second, several experts stated that their estimates of impacts for requirements affecting narrow subsets of UST populations are more uncertain than broader estimates. Finally, experts emphasized that equipment replacement, inspection, training, and testing are all essential to ensure release reductions, and they used judgment to emphasize the different roles of these different activities. Therefore, the assignment of specific impacts to each of the requirements is potentially less accurate than the aggregate estimates of avoided impacts.
As noted in Exhibit 4-1, EPA excluded the highest state-level remediation cost values from its calculation of average cost of release remediation. While this step contributes toward a conservative (low) estimate of avoided costs, the possibility remains that the average remediation costs used in Exhibit 4-13 overestimate the positive impacts of the final UST regulation if state data provided are not representative of national average remediation costs. In Exhibit 4-14, we therefore estimate the positive effects of the final UST regulation using only the lowest cost.
remediation costs available.117 As shown in Exhibit 4-14, EPA’s estimate of the avoided remediation costs of the final UST regulation using the lowest state cost estimates is $73 million to $330 million per year under the Selected Option. While this is not a true “lower bound” estimate, these estimates reflect costs that lead to lower than average costs when compared to figures reported by ASTSWMO.118 Similar exhibits presenting overall avoided remediation costs by requirement for Alternative 1 and Alternative 2 are included in Appendix I.

Exhibit 4-14

<table>
<thead>
<tr>
<th>Sensitivity Analysis: Total Discounted Avoided Costs By Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based On New Hampshire Remediation Costsa,b ($ millions)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selected Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Walkthrough inspections</td>
</tr>
<tr>
<td>Overfill prevention equipment inspection</td>
</tr>
<tr>
<td>Spill prevention equipment testing</td>
</tr>
<tr>
<td>Containment sump testing</td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and secondary containment</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill prevention equipment is replaced</td>
</tr>
<tr>
<td>Subtotal - Release Prevention</td>
</tr>
<tr>
<td>Release Detection</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
</tr>
<tr>
<td>Groundwater monitoring site assessmentd</td>
</tr>
<tr>
<td>Vapor monitoring site assessmentd</td>
</tr>
<tr>
<td>Add SIR and CITLDS usagee</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
</tr>
<tr>
<td>Remove release detection deferral for EGTs</td>
</tr>
<tr>
<td>Subtotal - Release Detection</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Notification of ownership changesf</td>
</tr>
</tbody>
</table>

a,b These were provided by the State of New Hampshire’s UST program.

118 If we calculate a weighted-average cost per release where sources are weighted proportionally by their contribution to total releases using the lowest remediation cost data available (i.e., from New Hampshire), we obtain an overall average cost per release of approximately $103,000 (See Appendix I for details). Under the alternative baseline, total avoided costs based on New Hampshire remediation costs range from $51 million to $230 million in the Selected Option. This represents an extreme lower bound analysis of avoided remediation costs.

Additionally, we consider whether the remediation costs used in this analysis are consistent with those reported by ASTSWMO. As noted above, ASTSWMO estimates the annual average remediation cost per site to be roughly $124,000 in 2012. If we value the releases and groundwater incidents avoided under each option using the ASTSWMO average site remediation cost, we obtain total avoided costs that are consistent with the primary estimates used in this analysis. Specifically, avoided remediation costs are approximately $96 million to $450 million under the Selected Option, $140 million to $520 million under Alternative 1, and $32 million to $340 million under Alternative 2. However, ASTSWMO’s average site remediation value may understate typical remediation costs because co-pays, deductibles, and other costs not paid by state funds are excluded.
4.6 Avoided Vapor Intrusion Damages

Vapor intrusion generally occurs when petroleum or highly-dissolved concentrations of free product come into direct contact with building sumps and foundations, elevator shafts, and preferential pathways (e.g. improperly sealed utility lines). Intrusion can also occur when these substances come close to building foundations.\(^{119}\) The cost to remediate vapor intrusion is typically incremental to the cost to remediate a LUST site. Based on information provided by four states, EPA estimates that, on average, 5.5 percent of all releases cause vapor intrusion.

issues. Each of these instances requires additional remedial actions valued at approximately $42,000 beyond ordinary release remediation costs. As reported in Exhibit 4-15, given 770 to 3,600 avoided releases and mitigated groundwater incidents, we estimate between 42 and 200 avoided vapor intrusion incidents under the Selected Option. This reduction would avoid between $1.7 million and $7.9 million per year in avoided remediation costs related to vapor intrusion. Under Alternative 1, this range increases to $2.5 million to $9.1 million, and under Alternative 2, this range decreases to $0.6 million to $6.0 million per year.

Under the alternative baseline, avoided vapor intrusion costs fall due to the smaller universe of releases. In the Selected Option, avoided costs are $1.2 million to $5.5 million. Under Alternative 1, avoided costs range from $1.7 million to $6.3 million; under Alternative 2, they range between $0.4 million and $4.1 million.

4.7 Avoided Product Loss

Releases into the environment cause operators to lose otherwise marketable fuel products. Exhibit 4-16 presents costs avoided due to product loss. The analysis calculates the product loss associated with avoided releases by multiplying the average volume associated with each release source by the number of releases of that type before and after the final UST regulation is in effect. Based on the estimates of avoided releases presented by the experts, the draft 23-state Autopsy Report’s distribution of releases, and average release volumes reported in the Florida

120 New Hampshire, Utah, South Carolina, Virginia, and New Mexico were contacted for LUST remediation costs, but only New Hampshire was able to provide a cost for cleanup actions related to vapor intrusion. Other state programs contributed data to the frequency of incidents, but not to costs.
study, EPA estimates that approximately 0.25 million gallons to 1.9 million gallons per year of diesel and gasoline releases are avoided as a consequence of the Selected Option. At an average price of $3.73 per gallon, owners and operators avoid losing approximately $0.9 million to $6.5 million in product due to releases. These values range from 0.22 million gallons to 2.2 million gallons, or $0.8 million to $7.6 million, under Alternative 1. Under Alternative 2, these values decrease to a range of 0.10 million gallons to 1.5 million gallons, or $0.4 million to $5.2 million. Limited data on release size do not support an analysis of avoided product loss associated with releases that are reduced in severity. This estimate of avoided product loss there understates total likely avoided product losses.

Exhibit 4-16

<table>
<thead>
<tr>
<th>Expert</th>
<th>Selected Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thousand gallons</td>
<td>Thousand gallons</td>
<td>Thousand gallons</td>
</tr>
<tr>
<td>Expert 1</td>
<td>650</td>
<td>750</td>
<td>440</td>
</tr>
<tr>
<td>Expert 2</td>
<td>250</td>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>Expert 3</td>
<td>830</td>
<td>1,200</td>
<td>710</td>
</tr>
<tr>
<td>Expert 4</td>
<td>1,900</td>
<td>2,200</td>
<td>1,500</td>
</tr>
<tr>
<td>Average</td>
<td>(250-1,900)</td>
<td>(220-2,200)</td>
<td>(100-1,500)</td>
</tr>
</tbody>
</table>

We weight these prices according to prime supplier sales volumes in 2012 published by the Energy Information Administration, which summed to 347,234.5 thousands of gallons per day for gasoline and 143,270.6 thousands of gallons per day for all grades of diesel fuel (U.S. Energy Information Administration. Petroleum & Other Liquids. Prime Supplier Sales Volumes. Accessed at: http://www.eia.gov/dnav/pet/pet_cons_prim_dcu_nus_a.htm.).

Under the alternative baseline, avoided costs due to product loss are lower than in the original baseline as there are relatively fewer releases. Under the Selected Option, avoided costs due to product loss are $0.6 million to $4.5 million. Under Alternative 1, avoided costs range from $0.5 million to $5.2 million; under Alternative 2, they range from $0.3 million to $3.6 million.

4.8 Human Health Benefits

Exposure to petroleum through ingestion, dermal contact, and inhalation can cause a range of health effects, including cancer and non-cancer impacts associated with benzene, and non-cancer impacts (e.g., neurological impacts) associated with other petroleum constituents.
such as toluene. In addition, exposure to jet fuel, such as that stored in AHFDSs and FCTs at commercial and military airports, can result in non-cancer impacts to skin, nervous, and respiratory systems. The types of health risks that may be avoided by the final UST regulation are described in more detail below.

The complex nature of petroleum mixtures and the limited toxicological data available both for petroleum mixtures and for individual component compounds of petroleum limits EPA’s ability to comprehensively document the health effects associated with the most significant releases. However, the toxicological testing that has been conducted on some common components of total petroleum hydrocarbons (TPH) suggests that exposures to TPH through inhalation or ingestion of gasoline or diesel could result in the following effects:

- Neurological effects, such as central nervous system depression, have been associated with acute and chronic exposures to toluene and xylenes; n-hexane exposure has been associated with effects on peripheral neuropathy;
- Hematological effects associated with oral and inhalation exposure to benzene and with oral and inhalation exposure to naphthalene;
- Renal and hepatic effects associated with BTEX compounds and other aromatic hydrocarbon compounds;
- Developmental effects associated with intermediate exposures to ethylbenzene and xylenes; and
- Carcinogenic effects of oral exposures to certain polycyclic aromatic hydrocarbons (PAHs) including benzo(a)pyrene, benz(a)anthracene, and dibenz(a,h)anthracene.

Health risks may also be associated with exposure to kerosene, which may be stored in USTs or used as a component in jet fuel. Although risks associated with kerosene have not been studied as widely as those associated with petroleum, existing data suggest that these risks primarily include non-cancer impacts to the skin, nervous, and respiratory systems. In the baseline, some of these risks may be reduced due to existing monitoring standards under the

Occupational Safety and Health Administration (OSHA). However, because the final UST regulation includes new requirements for AHFDSs and UST systems with FCTs located at commercial and military airports, avoidance of health risks from kerosene could represent an additional benefit of the final UST regulation.

The magnitude of health benefits associated with avoiding exposure to petroleum and jet fuel components depends on multiple factors. These factors include the number of cancer cases and non-cancer impacts per average UST release, which in turn depends on the number of groundwater users surrounding UST sites; the number of releases prevented through implementation of the final UST regulation; and the willingness-to-pay to avoid a fatal cancer (e.g., the value of a statistical life) or willingness-to-pay to avoid non-cancer impacts. In addition, assumptions about baseline behaviors, such as the assumption that individuals will limit their own exposure in certain cases (e.g., when petroleum contamination exceeds a “taste/odor threshold” and water is no longer palatable), affect the estimated magnitude of health benefits. Based on available information on average plume volumes and ages and the distribution of groundwater users, these benefits are expected to be small. Nevertheless, some larger releases may have significant cancer and non-cancer risks associated with them. Although these health effects are not able to be reliably quantified with available data, they represent additional potential benefits of the regulation.

4.9 Avoided Acute Exposure Events and Large-Scale Releases

Most health effects associated with leaking underground storage tanks reflect long-term exposures, but some releases from UST systems relate to acute events such as fire or explosion. These releases can involve acute exposures, large volumes of free product, extensive ecological damage, and injuries and death, depending on the circumstances of the event. Because these events are both infrequent and difficult to predict, it is not possible to quantify or monetize the impact associated with avoiding them, but the response, remediation, and medical costs associated with a single acute incident could be significant. The final UST regulation is designed to ensure effective maintenance of UST systems, and one benefit will be to reduce the chances of an acute event that could result in a large-scale release and its associated damages (e.g., a well-maintained UST system is less likely to be in a condition where it may explode).

Acute events are especially important in the case of UST systems such as AHFDSs and UST systems with FCTs, which can hold large volumes of fuel. Releases from these systems can result in extensive groundwater and other environmental and health impacts. For instance, an estimated 300,000 to 500,000 gallons of fuel was released from a 2.1 million gallon underground field-constructed tank at a fuel depot in Portsmouth, VA that was in operation from the 1950s to

mid-1980s. Free product was found within 20 feet of a nearby creek in 1987. As of 2011, approximately 143,000 gallons of product had been recovered.128

In addition, the final UST regulation may large-scale releases associated with AHFDSs and FCTs. An example of the potential magnitude of the releases from these systems is the pattern of releases at Pease Air Force Base, where jet fuel was delivered to the runway apron via an underground fueling system.129 Historical leakage from the system contaminated soil and groundwater, forming groundwater plumes at many sites along the system.130 A site release study identified 60 to 70 release points with varying degrees of severity along the refueling system line with free product found under the apron at closure.131 While there are no historical records available indicating the amount of leaked fuel or leak origins, the presence of residual soil and groundwater contamination poses a significant threat to human health and the environment.

While the analytical procedure used by EPA to estimate monetized benefits was unable to capture the positive impacts of preventing releases from these types of systems, we note that preventing or mitigating these releases may generate substantial reductions in remediation costs and public exposure.

4.10 Ecological Benefits

A document prepared for EPA outlines the types of ecological damages that can result from land-based pollution releases:132

Measurable damage to ecological resources from land releases generally occurs when groundwater or overland flow of water carry contaminants to a nearby surface water body. Flood events and other acute incidents can cause releases of waste that have an immediate and significant effect on ecological resources (e.g., a surface impoundment dike fails and releases contaminants into a river, killing fish and other biota). More common are gradual increases in contaminant levels due to long-term releases to groundwater. These may have a broad array of impacts on both resources used by humans (such as fish populations) and on “non-use value” such as the value of preserving habitat and species diversity. In addition, biota can be affected by uptake of contaminants from soil, particularly in wetlands or areas where the water table is high.

Because releases from USTs typically reach soil before reaching groundwater, such releases would likely be classified as land releases. Any releases avoided due to the final UST regulation

128 Phone conversation and email from Lynne Smith, geologist, and Russ Ellison, Virginia Department of Environmental Quality.

may result in ecological benefits. A complete assessment of ecological benefits, however, requires significant location-specific data, and it is often difficult to identify sufficient data to support valuation of both use and non-use values of preserving habitat and species diversity.

The ecological benefits that accrue from the final UST regulation are likely to occur as a consequence of averted groundwater contamination. The resource economics literature contains numerous examples of studies that value these services, as demonstrated by the public’s willingness-to-pay (WTP) for groundwater protection programs (e.g., see Poe et al. 2001).\(^{133}\) However, these values are largely context-specific in terms of location, scale, and the specific threat to groundwater considered and do not provide broadly-applicable information on the value of groundwater.

Some attempts have been made to develop standardized values for groundwater, often for purposes of Natural Resource Damage Assessment (NRDA).\(^{134}\) For instance, the State of New Jersey currently employs a replacement cost approach to determine interim economic losses associated with injuries to groundwater.\(^{135}\) Even so, replacement cost methods do not constitute a proper WTP valuation. The replacement costs of natural resources and their services capture WTP only when they meet three criteria: 1) replacement provides equivalent quality and quantity of services; 2) the public is actually willing to pay for the replacement; and 3) replacement is the most cost-effective means of restoring the lost services.\(^{136}\) Even if these conditions are true, this approach may overestimate groundwater values in urban areas, as land is typically more expensive, and underestimate groundwater values in areas where land is less expensive.

Because an assessment of the value of groundwater protected by the final UST regulation is affected by spatial heterogeneity, it requires information about the public’s WTP for protection in all states and territories. These data are not available, and EPA is therefore unable to place a value on the groundwater protected. Instead, we provide an estimate below of the total quantity of groundwater that may be protected by the regulation. We note, though, that a portion of the value of restoring groundwater is captured as part of the cost to remediate each release discussed earlier in this chapter. However, while the cost of restoring groundwater to a higher quality after

\(^{134}\) Natural Resource Damage Assessment (NRDA) is the process of estimating the monetary cost of restoring natural resources injured by discharges of oil or releases of hazardous substances. Monetary costs, or damages, are estimated by identifying the services provided by the injured natural resources, determining the baseline level of the services provided by the resources, and quantifying the reduction in services that result from the natural resource injury. See: U.S. Environmental Protection Agency. Natural Resource Damage Assessment. Accessed at: www.epa.gov/ superfund/ programs/nrd/nrda2.htm.

\(^{135}\) New Jersey’s approach follows three steps. First, the approach determines the total present value of potential yield from the contaminated area over the relevant period of impairment, typically based on a site-specific or regional recharge rate for the area in question. Second, again considering regional recharge rates, it estimates the amount of land required to protect an equivalent present value total volume of groundwater. Finally, the approach identifies and appraises candidate parcels. The cost of acquiring such a parcel for purposes of protecting a volume of groundwater equivalent to what was lost represents the measure of damages.

contamination is captured as part of the cost to remediate each release, it cannot be assumed that remediation captures WTP. In many cases, performing remediation to “safe” levels does not fully eliminate contamination, and therefore does not restore the resource to its original value. Therefore, while a significant portion of the value of the quantity of groundwater protected may be captured by the avoided remediation costs, it may not reflect the full WTP of groundwater protection.

Exhibit 4-17 summarizes a screening assessment of the volume of groundwater contamination potentially avoided because of reductions in releases and groundwater contamination incidents. The analysis relies on the EPA risk assessment, which describes typical volumes of groundwater affected by releases of different sizes over various discovery time frames. EPA’s analysis estimates that, under the Selected Option, 19 billion gallons to 88 billion gallons of groundwater per year are protected under conservative assumptions of 10-gallon release volumes that migrate for only one year before discovery. Under the upper bound conditions of 5,000-gallon release volumes and 100-year lifetimes, up to 3.9 trillion gallons of groundwater per year would be potentially protected by the Selected Option. We also calculate the impact of 50-gallon releases over one- and five-year time frames. These releases appear most consistent with empirical data in the draft 23-state Autopsy Report. Assuming that 50-gallon releases and one- to five-year time frames represent the average parameters of avoided releases, we estimate that approximately 50 to 240 billion gallons of groundwater would be protected annually from LUST-related releases due to the regulatory changes.

138 The risk assessment on which this analysis is based did not estimate groundwater contamination volumes outside of a one-mile radius about the point of release. The assessment notes that groundwater may be contaminated outside that radius, but it does not estimate this quantity. Generally, only releases greater than 1,000 gallons are affected by this phenomenon, i.e., groundwater contamination is likely underestimated for the 5,000 gallon, 100-year release scenario.

139 The release volume data used in the groundwater protection assessment differs from the data used to calculate product loss and may lead to apparent inconsistencies. For instance, under the Selected Option, prevention of 900,000 gallons of product loss over 1,600 releases implies an average of over 500 gallons per release; however, in the groundwater protection analysis, EPA relies on estimates of groundwater contaminated based on releases of 50 gallons for the following two reasons: (1) the volumes of product loss based on Florida data are based on actual data, while the risk analysis relies on a simulation; and (2) the simulation assumes that product is released over a relatively short period of time (approximately one month), which likely overstates the effect of groundwater contamination for any given volume. Given these circumstances, EPA selected an average release volume to characterize groundwater contamination that is significantly lower than the volume implied by the analysis of product loss, but which reduces the risk of overstating positive impacts from groundwater protection.
Under the alternative baseline, assuming that 50 gallon releases and one- to five-year time frames represent the average parameters of avoided releases, approximately 34 to 160 billion gallons of groundwater would be protected annually under the Selected Option.
4.11 Measuring Benefits through Housing Price Changes

A growing body of literature documents the effect that leaking USTs may have on local housing prices. Under certain assumptions, these price changes may serve as a proxy for households’ willingness-to-pay (WTP) to avoid UST releases. The impact of avoiding or reducing releases on housing prices will, at least in part, overlap with some of the benefits discussed above, including avoided human health risks, ecological benefits, and groundwater quality protection (to the extent that the effects are borne by the private households). However, other factors not previously discussed may also contribute to property devaluation (e.g., aesthetics) due to UST releases. By avoiding releases and groundwater contamination incidents, the final UST regulation may generate benefits that could at least partially be reflected by avoided declines in property values.

To estimate the effect of leaking USTs on housing prices, existing studies rely on hedonic property value models, and examine how house prices vary with proximity to a leaking UST, or how prices respond to a release should one occur. Under certain assumptions, the change in price can be interpreted as a measure of WTP to avoid potential contamination. Hedonic property value models isolate the effect of UST leaks on housing prices by controlling for housing and neighborhood characteristics as well as the presence of the UST facility itself. Several previous studies have found that property values were approximately 10 percent to 17 percent lower, all else constant, at homes in the vicinity of leaking or “high-risk” UST systems. Stated-preference studies on the effect of groundwater contamination from a leaking UST on housing values have found similar results.

Two recent hedonic analyses of UST sites in Maryland attempt to provide insight into the effects of leaking USTs at various stages of the cleanup process by using panel data of home sales in three Maryland counties over 11 years. This dataset includes information on home sales prior to the discovery of UST leaks, as well as during and after leak investigation and cleanup. One of these two studies incorporated home-specific data on the level of groundwater contamination and the extent to which information about the leak was received. Although this study found little impact of leaking USTs on home values in general, the study did find 9 percent to 12 percent depreciation at homes where the private groundwater well was tested for contamination after an UST leak. This depreciation occurred regardless of whether the well water was found to be contaminated. The second study, which relied on the same sales dataset

but used information on publicity following the leak rather than the testing of private wells, also found little impact of leaking USTs on home values in general. However, this study found that highly publicized releases decreased surrounding home values by more than 10 percent.\(^\text{143}\) Both studies found that property devaluation was most likely to occur when homeowners were aware of the actual or potential contamination.

As a result, we expect that in the presence of adequate information, such as with highly publicized UST releases, there is the potential for property devaluation from releases due to environmental, human health, and aesthetic changes. Studies that examine those price changes could provide valuable insight into the WTP for avoiding such releases. However, because of the small body of available literature characterizing the potential magnitude of these effects, its limited geographic scope, and the large degree of spatial heterogeneity in the characteristics that would drive the benefits of avoided releases, a benefits transfer to estimate avoided property devaluation from UST releases nationwide would not be appropriate. Therefore, we are unable to quantify the potential benefit of the final UST regulation using hedonic property value studies.

4.12 Conclusion

Exhibit 4-18 summarizes the monetized avoided costs and benefits due to the final UST regulation. In total, EPA estimates approximately $120 million to $530 million in costs will be avoided as a consequence of the Selected Option. Although their value cannot be reliably monetized, roughly 50 billion to 240 billion gallons of groundwater per year will avoid contamination due to new requirements. Finally, the regulation will avoid costs associated with acute events, large-scale releases (for example, releases from AHFDSs and FCTs), and property devaluation, and will generate reductions in human health risks and ecological benefits that we could not quantify in our analysis.

Exhibit 4-18

Summary Of Positive Impacts

<table>
<thead>
<tr>
<th>ALTERNATIVE 1</th>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monetized Avoided Costs Associated With Conventional USTs and EGTs ($ millions, present value 2012$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Releases and groundwater incidents</td>
<td>$490</td>
<td>$200</td>
<td>$410</td>
<td>$650</td>
<td>$440</td>
<td>$200 - $650</td>
</tr>
<tr>
<td></td>
<td>Vapor intrusion - low assumptions</td>
<td>$5.9</td>
<td>$2.5</td>
<td>$5.9</td>
<td>$9.1</td>
<td>$5.9</td>
<td>$2.5 - $9.1</td>
</tr>
<tr>
<td></td>
<td>Product loss</td>
<td>$2.6</td>
<td>$0.78</td>
<td>$4.1</td>
<td>$7.6</td>
<td>$3.8</td>
<td>$0.78 - $7.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$500</td>
<td>$210</td>
<td>$420</td>
<td>$670</td>
<td>$450</td>
<td>$210 - $670</td>
</tr>
<tr>
<td></td>
<td>Non-Monetized Impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundwater protected (billion gallons)</td>
<td>180</td>
<td>74</td>
<td>180</td>
<td>270</td>
<td>170</td>
<td>74 - 270</td>
</tr>
<tr>
<td></td>
<td>Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
</tr>
<tr>
<td></td>
<td>Ecological benefits</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
</tr>
<tr>
<td></td>
<td>Human health risks</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTERNATIVE 2</th>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monetized Avoided Costs Associated With Conventional USTs and EGTs ($ millions, present value 2012$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Releases and groundwater incidents</td>
<td>$210</td>
<td>$34</td>
<td>$220</td>
<td>$410</td>
<td>$220</td>
<td>$44 - $410</td>
</tr>
<tr>
<td></td>
<td>Vapor intrusion - low assumptions</td>
<td>$2.6</td>
<td>$0.56</td>
<td>$3.2</td>
<td>$6.0</td>
<td>$3.1</td>
<td>$0.56 - $6.0</td>
</tr>
<tr>
<td></td>
<td>Product loss</td>
<td>$1.5</td>
<td>$0.36</td>
<td>$2.5</td>
<td>$5.2</td>
<td>$2.4</td>
<td>$0.36 - $5.2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$220</td>
<td>$45</td>
<td>$220</td>
<td>$420</td>
<td>$230</td>
<td>$45 - $420</td>
</tr>
<tr>
<td></td>
<td>Non-Monetized Impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundwater protected (billion gallons)</td>
<td>78</td>
<td>17</td>
<td>96</td>
<td>180</td>
<td>92</td>
<td>17 - 180</td>
</tr>
<tr>
<td></td>
<td>Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
</tr>
<tr>
<td></td>
<td>Ecological benefits</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
</tr>
<tr>
<td></td>
<td>Human health risks</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
<td>n/e</td>
</tr>
</tbody>
</table>

- Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.
- Expert 2 provided responses that generate benefits that are relatively low compared to estimated costs, unlike the other three experts. Conversations with this expert indicated that this discrepancy may be due to his assumptions about partial noncompliance. See Section 4.5.3 and Appendix H for additional discussion.
- Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.
- Due to data and resource constraints, EPA was unable to monetize some of the positive impacts of the final UST regulation. Chapter 4 provides a qualitative discussion of these benefits.
- Benefits not estimated are denoted by n/e.

4.12.1 Summary of Positive Impacts under the Alternative Baseline Scenario

Exhibit 4-19 summarizes the monetized avoided costs and benefits due to the final UST regulation under the alternative baseline. In total, EPA estimates approximately $81 million to $360 million in costs will be avoided as a consequence of the Selected Option under the alternative baseline. Approximately 34 billion to 160 billion gallons of groundwater per year will avoid contamination due to the proposed requirements in the Selected Option. Overall, positive impacts under the alternative baseline are roughly 69 percent of positive impacts when the original baseline is assumed.
Summary Of Positive Impacts Under Alternative Baseline

SELECTED OPTION

<table>
<thead>
<tr>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Releases and groundwater incidents</td>
<td>$230</td>
<td>$79</td>
<td>$180</td>
<td>$350</td>
<td>$210</td>
<td>$79 - $350</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$3.0</td>
<td>$1.2</td>
<td>$2.8</td>
<td>$5.5</td>
<td>$3.1</td>
<td>$1.2 - $5.5</td>
</tr>
<tr>
<td>Product loss</td>
<td>$1.6</td>
<td>$0.59</td>
<td>$2.0</td>
<td>$4.5</td>
<td>$2.2</td>
<td>$0.59 - $4.5</td>
</tr>
<tr>
<td>Total</td>
<td>$230</td>
<td>$81</td>
<td>$190</td>
<td>$360</td>
<td>$220</td>
<td>$81 - $360</td>
</tr>
</tbody>
</table>

Non-Monetized Impacts

Groundwater protected (billion gallons)	89	34	84	160	92	34 - 160
Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)	n/e	n/e	n/e	n/e	n/e	n/e
Ecological benefits	n/e	n/e	n/e	n/e	n/e	n/e
Human health risks	n/e	n/e	n/e	n/e	n/e	n/e

ALTERNATIVE 1

<table>
<thead>
<tr>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Releases and groundwater incidents</td>
<td>$340</td>
<td>$140</td>
<td>$290</td>
<td>$450</td>
<td>$300</td>
<td>$140 - $450</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$4.1</td>
<td>$1.7</td>
<td>$4.1</td>
<td>$6.3</td>
<td>$4.1</td>
<td>$1.7 - $6.3</td>
</tr>
<tr>
<td>Product loss</td>
<td>$1.8</td>
<td>$0.54</td>
<td>$2.9</td>
<td>$5.2</td>
<td>$2.6</td>
<td>$0.54 - $5.2</td>
</tr>
<tr>
<td>Total</td>
<td>$350</td>
<td>$140</td>
<td>$290</td>
<td>$460</td>
<td>$310</td>
<td>$140 - $460</td>
</tr>
</tbody>
</table>

Non-Monetized Impacts

Groundwater protected (billion gallons)	120	51	120	190	120	51 - 190
Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)	n/e	n/e	n/e	n/e	n/e	n/e
Ecological benefits	n/e	n/e	n/e	n/e	n/e	n/e
Human health risks	n/e	n/e	n/e	n/e	n/e	n/e

ALTERNATIVE 2

<table>
<thead>
<tr>
<th>Type Of Impact</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Releases and groundwater incidents</td>
<td>$150</td>
<td>$31</td>
<td>$150</td>
<td>$280</td>
<td>$150</td>
<td>$31 - $280</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$1.8</td>
<td>$0.39</td>
<td>$2.2</td>
<td>$4.1</td>
<td>$2.1</td>
<td>$0.39 - $4.1</td>
</tr>
<tr>
<td>Product loss</td>
<td>$1.1</td>
<td>$0.25</td>
<td>$1.7</td>
<td>$3.6</td>
<td>$1.7</td>
<td>$0.25 - $3.6</td>
</tr>
<tr>
<td>Total</td>
<td>$150</td>
<td>$31</td>
<td>$150</td>
<td>$290</td>
<td>$160</td>
<td>$31 - $290</td>
</tr>
</tbody>
</table>

Non-Monetized Impacts

Groundwater protected (billion gallons)	54	11	67	120	64	11 - 120
Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)	n/e	n/e	n/e	n/e	n/e	n/e
Ecological benefits	n/e	n/e	n/e	n/e	n/e	n/e
Human health risks	n/e	n/e	n/e	n/e	n/e	n/e

a Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risks associated with vapor intrusion. Avoided product loss costs are also separate and additive.

b Expert 2 provided responses that generate benefits that are relatively low compared to estimated costs, unlike the other three experts. Conversations with this expert indicated that this discrepancy may be due to his assumptions about partial noncompliance. See Section 4.5.3 and Appendix H for additional discussion.

c Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

d Due to data and resource constraints, EPA was unable to monetize some of the positive impacts of the final UST regulation. Chapter 4 provides a qualitative discussion of these benefits.

e Benefits not estimated are denoted by n/e.
Chapter 5. Distributional Impacts and Considerations

5.1 Introduction

This chapter considers specific impacts that may be created by the distribution of the costs and benefits of the final UST regulation. EPA has undertaken several analyses to examine how the pattern of costs and benefits may affect specific populations and sectors of the economy. Specifically, the chapter considers:

- **Economic impacts associated with the costs of the final UST regulation:** These could include changes in facility operation and closure of facilities due to cost increases under the regulation. In addition, the final UST regulation may create negative and positive employment impacts, including both reductions in employment to reduce costs and increases in employment to ensure implementation of regulatory provisions. Finally, the regulation may affect public spending related to cleanup of contaminated sites.

- **Energy impacts associated with the final UST regulation:** EPA considers the potential for this regulation to affect the supply, distribution, or use of energy, including changes in the price of fuel.

- **Impacts on small business and governments:** EPA’s regulatory flexibility analysis considers the potential for regulatory costs to have a significant impact on a substantial number of small entities (SISNOSE).

- **Impacts on minority and low-income populations:** EPA considers the potential for the final UST regulation to have disproportionate impacts on minority or low-income populations.

- **Children’s health impacts:** EPA considers the potential for the final UST regulation to have a significant or disproportionate impact on the health of children.

Note that the analyses in this chapter employ data and results from EPA’s primary analysis assuming a constant number of tanks and releases over 20 years. This chapter does not consider impacts under the alternative baseline scenarios. In general, impacts under alternative baseline assumptions would be slightly smaller, reflecting the smaller universe of affected facilities over time.

5.2 Economic Impacts

In the context of regulatory analysis, an economic impact is an effect on the economic wellbeing, or welfare, of any stakeholder due to compliance with the final UST regulation. Direct economic impacts can be borne by producers (i.e., those who produce, distribute, or sell products associated with the regulation), by consumers (i.e., those who purchase products associated with the regulation), or both.
The economic impacts of the final UST regulation result from increases in compliance costs due to new regulation. In the short run, producers (i.e., owners or operators of facilities with UST systems) can respond to cost increases in one of two ways: by passing through some or all costs to customers (consumers) through increases in price, or by absorbing costs and reducing profitability. If producers cannot pass on to consumers any of their increased compliance costs, the regulation will chiefly affect producers in the short run, and economic impacts may include reduced profits, changes in operation, and in extreme cases, facility closure. If producers are able to increase prices on products to recover some or all compliance costs, the regulation will affect consumers by raising prices. The extent to which producers can pass through costs depends on the structure of the markets in which they operate.

As we discuss in subsequent sections, we do not believe that many firms will be able to pass increases in prices on to consumers through higher fuel prices. While local-level motor fuel retail stations may face similar increases in costs of compliance, consumers’ sensitivity to changes in gasoline prices provides a significant disincentive for station operators to increase fuel prices. Instead, compliance costs are likely to be passed on through cross-marketed goods whose demand is less sensitive to changes in prices, such as items for sale at gas station convenience stores.

EPA’s assessment of the economic impacts associated with this regulation is presented as follows:

- **Distribution of affected facilities.** We first discuss the universe of affected facilities, with a focus on the retail motor fuels sector. This section also describes supply and demand dynamics within the retail motor fuels market and the likely economic responses to increased compliance costs.

- **Screening level economic impact analysis of average costs on facilities.** EPA presents a screening assessment of the impacts of average estimated facility-level costs on the facilities affected by the regulation.

- **Sensitivity analysis of economic impacts.** To address uncertainty related to the distribution of costs among UST facilities, we present a “worst-case” sensitivity analysis that identifies the maximum number of facilities that could face significant economic impacts due to regulatory costs. This section also briefly discusses implications for facility closures and changes in employment.

- **Impacts on public funding for cleanups.** The final UST regulation is estimated to result in significant cost savings associated with avoided cleanup requirements as releases decline. A significant portion of cleanup costs are currently borne by the public sector, using taxes and fees to fund state cleanup efforts. EPA examines

144 A high degree of consumer sensitivity to changes in gasoline prices does not imply that prices are equal across gasoline stations in the same area. Factors that affect retail motor fuel prices at the station-level include traffic flows, population density, and intensity of local retail competition on the demand side, while supply can be affected by land cost, station setup, labor costs, and taxes. See: Fischer, Jeffrey. “The Economics of Price Zones and Territorial Restrictions in Gasoline Marketing.” Federal Trade Commission. 2004. Accessed at: http://www.ftc.gov/be/workpapers/wp271.pdf, p. 15 – 16
the potential reduction in public sector liabilities associated with the broader reduction in releases.

5.2.1 Distribution of UST Systems by Industry Sector

As shown in Exhibit 2-3 in Chapter 2, the majority of UST systems are located at motor fuel retailers (i.e., gas stations). EPA estimates that, of the 577,981 UST systems active in 2013, 454,774 (roughly 80 percent) were located at approximately 148,000 motor fuel locations in the United States.145 The remaining 123,207 UST systems (roughly 20 percent of the total) are spread across several industries, including the commercial sector (wholesale, retail, accommodation, and food services), manufacturing, transportation, communications and utilities, and hospitals.146 Notably, the sectors other than retail motor fuels are difficult to characterize with regard to UST systems; depending on their uses, UST systems may occur in varying numbers at facilities of varying size and purpose across all sectors. Only in the retail motor fuel sector do UST systems serve a similar, central function at virtually all facilities in the sector.

In addition to comprising approximately 80 percent of all UST systems, establishments in the retail motor fuels sector also have the highest average number of UST systems per facility, with a facility average of 3.07 (roughly three systems per facility). In comparison, facilities in other sectors have, on average, between 1.47 and 1.81 systems.147 Because many requirements in the final UST regulation occur at the UST system level, establishments in the retail motor fuels sector have the highest average compliance costs per facility. In total, this sector is likely to bear roughly 70 percent of total costs associated with the final UST regulation.148

Because the costs of the final UST regulation will primarily affect the retail motor fuels sector, and because this sector is characterized by a large number of independently-owned facilities and companies, this economic impact analysis focuses on the retail motor fuels sector.

5.2.2 Market Dynamics in the Retail Motor Fuels Sector

This section provides an overview of the U.S. wholesale and retail motor fuels markets, including market concentration, fuel distribution practices, and the implications of market structure for pricing.

145 EPA’s count of UST systems includes states and territories, while the estimate of retail motor fuel locations includes only facilities in the continental U.S., Hawaii, and Alaska. Because only 4,963 UST systems (approximately 0.9 percent) are located in other U.S territories, we use 148,000 facilities as the total population.

146 See Chapter 2.1 for more detail.

147 See Exhibit 2-3. For example, we calculate 1.81 systems per commercial facility by dividing 1,450 systems by 801 facilities (agriculture sector).

148 Total costs under the Selected Option are $160 million, with $130 million directly related to conventional USTs and EGTs (including the cost to read the regulations). Motor fuel retailers will bear approximately 80 percent of these $130 million in costs, which represent roughly 70 percent of total costs under the Selected Option.
Supply-side Characteristics: Ability of Producers to Pass Through Costs

The North American Industrial Classification System (NAICS) code for retail motor fuel sales (i.e., gasoline stations) is 447, and specifically applies to retailers of automotive fuel and automotive oils. Establishments classified under NAICS code 447 include facilities with and without convenience stores, and all have specialized equipment for the storing and dispensing of automotive fuels.\footnote{2007 Economic Census, Retail Trade, Industry series. Gasoline Stations: 2007. Accessed at: http://www.factfinder2.census.gov.}

According to the 2007 Economic Census, average revenues for establishments in NAICS sector 447 were approximately $3.8 million. On average, each establishment employed approximately eight employees.\footnote{While EPA relies on 2007 Economic Census figures for values per facility, this analysis relies on more recent and focused National Petroleum News Survey values for a count of the number of facilities.}

Market Concentration

Market concentration is an indicator of the ability of firms to raise prices in response to changes in the costs of doing business: in markets with fewer, larger companies (i.e., highly concentrated markets), large firms typically have greater ability to pass through price increases to consumers. One indicator of market concentration is the proportion of total sales made by individual firms within a particular market. In markets where concentration is high, few firms earn a relatively large proportion of the total revenues in a market and are sometimes able to pass price increases through to consumers because of limited competition from smaller firms.

The retail motor fuels sector is representative of the broader retail sector in market concentration. Specifically, 41 percent of all sales made by NAICS sector 447 are made by establishments owned by the fifty largest firms in the sector, compared with one-third of sales to the largest 50 firms in the broader retail sector.\footnote{2007 Economic Census, Retail Trade, Industry series. Gasoline Stations: 2007. Accessed at: http://www.factfinder2.census.gov.} This level of market concentration does not suggest that retailers will easily pass through price increases.\footnote{A common measure of market concentration can be obtained through the Herfindahl-Hirschman Index (“HHI”), which is calculated by squaring the market share of each firm competing in the market and then summing the resulting numbers. For example, if only two firms operate in a market and each has 50 percent of sales, then the index would register $50^2 + 50^2 = 5,000$. The U.S. Department of Justice’s merger guidelines categorize markets in which HHI is between 1,000 and 1,800 points as moderately concentrated, and those in which the HHI is in excess of 1,800 points as concentrated. Because the four largest firms in NAICS sector 447 generate only 10 percent of the sales in that market, the HHI will be well below 1,000 for this sector. We conclude that firms’ relatively small market share translates into weak pricing power. For additional information, see: U.S. Department of Justice. Herfindahl-Hirschman Index. Accessed at: http://www.justice.gov/atr/public/testimony/hhi.htm.}

\footnote{While EPA relies on 2007 Economic Census figures for values per facility, this analysis relies on more recent and focused National Petroleum News Survey values for a count of the number of facilities.}

\footnote{A common measure of market concentration can be obtained through the Herfindahl-Hirschman Index (“HHI”), which is calculated by squaring the market share of each firm competing in the market and then summing the resulting numbers. For example, if only two firms operate in a market and each has 50 percent of sales, then the index would register $50^2 + 50^2 = 5,000$. The U.S. Department of Justice’s merger guidelines categorize markets in which HHI is between 1,000 and 1,800 points as moderately concentrated, and those in which the HHI is in excess of 1,800 points as concentrated. Because the four largest firms in NAICS sector 447 generate only 10 percent of the sales in that market, the HHI will be well below 1,000 for this sector. We conclude that firms’ relatively small market share translates into weak pricing power. For additional information, see: U.S. Department of Justice. Herfindahl-Hirschman Index. Accessed at: http://www.justice.gov/atr/public/testimony/hhi.htm.}
Geographical Concentration

Gasoline stations are generally distributed across the United States in proportion to population. The most populous states have more establishments and higher proportions of gasoline sales.\(^{153}\) While no data are available regarding the distribution of facilities by size, the retail gasoline market is relatively homogeneous nationwide, and it is likely that facilities of different sizes are distributed according to population as well.

Ownership Structure

The 2013 NACS Retails Fuel Report published by the National Association of Convenience Stores (NACS) classifies motor fuel retailers into three broad categories, depending on the manner in which they obtain their wholesale product:\(^{154}\)

- **Refinery-Owned:** Less than one percent of facilities are retail operations directly owned by large oil producers. These stations receive wholesale product directly from the oil company’s refinery, and their profit is part of the oil company’s profit. At these facilities, the parent corporation manages all aspects of the customer experience and establishes a consistent brand identity.

- **Branded Independent Retailers:** Approximately 50 percent of facilities are branded independent retailers. These facilities are owned by independent operators and contract with a refinery to sell a particular brand of gasoline. This owner leverages the supplier’s marketing and ensures constant supply in exchange for a surcharge per gallon paid to the supplier. Branded retailers’ contracts with refiners typically contain clauses that specify the margins retailers can charge above wholesale prices.

- **Unbranded Independent Retailers:** Approximately 50 percent of facilities are unbranded independent retailers. These retailers purchase gasoline on the open market, without committing to a particular supplier.

Wholesale gasoline is a commodity, but varies in price regionally based on a combination of refinery locations, specific fuel mixes (e.g., to meet air quality standards), and the type of distributors in a region. Types of wholesalers include:\(^{155}\)

- **Refinery-owned wholesalers:** Refiners (typically large oil companies) distribute directly to their own retail outlets in all regions, and in some areas may also

distribute directly to independent branded and unbranded retailers (competing with other suppliers in the unbranded market).

- **Area Franchisees:** Otherwise known as “jobbers,” these firms obtain the right from oil companies to franchise a brand of motor fuel in a particular area. Jobbers are responsible for siting and building new facilities and marketing the brand, which further removes refiners from operating activities. The term is also used to describe wholesale distributors of motor fuels that offer multiple brands.

While some regions have significant competition among distributors, the market power of refiners and the contract structure of many retailers means that retailers in general have little control over the price of their fuel supply. As a consequence, any cost increases must be absorbed by retailers or passed through to customers.

Demand-side Characteristics: Consumer Response to Price Increases

Consumer reactions to price changes are critical in determining whether a producer (i.e., retailer) can pass on costs. The degree to which consumers change the quantity they consume when the price of a good increases is known as the price elasticity of demand. Economists define demand as inelastic if the quantity demanded changes less than price (e.g., quantity demanded changes by one percent when prices rise (or fall) by 1.4 percent). Similarly, demand is said to be elastic if quantity demanded changes proportionally more for a relative change in price.

Motor fuel retailers rely on sales of gasoline for most revenues, though most also sell other automobile-related or convenience products. Research has documented that broad (national) market demand for gasoline is relatively price-inelastic in the short-run: consumers do not make immediate, significant changes in gasoline purchases if prices increase. On its face, this dynamic would suggest that a retailer could pass through any cost increases to consumers. However, the structure of the market for gasoline prohibits significant price fluctuations at the facility level. While national demand is relatively consistent, consumers are highly sensitive to price differences within local markets. Small increases in price at one location can produce relatively large changes in quantity demanded for a particular facility as consumers seek other local retailers with lower costs.

156 Other suppliers, e.g. for convenience store items, may be easier with which to negotiate but may not be available to all motor fuel retailers.

A recent National Association of Convenience Stores (NACS) survey provides insights into the price pressures faced by local retailers.\(^{159}\)

- 66 percent of respondents stated that price was the most important factor in their gasoline-purchasing choices.
- 67 percent stated that they would take the time to make a left turn on a busy street to save five cents per gallon of gasoline.
- 39 percent said they would drive 10 minutes out of their way (a 20-minute round trip plus cost of fuel) to save five cents per gallon. This amounts to savings of less than one dollar in terms of fuel for nearly all passenger vehicles on the road today.

Local competition for price-sensitive customers discourages retailers from increasing gasoline prices, except in cases such as wholesale price increases or tax increases where changes are uniform across facilities.\(^{160}\) Because compliance costs may vary by facility depending on existing technology and practice, it is not likely that retailers will opt to pass through compliance costs by raising gasoline prices. While retailers may be able to increase the prices of other products (e.g., motor oil or convenience store products), it is also likely that some retailers will be forced to absorb some or all of the costs associated with the regulation.

Retailers in relative isolation may be better positioned to pass on increases in cost to consumers. Research shows that store-level pricing is sensitive to the concentration of competition. In areas where motor fuel retailers are relatively sparse, facilities may be better able to pass cost increases on to consumers, for whom the opportunity cost of finding an alternative store is higher when they must travel farther.\(^{161}\)

However, because consumers are especially price sensitive about gasoline and it is not clear what other options owners or operators have to increase prices, we assume that owners or operators will likely bear the economic impacts of the regulation. We therefore examine producer impacts, including the possibility that some facilities may close due to cost increases.\(^{162}\)

\(^{160}\) This may vary, depending on the region. For example, in Vancouver, gasoline prices are uniform and rigid (due to tacit collusion among wholesalers), while prices in Ottawa are dispersed and volatile (due to the price-disrupting behavior of “maverick” firms). See: Eckert, Andrew and Douglas S. West. “A Tale of Two Cities: Price Uniformity and Price Volatility in Gasoline Retailing.” *Annals of Regional Science*, 2004, vol. 38, issue 1, p. 25-46.

\(^{162}\) A more detailed analysis of consumer impacts is prohibitively difficult for two reasons. First, the precise set of goods and services whose prices may increase is difficult to characterize. Second, gasoline aside, the main draw to products sold at retail motor fuel facilities is convenience, i.e., ease of access. Most non-fuel products can be purchased for lower prices at grocery stores, for example. Consumers can therefore shop at other types of facilities for the same goods, but typically opt to pay a premium for purchases at a convenient location. Note that, even
5.2.3 Assessment of Market Exits and Employment Impacts

In a market setting where producers cannot reliably pass through costs, the most significant economic impacts are related to reduced facility profits. In some cases, managers can cut supply or employment costs (this could result in smaller worker paychecks). In cases where costs exceed facility profits, it is likely that in the long term a facility would exit the market. A critical factor, therefore, is an estimate of average firm or facility profits.

It is difficult to estimate the profitability of retail motor fuel stations because many are small and privately held and are not required to report profits publicly. However, some evidence suggests that profit margins are below five percent, and data suggest that average after-tax profit margins reported to the IRS for gas stations are roughly 1.8 percent. Holding all other things equal, an annual cost greater than 1.8 percent of gross sales (i.e., a cost greater than $1,800 for a firm earning $100,000 a year) would exceed average reported profits and would therefore cause a motor fuel retailer to operate at a loss. If the facility cannot adjust its prices or lower costs, it will eventually exit the market.

Consistent with the assessment of small business impacts in Section 5.4 of this chapter, EPA considers the impact of the final UST regulation on small facilities in order to identify the most likely facilities to exit the market. Assuming that all motor retail facilities, regardless of income, have an “average” configuration of approximately three tanks, EPA calculates the average total cost per facility to be $715 (2012 dollars), or $658 in 2007 dollars, under the Selected Option (reflecting a cost of approximately $232 per UST system in 2012 dollars, or $214 per system in 2007 dollars).

Though consumers will be able to purchase equivalent goods at different locations, there is a reduction in consumer surplus associated with the loss of convenience in the purchase.

For corporations reporting net income, profit margins before non-cash items (depreciation and amortization) and income tax (or credits) were approximately 1.8 percent (2.4 percent less amortization and depreciation, but not taxes paid). Earnings before depreciation and amortization account for the fact that firms can postpone capital expenditures to save cash, and would likely do so while adapting to higher costs. If non-cash items and taxes are included, earnings drop to roughly one (1.3) percent. Our approach averages the two options (2.4 percent, before amortization and discounting, and 1.3 percent, after including non-cash items and taxes) to yield a margin of 1.8 percent, reflecting an assumption that firms will do something to adapt to higher costs while they sort out how to adjust prices, and that firms typically minimize profits reported to the IRS. See: U.S. Internal Revenue Service. SOI TaxStats. Table 7: Corporation Returns with Net Income for 2009. Accessed at: http://www.irs.gov/taxstats/article/0,,id=170693,00.html. See also 2002 - 2012 RMA Statement Studies, Sector 447, for a range of profitability data from facilities of different sizes.

Throughout this chapter, EPA refers interchangeably to reductions in net profit and the proportion of revenues that the costs of the final UST regulation will create. In both cases, we refer to the impact of the cost of the final UST regulation on the profitability of a facility.

Specifically, we assume 3.07 UST systems per facility.

Under Alternative 1 the average retail motor fuel facility cost would be $1,509, and under Alternative 2 it would be $369 (2012 dollars). In Indian country, where facilities are required to meet more requirements than elsewhere; average cost per facility is $2,257 under the Selected Option, $3,326 under Alternative 1, and $1,801 under Alternative 2 (2012 dollars).
Using data from the 2007 Economic Census and the regulatory flexibility screening analysis methodology described in Section 5.4, EPA concludes that a facility-level cost of $658 ($715 in 2012 dollars) would exceed 1.8 percent of total reported 2007 revenues (i.e., be equal to or greater than total profits) for 19 firms, representing less than one-tenth of one percent of the universe of 148,000 motor fuel retail facilities. In comparison, approximately 2,024 facilities per year closed over the period between 2005 and 2013. In some cases, any exits related to regulatory costs may coincide with exits that would have occurred in the baseline. Furthermore, it is likely that many of the affected facilities will also have options to pass through at least a portion of costs, and many small facilities may have fewer than three UST systems. Therefore, EPA concludes that the market impacts associated with this regulation are likely to be diffuse and minimal, assuming a relatively uniform distribution of costs nationwide.

Sensitivity Analysis: Considering Impacts of a “Worst-Case Scenario”

EPA’s finding of minimal market impacts rests on an assessment of average facilities with average regulatory compliance costs. If the costs of the final UST regulation are concentrated on certain facilities, it is possible that additional impacts (e.g., market exits) could occur. EPA therefore employs several sensitivity analyses to consider alternative, “worst-case” distributions of regulatory costs across facilities.

To examine the extent to which the distribution of regulatory costs can be “concentrated” on specific facilities, EPA constructs a “worst-case distribution” in which regulatory costs are concentrated on a subset of facilities. To obtain this distribution, we artificially assign costs to create the largest cost for the largest number of facilities, by assuming that the same facilities in

167 An analogous statement of this outcome is that all facilities with revenues below approximately $36,300 per year would incur new costs equal to or in excess of profits of 1.8 percent of total revenue. Note that U.S. Census data indicate that all firms in the motor fuel sector that earn less than $36,300 are single-location firms.

168 NPN reported a station count of 147,902 in 2013, compared with 164,094 in 2005. Note that 168,987 represents the total number of establishments offering gas filling services reported by NACS. We adjusted this number downward by the 4,893 “hypermarketer” facilities reported in existence by NACS in 2012 to reach the 164,094 retail motor fuel stations nationally. For the purposes of these calculations, we adjust both station counts downward for the number of “hypermarketers” providing retail motor fuel in 2013, which are not gas stations but rather supermarkets or wholesalers with filling stations. These figures imply a decrease of approximately 16,000 stations over eight years, or approximately 2,024 (1.2 percent) per year. See: National Petroleum News. "MarketFacts 2013"; and National Petroleum News. Market Pulse. "2005 U.S. Motor Fuel Station Count: 168,987," both accessed at: http://www.npnweb.com/. Additionally, see “The U.S. Petroleum Industry: Statistics, Definitions” from the National Association of Convenience Stores (NACS), accessed at:

169 Ideally, EPA would evaluate which facilities are likely to incur significant impacts by examining the specific changes each will be required to make to achieve compliance. These costs would be compared with the facility’s revenue and profit margin to establish whether it can incur the additional costs and remain in business. To EPA’s knowledge, no data of this resolution are available for the large population of facilities with UST systems.
the state make every regulatory change.170 We further assume that the smallest facilities in the U.S. are the facilities that must make the regulatory changes.171

\textbf{Exhibit 5-1} displays the universe of retail motor fuel UST facilities in the United States when costs are allocated to concentrate impacts. This creates an allocation of costs that varies broadly, from as little as $30 to over $4,500 per facility.172

170 For example, consider a state with 850 UST facilities that will be subject to three hypothetical technical requirements: Requirement A will affect 500 facilities and cost $50 per facility; Requirement B will affect 250 facilities and cost $100 per facility; and Requirement C will affect 100 facilities and cost $200 per facility. The average cost for all of these facilities is $82 \((((50*500) + (250*100)+(100*200))/850)\). However, the highest cost possible in this state is $350 (costs of $50 from Requirement A, $100 from Requirement B, and $200 from Requirement C), and the largest number of facilities that could incur this cost is 100 (the smallest of the universes affected by Requirements A, B, or C). The next highest cost is $150 (costs of $100 from Requirement B and $50 from Requirement A), which affect 150 facilities, excluding those also affected by Requirement C. The last group would be affected only by Requirement A, with 250 facilities at a cost of $50 per facility. Such an allocation of costs creates an unlikely outcome with a high potential for market exits. Appendix K provides the detailed summary of this threshold calculation.

171 EPA also examined a sensitivity analysis that would specifically consider the effects of "front-loading" capital cost requirements, but this scenario would have no effect on the results of the "worst-case" sensitivity analysis. The "worst-case" scenario examined here already assumes simultaneous implementation of all requirements under the final UST regulation, including several which actually have delayed implementation schedule (e.g., secondary containment tests). In addition, the analysis includes annualized costs for capital requirements for Indian country systems (e.g., secondary containment). The "worst-case" scenario does not address the replacement of closure of lined tanks that cannot be repaired according to a code of practice, and does not assume that full capital costs are incurred in a single year for affected tanks, but the facilities that would be affected by these changes are already among the highest cost facilities identified, and are already therefore included in the number of facilities potentially affected under this worst-case assumption.

172 One possible concern is whether facilities that are likely to face high costs are geographically concentrated in certain states or regions. To assess this, we examined the geographic distribution of the six percent of facilities that would incur the highest costs if costs were artificially concentrated (specifically, 9,310 facilities incurring costs greater than $1,500). Our analysis includes 4,681 firms incurring costs between $1,500 and $1,600. For simplicity and to preserve a conservative estimate, we assume that these firms all incur costs of $1,600.) The proportion of "highest-cost facilities" does not vary substantially by state, because several regulatory requirements affect only a small percentage of the entire UST universe in any state. The concentration (percentage) of facilities that could be subject to costs over $1,600 is highest in American Samoa, where 6.3 percent of facilities could be affected at that cost. In the remaining 55 states and territories, facilities that could, in a worst-case scenario, incur costs over $1,600 represent less than 3.7 percent of total facilities within each state. Differential economic impacts across states are not likely to occur as a result of disproportionate state-level impacts from this regulation, even in a scenario of maximum concentration of costs across the fewest firms.
To assess economic impacts using this unlikely worst-case scenario, EPA pairs the distributions of facility size and costs to maximize the number of situations in which estimated costs would exceed 1.8 percent of gross sales (the average reported retail motor fuel facility profit). Facilities with costs exceeding 1.8 percent of revenues would potentially face a significant economic impact under worst-case assumptions.

Market Exits

Even under the artificially adverse scenario presented above, economic impacts to affected entities are limited. The least compliant facilities in the least regulated states would incur costs under $4,600 in the worst case.\(^{173}\) This represents less than 1.8 percent of revenues for facilities earning more than $250,000 per year, suggesting that even these facilities could

\(^{173}\) Facility costs of roughly $4,300 or less are representative of approximately 99 percent of worst-case, high-end cost outcomes. Facilities in Indian country are the only exception, as they will also be required to comply with additional regulations for operator training and secondary containment. Because this group of facilities represents only roughly one percent of facilities with costs at or above $4,300, we do not present them as the main highest-cost scenario.
absorb all worst-case costs without becoming unprofitable.174 To assess the worst-case potential impact, EPA assumed that the facilities with the highest costs (those in the right-hand tail of the distribution in \textbf{Exhibit 5-1}) are also the facilities with the lowest revenues and allocated costs to those facilities to maximize the number of potential exits. EPA estimates that 4,500 facilities earning less than $250,000 per year in the U.S. (in 2007 dollars) would be subject to costs exceeding 1.8 percent of revenues in the worst-case scenario.175,176 To the extent that those facilities could not increase prices to offset higher costs, it is likely that at least some of them would exit the market. If all of these facilities exited the market, the closures would constitute roughly three percent of existing facilities.177 However, this scenario imposes several unlikely assumptions, including:

- \textbf{All facilities with income less than $250,000 have average configurations of three UST systems.} In fact, small facilities likely have fewer than three tanks and would therefore be subject costs that are much lower than the facility-level costs estimated here. It is likely that the smallest facilities also operate only a single UST system, which would reduce their compliance costs by approximately 67 percent.178 Under such circumstances, most small operators would not be subject to a significant economic impact even in the worst-case scenario.

- \textbf{No facility has any option to increase prices on any goods or services or to identify any options for savings.} While gasoline prices are unlikely to rise in response to this regulation, consumers may be willing to pay marginal cost

174 For simplicity, we assume that all facilities earning less than $250,000 per year (in 2007 dollars) earn less than $243,000, in order to enable the use of Census data to estimate the number of facilities subject to costs exceeding 1.8 percent of revenues. This is a conservative estimate; in reality, there are likely some facilities earning between $243,000 and $250,000 per year that would not be subject to costs exceeding 1.8 percent of revenues.

175 The 2007 Economic Census identified 3,463 facilities that earned less than $250,000 in 2007. For the purposes of its SBA analysis, EPA revised this estimate upward by 38 percent to reconcile disparities between Census gas stations counts from 2007 and NACS gas station counts from 2013. Of the estimated 4,781 facilities earning less than $250,000 per year in 2007, we arrayed the highest cost facilities with the highest revenue facilities, to ensure an estimate of as many exits as possible, which yielded an estimate of approximately 4,500 facilities that could exit the market. See Appendix K for a detailed explanation of our methods.

176 Census data on number of facilities per firm indicate that virtually all firms earning less than $250,000 per year in 2007 had only one facility. We therefore use “firm” and “facility” interchangeably in this context.

177 In other words, of the 4,781 facilities earning less than $250,000 per year in 2007, EPA estimates that up to 4,500 facilities may incur compliance costs that exceed 1.8 percent of revenues (i.e., costs greater than $4,600 per facility). To the extent that those facilities could not increase prices to offset higher costs, it is likely that at least some of them would exit the market. See Appendix K for a detailed explanation of our methods.

178 According to the 2013 NACS Convenience Store Industry Fact Book, the average motor fuel retailing facility has monthly throughput of approximately 128,000 gallons. As discussed in Chapter 2, we believe that the average motor fuel retailer operates approximately 3 UST systems. This equates to roughly 42,700 gallons of monthly throughput per system. In addition, based on information from a mid-size retail fuel marketer, EPA believes that a facility requires a minimum throughput of approximately 30,000 gallons per month to remain economically viable, which equates to upward of $50,000 in revenues per month given gasoline prices in excess of $2.00 since 2005. See: U.S. Energy Information Administration. Petroleum & Other Liquids. Retail prices for Regular Gasoline. Accessed at: \url{http://www.eia.gov/dnav/pet/pet_pri_gnd_a.epmr_ppe_dpgeal_a.htm}.

5-12
increases on other products and services. Moreover, in remote rural areas, retailers may be able to directly pass costs on to consumers.

- **A profit margin of 1.8 percent is standard.** The worst-case scenario uses the average profits reported to the IRS to determine typical profitability. However, privately-held companies have a clear incentive to minimize taxable profits when filing income taxes with the IRS. Because net income (profit) is taxable, corporations that are not publicly traded typically take legitimate steps (e.g., year-end investments in equipment, employee bonuses) to reduce both net income and tax burdens. As a result, a 1.8 percent after-tax profit estimate based on IRS data is likely to understate average profitability.

Finally, this analysis does not adjust the 2007 Economic Census data on facility revenues for inflation, though costs are presented in 2012 dollars. Due to the variability of gasoline pricing, we adopt a conservative assumption that revenues have remained static in nominal terms since 2007.

While our sensitivity analysis suggests that an extreme worst-case scenario could impose significant economic impacts on as many as 4,500 facilities, it is unlikely that a significant number of actual market exits would result from the final UST regulation. It is more likely that closures will occur in specific cases where facilities with high upgrade costs also face high levels of local competition. These closures would likely be consistent with the current rate of industry consolidation of 1.2 percent per year.

Price Impacts

The high sensitivity of local demand to changes in retail motor fuel prices makes it unlikely that firms will react to the final UST regulation by raising gasoline prices. However, the cost of other goods and services could potentially increase as firms seek to offset regulatory costs through sales of other products. Retailers will likely increase the prices of goods that are relatively price inelastic, such as tobacco products, auto service charges, or snack foods and other convenience items.

Employment Impacts

In addition to addressing the costs and benefits of the final UST regulation, EPA has analyzed the impacts of this regulation on employment. While a standalone analysis of employment impacts is not included in a standard cost-benefit analysis, such an analysis is of particular concern in the current economic climate of sustained high unemployment. Executive Order 13563, “Improving Regulation and Regulatory Review” (January 18, 2011), states, “Our regulatory system must protect public health, welfare, safety, and our environment while promoting economic growth, innovation, competitiveness, and job creation.” For this reason, we are examining the effects of these requirements on employment in the regulated sectors. A discussion of costs associated with this regulation (including labor costs) is included in Chapter 3, Section 3.2.2, with a sensitivity analysis regarding labor cost assumptions in Chapter 3, Section 3.5.1.
The employment effects of environmental regulation are difficult to disentangle from other economic changes and business decisions that affect employment over time and across regions and industries. In light of these difficulties, economic theory provides a constructive framework for approaching these assessments and for better understanding the inherent complexities in such assessments. Neoclassical microeconomic theory describes how profit-maximizing firms adjust their use of productive inputs in response to changes in their economic conditions. In this framework, labor demand impacts for regulated sectors can be decomposed into output and substitution effects. For the output effect, by affecting the marginal cost of production, regulation affects the profit-maximizing quantity of output. The substitution effect describes how, holding output constant, regulation affects the labor-intensity of production. Because the output and substitution effects may be both positive, both negative or some combination, standard neoclassical theory alone does not point to a definitive net effect of regulation on labor demand at regulated firms.

In the labor economics literature, there is an extensive body of peer-reviewed empirical work analyzing various aspects of labor demand, relying on the above theoretical framework. This work focuses primarily on the effects of employment policies (e.g., labor taxes, minimum wage). In contrast, the peer-reviewed empirical literature specifically estimating employment effects of environmental regulations is very limited. Several empirical studies, including Berman and Bui (2001) and Morgenstern et al (2002), suggest that net employment impacts may be zero or slightly positive but small even in the regulated sector. Other research suggests that more highly regulated counties may generate fewer jobs than less regulated ones. However, since these latter studies compare more regulated to less regulated counties, they overstate the net national impact of regulation to the extent that regulation causes plants to locate in one area of the country rather than another. List et al. (2003) find some evidence that this type of geographic relocation may be occurring. Overall, the peer-reviewed literature does not contain evidence that environmental regulation has a large impact on net employment (either negative or positive) in the long run across the whole economy.

Analytic challenges make it very difficult to accurately produce net employment estimates for the whole economy that would appropriately capture the way in which costs, compliance spending, and environmental benefits propagate through the macro-economy. Quantitative estimates are further complicated by the fact that macroeconomic models often have very little sectoral detail and usually assume that the economy is at full employment. The EPA is currently in the process of seeking input from an independent expert panel on modeling economy-wide impacts, including employment effects.185

As described in detail in Chapter 2, Section 2.3, this regulation affects sectors using active UST systems. Most UST systems in the United States are located at motor fuel retail establishments (i.e., gas stations), and virtually all motor fuel retail establishments use UST systems. EPA estimates that this sector employs approximately 1.1 million workers.186

The increased operating costs incurred by facilities in this sector to comply with this regulation may result in slightly increased prices for their goods and services, as previously discussed. These potential price increases may result in reduced demand and thus reduced output of the facilities' goods and services. This could translate into lower demand for labor, a result commonly referred to as the output, or demand, effect.187 As discussed earlier, the price effect is expected to be small, and given the relatively inelastic demand for gasoline, the demand effect is likely to be small as well. The final UST regulation may also contribute to a small number of market exits, which could cause a temporary negative employment effect as these workers look for other positions. However, as noted above and discussed below, these exits are consistent with exits that are already occurring in the baseline.188 In addition, given the competitive nature of the retail motor fuel sector and the similar regulatory costs faced by each facility, many of these facilities may be able to pass through at least a portion of these costs (see Price Impacts section above).189 As a result, the potential employment effect of market exits from the final UST regulation is likely small.

While the final UST regulation is unlikely to have measurable employment impacts related to market exits, it is possible that some facilities will attempt to offset regulatory costs by reducing hours or staff. Even under worst-case conditions, it is unclear whether facilities would reduce employment. Because most personnel employed at retail motor fuel facilities earn hourly wages rather than salaries, facilities have little to gain from eliminating positions and laying off

186 The 2011 County Business Patterns report states that NAICS sector 447 employs 847,516 workers at 110,830 facilities. EPA extrapolated this value to the approximately 148,000 facilities counted by the 2012 NACS survey.

188 See footnote 169.

189 Note that small marginal facilities are also likely to have fewer than three UST systems and thus face lower than average facility-level compliance costs.
employees: operations require a particular number of people-hours, and the owner or operator will still need to allocate those tasks among the remaining workers.

Some requirements of the final UST regulation may have a positive impact on employment. For example, walkthrough inspections require labor as a primary input; this may lead to small increases in employment at regulated facilities. In addition, the increased demand for testing services and training under the final UST regulation may also increase demand for labor. Since the final UST regulation could potentially affect the demand for labor both positively and negatively, the overall direction of net employment impacts is unclear, but is most likely very small relative to the size of the industry.

Long-run Economic Impacts

The final UST regulation is unlikely to generate substantial additional impacts in the long run. In an unlikely worst-case scenario it could accelerate ongoing consolidation trends in the retail motor fuel sector, but only if market exits result. NACS reports that 164,094 motor fuel stations operated in the United States in 2005. By 2013, this number had fallen to 147,902, a decrease of 9.9 percent compared with 2005, or approximately 1.2 percent per year. While broader market consolidation is related to ownership strategies among oil companies and general economic patterns, facilities facing significant periodic costs (e.g. UST system replacement) may be among those most likely to close. Similarly, facilities that face higher operating costs as a result of the regulation may opt to close. In such cases, exits caused by the regulation are likely to affect the most marginal firms and would likely coincide to some extent with exits that would have occurred in the absence of the regulation. These closures will occur in the context of the national decline in the number of facilities, such that the regulation is unlikely to cause a significant number of closures beyond those that will occur as part of the existing trend.

5.2.4 Assessment of Public Sector Cost Savings Related to Avoided Releases

A major positive effect of the final UST regulation derives from its impact on state funds created for the purpose of providing a financial responsibility mechanism to UST owners and operators. Among 56 state and territory governments, 35 state funds are active and continue to accept claims. In many of these states, owners and operators are required to pay for a portion

190 For example, EPA estimates that monthly walkthrough inspections of a facility will take roughly half an hour to complete, on average. A compliant owner or operator in a state that does not currently have this requirement will need to allocate roughly six man-hours of incremental effort per year to satisfy this portion of the final UST regulation.

191 Note that 168,987 represents the total number of establishments offering gas filling services reported by NACS. We have adjusted this number downward by the 4,893 “hypermarketer” facilities reported in existence by NACS in 2012 to reach the 164,094 retail motor fuel stations nationally.

192 See footnote 169.

193 State funds are created by state legislation and are submitted to EPA for approval before they can be used as financial responsibility mechanisms.

194 At the time of this assessment, Connecticut had not fully sunsetted its state fund. It was therefore included in this assessment; in other words, this assessment is based on 36 state funds. U.S. Environmental
of remedial actions through deductibles that generally range from zero to $100,000.195 Given an average state-fund cost of remediation per site of $124,488 in 2012, however, state funds are frequently required to finance some portion of remediation costs.196 In most cases, states generate money for their funds by levying tank registration and petroleum fees, which are then used to provide payments for remediation of releases beyond the deductibles paid by responsible parties. In states where funds rely on gas taxes and accept claims related to releases, these expenditures represent subsidies from the public to owners or operators responsible for releases.

The extent to which this regulation reduces the occurrence of new releases produces two welcome effects:

- **Assignment of costs.** Fewer releases imply lower expenditures from state funds. This represents a reduction in this public subsidy and a reassignment of costs from the public remediation costs to private entity prevention costs. This improves market signaling and efficiency by requiring owners and operators to focus on release prevention.

- **Competitive effects.** High-performing owners or operators are less likely to incur significant regulatory costs than low-performing owners or operators. As a result, the regulatory costs and cost savings improve the alignment of incentives to focus on private-sector prevention costs and reduce public-sector remediation costs.

To illustrate the potential magnitude of the public expenditures that could be affected by the regulation (i.e., distributional effects), we examine states that have active state funds and categorize them into those that finance their funds via petroleum and tank fees (“Tier 1”), or via only a tank fee (“Tier 2”).197

We assume that states that are required to comply with a larger number of the new requirements will experience a greater reduction of releases, all other things equal. To estimate the distribution of avoided releases, we calculate the average number of requirements with which

196 Association of State and Territorial Solid Waste Management Officials. *State Fund Survey Results 2012, Summary of State Fund Survey Results.* Accessed at: http://www.astswmo.org/Files/Policies_and_Publications/Tanks/2012_State_Funds_Survey2012-SummaryTable.pdf. For example, representatives of the state of New Hampshire indicated that in most cases, the State Fund incurs remediation costs, except that the owner or operator typically bears the cost of immediately stopping the leak. In addition, New Hampshire indicated the owner or operator typically pays a $5,000 deductible towards the final remediation cost, and in New Mexico, the owner or operator typically pays a deductible between $0 and $10,000.

the systems in each state will need to comply.198 We assign avoided releases based on both the number of systems in a state and the average number of requirements on each system, and we value releases based on the national profile of avoided releases and avoided groundwater incidents.199 Using ASTSWMO data, we subtract from our estimate of the potential cost borne by the public the deductible that owners or operators would be expected to pay.200 See Appendix N for a discussion of the methodology used.

Exhibit 5-2 presents the results of our screening-level assessment. Among states with active state funds that fall into Tier 1 or Tier 2, we find that the potential reduction in public expenditures could reach $65 million to $290 million ($170 million on average) under the Selected Option, with $50 million to $220 million ($130 million on average) in Tier 1 and $14 million to $64 million ($38 million on average) in Tier 2.201 Reductions in public expenditures would equal approximately $120 million to $370 million ($250 on average) under Alternative 1 and $26 million to $240 million ($130 on average) under Alternative 2. These savings would be slightly lower in a scenario where deductibles are in the upper end of their ranges. We note that, to realize the savings in public expenditures in the near term, state government action would be required to lower petroleum fees. Alternatively, to the extent that funds are not constrained in their use, a redistribution of funds (e.g., to existing sites awaiting cleanup) could also represent a significant public benefit through more rapid completion of existing sites. The values presented in this table reflect discounting to account for regulatory compliance schedules.

This screening-level analysis is intended only to identify the potential magnitude of impacts on state fund liabilities. A more detailed analysis of specific state program costs and the likely distribution of avoided releases would be necessary to precisely measure potential savings. Overall, the values in Exhibit 5-2 suggest that requiring owners and operators to focus on prevention reduces costs to state financial assurance funds, on average, by over $160 million under the Selected Option, $230 million for Alternative 1, and $120 million for Alternative 2.

198 We use the number of times a system is affected rather than the actual number of systems affected because we lack the data to determine which units are affected by each requirement. For example, if two requirements each affect 1,000 and 500 units, respectively, they may ultimately affect between 1,000 and 1,500 units, depending upon whether any overlap exists among the two regulated universes.

199 We calculate this as avoided costs due to avoided releases divided by number of releases avoided. The procedure is similar for avoided groundwater remediation costs.

200 We rely on the ASTSWMO Fund Survey Results 2012 for the data that underlie our construction of tiers. These data are available at: http://www.astswmo.org/publications_tanks.htm.

201 Due to our calculation methods, two states with very high deductibles (Minnesota and Virginia) showed deductible amounts and avoided releases that exceed their estimated avoided release costs. We exclude them from our calculations, such that our estimates for likely underestimate the potential for redistributive effects.
Exhibit 5-2

Summary Of State Financial Assurance Fund Distributional Effects

<table>
<thead>
<tr>
<th>Fund Revenue Mechanisms</th>
<th>Selected Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low deductible scenario (High distributional effects)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tier 1 (petroleum & tank fee): average value (range of all values in italics)</td>
<td>$130 ($50 - $220)</td>
<td>$200 ($91 - $290)</td>
<td>$96 ($19 - $180)</td>
</tr>
<tr>
<td>Tier 2 (tank fee only): average value (range of all values in italics)</td>
<td>$38 ($14 - $64)</td>
<td>$58 ($27 - $85)</td>
<td>$32 ($6.5 - $59)</td>
</tr>
<tr>
<td>Total (range of all values in italics)</td>
<td>$170 ($65 - $290)</td>
<td>$250 ($120 - $370)</td>
<td>$130 ($26 - $240)</td>
</tr>
<tr>
<td>High deductible scenario (Low distributional effects)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tier 1 (petroleum & tank fee): average value (range of all values in italics)</td>
<td>$120 ($46 - $200)</td>
<td>$180 ($86 - $260)</td>
<td>$88 ($18 - $160)</td>
</tr>
<tr>
<td>Tier 2 (tank fee only): average value (range of all values in italics)</td>
<td>$36 ($14 - $59)</td>
<td>$55 ($26 - $80)</td>
<td>$30 ($6.1 - $55)</td>
</tr>
<tr>
<td>Total (range of all values in italics)</td>
<td>$160 ($60 - $260)</td>
<td>$230 ($110 - $340)</td>
<td>$120 ($24 - $210)</td>
</tr>
</tbody>
</table>

5.2.5 Economic Impact Summary

EPA’s sensitivity analyses show that it is unlikely that the final UST regulation will have substantial negative economic impacts on the regulated community, in part because the costs of the regulation appear to be evenly distributed across a large population of facilities, and remain modest at the facility level. Even under a highly improbable worst-case scenario in which the smallest facilities incur the highest possible costs and would have no options for passing through any cost increases, approximately three percent of the universe of retail motor fuel facilities would face costs surpassing publicly-reported (and therefore likely understated) industry average profit margins. Any market exits under even this scenario would likely coincide with the current market exit rate of approximately 2,024 facilities annually, and would likely affect out-of-date facilities that are on the brink of exiting. Therefore, the regulation will not likely create a significant additional contraction of the total market.

A more likely response by affected firms will be to adapt by increasing prices on higher margin products and services. While overall employment impacts are unclear, it is possible that there may be an increase in labor demand due to the additional requirements placed on owners and operators, and additional demand for third-party testing services.

Finally, it appears that the final UST regulation could have a positive impact on state governments that currently fund a portion of UST-related remediation costs through gasoline taxes and fees. A decrease in the number and severity of releases represents cost savings to states due to decreased demand on state financial assurance funds. Our initial screening assessment suggests that annual costs to states could be reduced by over $160 million. This represents a reduction in a public subsidy and an improvement in market signaling.
5.3 Energy Impact Analysis

Executive Order 13211, Actions Concerning Regulations That Affect Energy Supply, Distribution, Or Use (May 18, 2001), addresses the need for regulators to consider the potential energy impacts of the final UST regulation and resulting actions. Under Executive Order 13211, agencies are required to prepare a Statement of Energy Effects when a regulatory action may have significant adverse effects on energy supply, distribution, or use, including impacts on price and foreign supplies. Additionally, the requirements obligate agencies to consider reasonable alternatives to regulatory actions with adverse effects and the impacts that such alternatives might have on energy supply, distribution, or use.

The final UST regulation affects underground storage tanks used in the storage of motor fuel or emergency generator fuel. However, it is unlikely that this regulation will have significant impacts on energy supply, distribution, or use. To assess the energy impacts of the final UST regulation, EPA considers potential changes in energy supply and use associated with the total costs estimated in Chapter 3. The following summarizes EPA’s assessment of the energy impacts that the final UST regulation will have in energy supply, distribution, and use.

Energy Supply and Distribution

The final UST regulation consists of additional regulatory requirements that apply to the owners and operators of underground storage tanks. To the extent that the final UST regulation affects the motor fuel sector, it does so at the retail motor fuel sales level, rather than the level of refineries or distributors who supply the retail stations with motor fuel. Correspondingly, we do not expect the final UST regulation to have any impacts on energy supply or distribution.

In terms of local motor fuel availability, we believe two outcomes are possible. If a motor fuel station is located in an area where competition from other stations exists, fuel prices will not likely be affected. Rather, owners and operators will seek to recover the costs of the final UST regulation by increasing the prices of services or convenience items. If a station does not sell other products or services through which it can recover these costs, it may become subject to a significant economic impact. If this impact exceeds the profit margin of the facility, it may become unprofitable in the long term and exit the market. EPA’s analyses suggests that the number of facilities likely to be affected is small, and supply will not be disrupted because sufficient supply from other competitors exists to meet demand.

We do not expect market exits to occur in low-competition environments due to the market power of stations and the marginal nature of the increase in cost. If a motor fuel station is located in an area where competition is not intense (e.g., a rural setting), it may opt to directly pass on higher costs through increases in fuel or convenience goods prices. As we discuss below, even if the entire cost of the regulation is priced through to consumers, the change in fuel prices is not likely to be measurable.

Energy Use

The additional regulatory requirements contained in the final UST regulation may increase compliance costs for owners and operators of retail motor fuel stations. If the owners and operators of retail motor fuel stations affected by the final UST regulation can successfully
pass through their increased compliance costs, energy use may be affected through higher energy prices caused by the final UST regulation. However, we do not expect a significant change in retail gasoline prices to result from this regulation for the following reasons:

- Economic analyses of retail fuel prices have revealed that demand for gasoline is highly sensitive to price (elastic) within localized geographic areas. As a result, individual retailers are unlikely to raise gasoline prices because local customers will select other stations. Because the regulations do not affect facilities uniformly, widespread price increases are unlikely, and raising the price of gasoline can put individual retailers at a significant competitive disadvantage in local markets.

- Retail motor fuel stations often have associated stores and/or services, such as car washes, repair operations, and convenience outlets, on which they can more successfully pass through increases in compliance costs.

When considered in the context of total fuel consumption in the United States, the final UST regulation would represent a tiny fraction of motor fuel prices even if it was fully passed through to consumers. According to the Bureau of Transportation Statistics, the United States consumed 168,597,000,000 gallons of motor fuel (including gasoline and diesel) in 2011 at an average price of $3.73. This implies that U.S. consumers spent $629 billion in 2012 on motor fuel. The overall cost of the final UST regulation is roughly $160 million, less than one-tenth of one percent of the amount spent by end-users on motor fuel in 2012. In comparison, an increase of $0.01 in the average price of motor fuel in 2012 would have increased the total cost to consumers by approximately $1.7 billion. Given these circumstances, the final UST regulation should not have a measurable impact on retail prices.

5.4 Regulatory Flexibility Analysis

The Regulatory Flexibility Act (RFA) as amended by the Small Business Regulatory Enforcement Fairness Act of 1996 (SBREFA), 5 USC 601 et seq., generally requires EPA to prepare a regulatory flexibility analysis of any regulation subject to notice and comment rulemaking requirements under the Administrative Procedure Act or any other statute. This analysis must be completed unless the agency certifies that the regulation will not have a significant economic impact on a substantial number of small entities. If a regulation is found to have a significant impact on a substantial number of small entities, further analysis must be

performed to determine what can be done to lessen the impact. Small entities include small businesses, small organizations, and small governmental jurisdictions. EPA developed a screening analysis and supplemental analysis consistent with the requirements under RFA; this section presents a summary of these findings, and Appendix L provides the detailed screening analysis.203

For purposes of assessing the impacts of this regulation on small entities, a small entity is defined as: (1) a small business as defined by the Small Business Administration’s (SBA) regulations at 13 CFR Part 121.201; (2) a small governmental jurisdiction that is a government of a city, county, town, school district or special district with a population of less than 50,000; and (3) a small organization that is any not-for-profit enterprise which is independently owned and operated and is not dominant in its field. For the purposes of this analysis, EPA considered costs in excess of one percent and three percent of revenues as indications that the final UST regulation may have a significant impact on a given small entity, and estimates of greater than 20 percent of total small firms or 1,000 total small firms affected as indications that a substantial number of small entities may be affected by the final UST regulation.

5.4.1 Small Business Screening Analysis

We estimate that there are approximately 79,700 firms operating roughly 148,000 facilities in the U.S. retail motor fuel sales sector.204,205 This analysis assumes that all retail motor fuels firms operate underground storage tanks (UST systems) at all of their facilities. Based on the distribution of firms across revenue categories published by the 2007 Economic Census, and SBA’s revenue thresholds for NAICS 447110 and 447190, approximately 77,400

203 This section focuses on the retail motor fuel sector. As discussed in Appendix L, EPA’s screening assessment indicates that the proposed regulation would not have a significant impact on a substantial number of small entities (SISNOSE) across all affected sectors. Because the cost per tank associated with the final UST regulation ($232, in 2012 dollars) is lower than that associated with the proposed regulation ($309, in 2008 dollars), this conclusion also applies to the final UST regulation. However, because 80 percent of all UST systems are in the retail motor fuel sector, we refined the screening assessment to further examine the potential impacts of the final UST regulation on this sector.

204 There was a significant discrepancy between the number of establishments reported by the 2007 Economic Census by the U.S. Census Bureau and the 2008 station count published by National Petroleum News. The Census reported 118,756 stations operating in any capacity, while NPN counted 161,768 stations. EPA contacted the Census Bureau, which offered three possible reasons for this discrepancy. First, grocery stores with gas stations and wholesale truck stops with gas stations may be categorized under grocery stores or wholesale retail instead of gas stations. Second, the count reported by the Census excludes non-employer establishments (10,131), which are family-owned and only employ family members. Third, for those establishments that do not report back to the Census regularly, the Bureau is not likely to record changes in establishments that have happened at the location (personal communication with the Office of Underground Storage Tanks, November 3, 2010). NPN likely provides a more accurate reflection of the number of stations because it is an industry publication specific to the petroleum sector. This rationale has been carried forward to employ the 2013 station count published by NPN.

205 NAICS code 447 is comprised of 447110 (Gasoline stations with convenience stores) and 447190 (Other gasoline stations). To reconcile differing estimates of the number of retail motor fuel facilities (roughly 148,000 estimated by NACS in 2012 and roughly 119,000 estimated by the Census, excluding roughly 12,000 facilities reported as not operating for the full year), a 1.38 adjustment factor was applied to the Census data to inflate the number of retail motor fuel facilities to 148,000, distributed proportionately across revenue ranges. This approach preserves the distribution of firms by size according to Census data. As a result of this approach, we estimate that there are a total of approximately 79,700 firms and 455,000 tanks in the retail motor fuel sector.
(97 percent) of these firms meet SBA’s definition of a small entity. To determine whether firms reporting revenues within a given revenue range would incur costs exceeding one percent or three percent of total revenue, EPA compares the average total compliance cost per firm with the average revenue reported by firms in the revenue range. Based on a compliance cost per system of $232 (in 2012 dollars), and assuming that firms in the smallest revenue range own one facility with three UST systems, we estimate that the 4,781 small firms in the $0-$250,000 revenue range would face average total compliance costs of $715 per firm (or $658 in 2007 dollars). Any firm with annual revenues above $65,800 (in 2007 dollars) (i.e., the revenue threshold at which compliance costs would exceed one percent of the firm’s revenue) is not expected to experience a significant impact. The average revenue for the 4,781 firms in the $0-$250,000 revenue range is $144,000, suggesting that on average, firms in this category will not experience significant impacts due to estimated compliance costs.

However, because the lowest range reported by the U.S. Census reflects a distribution of firms with revenues between $0 and $250,000, it is possible that some of the 4,781 firms in this category may be significantly affected. EPA also considers estimates of greater than 20 percent of total small firms or 1,000 total small firms affected as indications that a substantial number of small entities may be affected by the final UST regulation. While the 4,781 small firms in the lowest revenue range represent only six percent of all potentially affected small firms, EPA conducted a supplemental analysis that focuses on this group of small firms in an attempt to refine the estimated number of small firms potentially affected by the final UST regulation.

5.4.2 Small Business Supplemental Analysis

The purpose of this supplemental analysis is to refine the results of the small business screening analysis. The U.S. Census Bureau provided additional data on firms in the lowest revenue bins for NAICS sectors 447110 (gasoline stations with convenience stores) and 447190 (other gasoline stations), identifying the percentage of firms with revenues in three ranges:

206 For 447110, the SBA revenue threshold is $27 million; for 447190, the SBA revenue threshold is $9 million. To ensure that we do not underestimate the number of small entities, we assume that all firms within a revenue bin that contains a specific SBA revenue threshold value are small. For example, if the SBA small business size threshold for a sector is $7 million, we assume that all firms in the revenue range of $5 to $10 million are small.

207 For simplicity we identify size categories in this document as described by the 2007 Census (e.g., revenues up to $250,000 in 2007 dollars), and identify compliance costs in 2012 dollars. However, in the actual screening analysis, compliance costs have been adjusted from 2012 dollars to 2007 dollars using the GDP implicit deflator. The estimated compliance cost is $232 per system in 2012 dollars, or $214 per tank in 2007 dollars. These costs exclude compliance costs associated with the removal of deferrals for AHFDSs and UST systems with FCTs. AHFDS and FCT systems are primarily owned by the Department of Defense and not by any small entities.

208 Census data on number of facilities per firm indicate that virtually all firms earning less than $250,000 per year in 2007 had only one facility. We therefore use “firm” and “facility” interchangeably in this context.
$0-$50,000; (2) $50,000-$150,000; and (3) $150,000-$250,000.209 Based on this information, we estimate the number of firms in the retail motor fuel sales sector (i.e., NAICS 447) for these three revenue groups at approximately 320, 2,000, and 2,500, respectively and use these data to refine our estimate of the number of significantly affected facilities.210,211

Given compliance costs of $658 per firm ($715 in 2012 dollars), any firm making less than $65,800 and $22,000 would be considered significantly affected at the one percent and three percent revenue thresholds, respectively. Under these assumptions, EPA estimates that 634 firms would be affected at the one percent threshold, and no firms would be affected at the three percent threshold.212 The number of firms that would be significantly affected at the one percent threshold under these assumptions does not exceed the one thousand-firm substantial effect benchmark. Furthermore, this conclusion rests on the assumption that even these small firms operate the industry average of three tank systems.

5.4.3 Impacts to Small Governments

The 1992 Local Government Economic Impact Analysis provides the best readily-available data on the number of governments owning UST systems, total UST systems owned by governments, average UST systems per government, and UST systems per owning government. The data include size and revenue for both general purpose (i.e., counties, municipalities, and townships) and special district governments (i.e., school districts and other special districts), dividing these governments into four size categories: very large, large, medium and small. The 1992 analysis defines a “very large” government as one that serves over 50,000 people; therefore, all other entities are considered to be small governmental jurisdictions according to the RFA/SBREFA definition. Using the data from the 1992 analysis, we estimate the number of

209 The information provided by the U.S. Census Bureau is considered an “unpublished data request.” As such, the Census Bureau included a letter noting that “these are not ‘official data’ from the Census Bureau, since they do not meet the Census Bureau’s quality standards. These data should be used with extreme caution, realizing the severe quality limitations that may exist.” However, absent another source of information, we use this as the best data available. (This information was provided in January 2010 and relates to the 2002 Economic Census data. We use the 2002 distribution within this revenue range as a proxy for the 2007 Economic Census data.)

210 The analysis interpolates between the lower and upper bounds of each range and assumes a uniform distribution of facilities within each range. The lowest revenue interval is bounded at $39,600, which EPA obtains from estimating the linear trend between the zero and $250,000 in revenues. The implicit assumption is that no facilities earn less than that level of revenue.

211 Although the U.S. Census Bureau reports several hundred facilities with annual revenues less than $100,000, market economics suggest that it would be difficult for a firm that relies solely on gasoline sales to be viable if earning less than $100,000 in annual revenues. Assuming $2 per gallon in sales, a facility earning $100,000 would sell less than 4,200 gallons of gasoline per month, compared with the monthly industry average throughput of approximately 130,000 gallons. Based on information from a mid-size retail fuel marketer, EPA believes that a facility requires a minimum throughput of approximately 30,000 gallons per month to remain economically viable. In addition, a facility would need $108,000 to generate enough gross profit to cover the direct cost of the wages of one full-time employee at minimum wage ($15,080 at $7.25 per hour and 2,080 hours, before accounting for employment taxes). This does not consider other costs, such as electricity, property taxes, or franchise fees.

212 EPA estimates a total of approximately 104,000 small firms with USTs across all affected sectors; 634 is 0.6 percent of these. In NAICS 447, the 634 firms represent 0.8 percent.
small governments that own UST systems based on the total universe of UST systems today. See Appendix L for additional detail.

EPA assumes that local governments collectively own four percent of active tanks. This equates to 23,119 tanks, based on the fiscal year 2013 universe of 577,981 tanks. These 23,119 tanks are distributed among all local governments, based upon the percentage of tanks owned in 1992 by local governments in each size category (the average number of tanks owned by a government varies with the size of the government from one tank for small governments to 10 or more tanks for the largest governments).

EPA then calculates, using the 1992 data on government ownership of UST systems, the average compliance cost per government entity. This is done by multiplying the cost per tank by the number of UST systems per government by size category. The average annual revenue for each size of general purpose government is calculated using 2007 Census of Governments Data and weighted-average contributions that depend on type of entity (i.e., towns, municipalities, and counties). EPA extrapolates Census data on revenues for 4,128 townships to the 16,519 townships in the country. These weighted averages are combined to obtain annual revenues in 2007 dollars for general purpose governments, then inflated to 2012 dollars. Detailed information at the special district level is not available for later years, so budget expenditures from the 1992 analysis were inflated into 2012 dollars.

To calculate how many small governments face significant compliance costs exceeding one or three percent of their revenues, we compared the average compliance cost per government with the average annual revenues to determine how many exceed either threshold. At a cost of $232 (2012 dollars) per UST system, no small governments are affected under either the one percent or three percent revenue threshold (see Exhibit 5-3). Correspondingly, EPA does not find that the final UST regulation has any significant impact on a substantial number of small governments.

213 We adjusted the estimates of local government UST systems from the 1992 Local Government Economic Impact Analysis using the 2007 Census of Governments. See: ICF. “Economic Impact Analysis of Additional Mechanisms for Local Government Entities to Demonstrate Financial Responsibility for Underground Storage Tanks.” December 1992. Exhibit 3-1. Consistent with this analysis, the number of government UST systems is assumed to be one percent of all 2013 UST systems for state and federal governments and four percent of all 2013 UST systems for local governments.

214 Typically, a RFA/SBREFA screening assessment uses revenues to assess economic impact measures for small governments. In the absence of detailed 2007 data, we use 1992 budget expenditures as a proxy for revenues.
Exhibit 5-3

Compliance Costs To Systems Owned By Governments

<table>
<thead>
<tr>
<th>Type of Gov’t</th>
<th>Size of Gov’t</th>
<th>UST Systems Per Owning Gov’t</th>
<th>Number of Gov’ts Owning Tanks</th>
<th>2007 Est. Number of Gov’ts</th>
<th>Average Annual Revenue ($2007)</th>
<th>Average Cost Per Gov’t ($2007)</th>
<th>Gov’ts Exceeding 1% of Revenue</th>
<th>Gov’ts Exceeding 3% of Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose</td>
<td>Very Large</td>
<td>10.2</td>
<td>505</td>
<td>1,463</td>
<td>$363,822,312</td>
<td>$2,182</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>2.5</td>
<td>1,429</td>
<td>4,044</td>
<td>$41,098,521</td>
<td>$535</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1.4</td>
<td>1,365</td>
<td>7,832</td>
<td>$10,029,870</td>
<td>$300</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>1.1</td>
<td>990</td>
<td>25,706</td>
<td>$2,045,340</td>
<td>$235</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>2.7</td>
<td>4,289</td>
<td>39,044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Purpose</td>
<td>Very Large</td>
<td>3.7</td>
<td>317</td>
<td>970</td>
<td>$496,958,943</td>
<td>$792</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>3.6</td>
<td>1,798</td>
<td>5,546</td>
<td>$60,843,018</td>
<td>$770</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1.4</td>
<td>2,503</td>
<td>14,127</td>
<td>$2,918,747</td>
<td>$300</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>1.0</td>
<td>244</td>
<td>29,789</td>
<td>$147,494</td>
<td>$214</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>2.4</td>
<td>4,863</td>
<td>50,432</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>Total</td>
<td>2.5</td>
<td>9,152</td>
<td>89,476</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* General Purpose governments include counties, municipalities and townships. Special Purpose governments include public school systems and special districts.

* Very large governments are considered to serve more than 50,000 people. Large governments are considered to be those that serve between 10,000 and 50,000 people, medium governments as those that serve between 2,500 and 10,000 people, and small governments as those that serve 2,500 or fewer people. According to RFA/SBREFA, small governmental jurisdictions have populations under 50,000. Therefore, all sizes of governments except for “very large” are considered to be small.

* Calculated as number of tanks (adjusted 1992 distribution in each size category to reflect FY 2013 tank numbers) divided by UST systems per owning government (c).

* General purpose and Special Purpose total number of entities from 2007 Census of Governments, size distribution extrapolated from 1992 *Local Government Impact Analysis* data.

* Calculated as number of systems per government (c) * estimated cost per tank ($215 in $2007 or $232 in $2012).

5.5 Screening Analysis to Inform Impacts on Minority and Low-Income Populations

Executive Order 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations* (59 FR 7629, February 16, 1994) directs federal agencies, to the greatest extent practicable and permitted by law, to identify and address, as appropriate, disproportionately high and adverse human health or environmental effects of their programs, policies, and activities on minority populations and low-income populations in the United States.

To inform us about the socioeconomic characteristics of communities potentially affected by the regulation, EPA conducted a screening analysis in 2010 to examine whether a statistically significant disparity exists between socioeconomic characteristics of populations located near UST facilities and those that are not.\(^{215}\) The results indicate that minority and low-income populations are slightly more likely to be located near UST facilities. An environmental justice analysis would then require an assessment of whether there would be disproportionate and

\(^{215}\) Note that the affected populations identified in the screening analysis summarized here are simply defined by specific demographics surrounding UST locations. These affected populations are not necessarily equivalent to communities that others have specifically identified as “environmental justice communities.”
adverse impacts on these populations. However, because all regulatory options considered in this regulation would increase regulatory stringency and reduce the number and size of releases, EPA does not anticipate that the final UST regulation will have any disproportionately high and adverse human health or environmental effects on these minority or low-income communities, or on any community. While resource constraints make it impractical to update this analysis with newer location data, it is unlikely that marginal changes in sample facility locations would affect the results of the analysis.

5.5.1 Risk Assessment Population Analysis

To characterize the extent of human health risk reductions anticipated under the final UST regulation, EPA conducted a screening-level analysis of the likely impact of the regulation on benzene-related cancer incidence. This analysis used location data for nearly 60,000 U.S. gas stations with UST systems using an ESRI Business Analyst database, and examined populations within a buffer distance of 1,000 feet of facilities with UST systems. The ESRI gas station location data are supplemented with 1,600 UST systems in Indian country, based on location information compiled from EPA regional Indian country databases. After elimination of duplicates, the data set contains 59,945 UST facilities (including 727 in Indian country) (see Exhibit 5-4). The total data set represents over 25 percent of the roughly 200,000 active facilities with UST systems.

To estimate populations near sample facilities, the analysis uses a “synthetic population” dataset developed by the Modeling of Infection Diseases Agents Study (MIDAS) to provide population estimates at a finer spatial resolution than Census blocks, while maintaining the accuracy of aggregate demographic data at the 2000 Census block group level. For more detail on this method, see Appendix M.

The modeled fate and transport of pollutants under a range of scenarios indicates that the contamination from UST releases do not typically exceed 1,000 feet. The risk assessment considered population density within 1,000 feet of each UST, and incorporated estimates of the use of groundwater for drinking and bathing, along with typical exposure scenarios, to characterize the change in population risk likely to be associated with the reduction of 2,821 releases and groundwater incidents that were estimated in 2010 (i.e., the total estimated number of avoided releases and groundwater incidents resulting from the final UST regulation). The risk assessment concluded that the final UST regulation will result in a very small reduction in

217 ESRI. “2009 Methodology Statement: ESRI Data—Business Locations and Business Summary.” ESRI, Redlands, CA. Accessed at: http://www.esri.com/library/whitepapers/pdfs/infousa-business-database.pdf. ESRI data are derived from an infoUSA database. The approach for compiling business data for this database is documented on the infoUSA website (http://www.infousa.com), and includes systematic compilation of public record, phone books, business directories, and includes frequent review for new, updated, and relocated businesses. While this methodology does not capture all locations, it is not differentially focused on any specific region or information source, and therefore likely represents a reasonable spatial distribution of facilities.

population risk related to cancer from benzene exposure, based on the estimated number and volume of avoided releases and groundwater incidents.

Exhibit 5-4

UST Location Data Used In Analysis. (See Appendix M for details on data sources.)
5.5.2 Demographic Analysis

The demographic analysis expands on the population data near the 59,945 gas stations in the risk assessment by characterizing demographic features of populations at each site and comparing these populations to larger (county-level) reference populations. Specifically, the analysis examines the following demographic variables: percent in poverty, percent minority, and, as a verification step, percent white alone (the percentage of the population that specified their race as “white” and did not specify “Hispanic”). The analysis also identifies percent under five years old, percent under 18 years old to support the analysis required under Executive Order 13045, “Protection of Children from Environmental Health Risks and Safety Risks” (see section 5.6 below). The analysis considers the significance of the “difference in means” and “difference in median” values for each census parameter and each community. That is, the analysis identifies the differences between mean and median concentrations of each demographic group for the affected and reference populations at each of the 59,945 sites, and examines whether the differences identified across all sites are statistically different from what would be expected in a random distribution.

The analysis considers the differences in demographics in two ways: unweighted (each site is given equal weight) and population weighted (results are weighted by affected persons, giving sites with larger populations more weight). A statistically significant positive difference indicates a greater percentage of target demographic in the affected population than in the larger reference population. A statistically significant negative difference indicates a smaller percentage of the target demographic in the affected population. Exhibit 5-5 provides the unweighted results of the analysis and generally finds that minority and low-income demographics constitute a slightly larger proportion of the population surrounding UST facilities. For example, poor populations account for 13.3 percent of the population near an UST, compared with 12.2 percent of the reference (county) population. As Exhibit 5-6 shows, although the difference is small, it is also highly statistically significant (with a p-value below .001), which suggests that the difference between the values is not a random occurrence. Exhibits 5-7 and 5-8 summarize the results of the population-weighted analysis, and generally find slightly larger (but still small) effects.

219 County-level statistics provide a useful comparative measure for the populations at the local facility level. Given that the area of interest is small (i.e., 1000 feet of a facility), the county-level provides an appropriate scale for comparison.

220 See Appendix M for the complete demographic screening analysis.
Exhibit 5-5

Summary Results For Census Parameters – Unweighted

<table>
<thead>
<tr>
<th>Census Parameter</th>
<th>Characteristics of Affected Population (1,000 ft Buffer around UST Facility)</th>
<th>Characteristics of Reference Population (Counties where UST Facilities are Located)</th>
<th>Difference between Affected Population and Reference Population</th>
<th>95% Confidence Interval of Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Percent White Alone</td>
<td>70.3</td>
<td>81.3</td>
<td>70.8</td>
<td>74.8</td>
</tr>
<tr>
<td>Percent Under Age 5</td>
<td>6.7</td>
<td>6.5</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Percent Under Age 18</td>
<td>24.7</td>
<td>24.9</td>
<td>25.6</td>
<td>25.5</td>
</tr>
<tr>
<td>Percent in Poverty</td>
<td>13.3</td>
<td>10.3</td>
<td>12.2</td>
<td>11.5</td>
</tr>
<tr>
<td>Percent Minority</td>
<td>24.0</td>
<td>14.6</td>
<td>23.8</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Note: Difference summary statistics (mean and median) were calculated from the distribution of difference values (i.e., one result per facility, yielding a distribution of about 60,000 results). Mean values reflect the entire distribution, whereas the median values are based only on the 50th percentile result. For this reason, the mean difference results could also be calculated simply by subtracting the reference community mean from the potentially affected community mean (e.g., for mean percent poverty 13.3 – 12.2 = 1.1). In contrast, the median difference values do not necessarily match values derived by subtracting the median values from the underlying distributions (e.g., for median percent poverty 10.3 – 11.5 ≠ -0.64). Although the primary results of the analysis are based on mean values, median results are provided for completeness and as an alternative indicator of the distributions’ central tendency.
Exhibit 5-6

Standard Error, T Test, And Risk Ratio Results – Unweighted

<table>
<thead>
<tr>
<th>Census Parameter</th>
<th>SE of Mean</th>
<th>SE of Mean</th>
<th>SE of Mean</th>
<th>T Statistic</th>
<th>p-value</th>
<th>Ratio</th>
<th>SE of Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent White Alone</td>
<td>0.120</td>
<td>0.088</td>
<td>0.085</td>
<td>-5.23</td>
<td><0.001</td>
<td>0.99</td>
<td>0.001</td>
</tr>
<tr>
<td>Percent Under Age 5</td>
<td>0.010</td>
<td>0.004</td>
<td>0.009</td>
<td>-5.18</td>
<td><0.001</td>
<td>0.99</td>
<td>0.001</td>
</tr>
<tr>
<td>Percent Under Age 18</td>
<td>0.104</td>
<td>0.071</td>
<td>0.079</td>
<td>-10.59</td>
<td><0.001</td>
<td>0.97</td>
<td>0.001</td>
</tr>
<tr>
<td>Percent in Poverty</td>
<td>0.045</td>
<td>0.023</td>
<td>0.038</td>
<td>27.66</td>
<td><0.001</td>
<td>1.09</td>
<td>0.003</td>
</tr>
<tr>
<td>Percent Minority</td>
<td>0.104</td>
<td>0.071</td>
<td>0.079</td>
<td>2.71</td>
<td>0.0067</td>
<td>1.01</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Note: There are >56,033 degrees of freedom for this test (i.e. number of facilities). Note that the total number of facilities in the dataset (59,945) differs from the degrees of freedom, because a fraction of facilities have no people living within the 1000 foot buffer.
Exhibit 5-7

Summary Results For Census Parameters – Weighted By Population

<table>
<thead>
<tr>
<th>Census Parameter</th>
<th>Characteristics of Affected Population (1,000 ft Buffer around UST Facility)</th>
<th>Characteristics of Reference Population (Counties where UST Facilities are Located)</th>
<th>Difference between Affected Population and Reference Population</th>
<th>95% Confidence Interval of Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Percent White Alone</td>
<td>53.88</td>
<td>59.63</td>
<td>58.79</td>
<td>57.70</td>
</tr>
<tr>
<td>Percent Under Age 5</td>
<td>6.91</td>
<td>6.78</td>
<td>6.80</td>
<td>6.85</td>
</tr>
<tr>
<td>Percent Under Age 18</td>
<td>24.74</td>
<td>24.91</td>
<td>25.36</td>
<td>25.53</td>
</tr>
<tr>
<td>Percent in Poverty</td>
<td>16.22</td>
<td>13.34</td>
<td>13.33</td>
<td>12.83</td>
</tr>
<tr>
<td>Percent Minority</td>
<td>36.61</td>
<td>29.54</td>
<td>33.16</td>
<td>31.92</td>
</tr>
</tbody>
</table>

Note: Difference summary statistics (mean and median) were calculated from the distribution of difference values (i.e., one result per facility, yielding a distribution of about 60,000 results). Mean values reflect the entire distribution, whereas the median values are based only on the 50th percentile result. For this reason, the mean difference results could also be calculated simply by subtracting the reference community mean from the potentially affected community mean (e.g., for mean percent poverty 16.2 – 13.3 = 2.9). In contrast, the median difference values do not necessarily match values derived by subtracting the median values from the underlying distributions (e.g., for median percent poverty 13.3 – 12.8 ≠ -0.96). Although the primary results of the analysis are based on mean values, median results are provided for completeness and as an alternative indicator of the distributions’ central tendency.
Overall, the demographic analysis identifies a small but statistically significant difference between minority and low-income populations near UST systems and in the reference communities. Minority and poverty-level demographics are present at greater percentages in the vicinity of UST facilities. In contrast, a small negative relationship suggests that “white alone” populations are less likely to be near UST systems, i.e., minority populations are marginally more likely to reside near UST facilities. Moreover, while the unweighted analysis does not find clear patterns related to children under 18 and children under five, the population-weighted analysis finds that the distribution of all target demographics around UST facilities reflects small but significant differences from county-level populations. The population-weighted results show greater differences, suggesting that facilities in higher population areas tend to have more pronounced disparities between local, potentially affected communities and reference (county-level) communities. These differences, while small, are statistically significant with p-values less than 0.01 in all cases. This result implies that any risk reductions associated with the final UST regulation will occur in the context of a baseline condition in which minority and low-income populations are disproportionately located near USTs.

5.5.3 Summary and Limitations of the Analysis

This section summarizes a screening assessment and does not present a complete environmental justice analysis. The assessment is limited by the fact that demographic data from the U.S. Census are at the block group level, and are not as precise as the spatial distribution of population. As a result, if the demographic distribution of populations within block groups is uneven, the block group-level data may not accurately characterize populations living nearest to UST locations. The large sample of 59,945 sites, however, reduces the potential that this uncertainty could skew the results of the analysis (relative to a smaller sample of sites).
Given the results of the screening analysis, because all regulatory options considered in this regulation would increase regulatory stringency and reduce the number and size of releases, EPA does not anticipate the final UST regulation to have any disproportionately high and adverse human health or environmental effects on these minority or low-income communities, or on any community. Since the final UST regulation is not anticipated to create any new adverse human health or environmental impacts, EPA did not conduct a complete environmental justice analysis.

5.6 Children's Health Protection Analysis

Executive Order 13045, Protection of Children from Environmental Health Risks and Safety Risks (62 FR 19885, April 23, 1997), applies to any regulation that: (1) is determined to be “economically significant” as defined under E.O. 12866, and (2) concerns an environmental health or safety risk that EPA has reason to believe may have a disproportionate effect on children. If the regulatory action meets both criteria, the Agency must evaluate the environmental health or safety effects of the planned regulation on children, and explain why the planned regulation is preferable to other potentially effective and reasonably feasible alternatives considered by the Agency.

This action may be subject to Executive Order 13045 because it is economically significant as defined in Executive Order 12866. EPA’s screening-level risk assessment examines potential impacts to groundwater and subsequent chemical transport, exposure and risk. While the risk assessment did not specifically measure exposure to children, the general exposure scenarios reflect four exposure pathways that have the most significant potential for human health impacts. These are:

- ingestion of chemicals in groundwater that have migrated from the source area to residential drinking water wells
- inhalation of volatile chemicals when showering with contaminated groundwater
- dermal contact with chemicals while bathing or showering with contaminated groundwater
- inhalation of vapors that may migrate upward from contaminated groundwater into overlying buildings

Adults and children can potentially be exposed through all four exposure pathways considered. For adults, inhalation of vapors while showering is the most significant adult exposure pathway; for children, ingestion is the most significant pathway, because children are assumed to take baths and are therefore not exposed through shower vapor inhalation. As a result of the longer exposure from showering, adults may be the more sensitive receptor for cancer effects compared
to children, particularly those under five who are assumed to take more baths and fewer showers.221

While the screening level risk assessment is limited in that it only examines benzene impacts, the final UST regulation would likely reduce other contaminant exposures to children in a similar pattern, and would not create significant adverse impacts on children’s health.

The screening-level demographic analysis described in section 5.5 finds a statistically significant result that children under the age of 18 and children under the age of five are slightly less likely to be found in the vicinity of UST facilities. This suggests that the impacts of the final UST regulation will not have a disproportionate impact on children’s health. Moreover, because all regulatory options would increase regulatory stringency and reduce the number and size of releases, EPA does not expect the final UST regulation to have any disproportionate adverse impact on children.

Chapter 6. Other Statutory and Executive Order Analyses

As required by applicable statutes and executive orders, this chapter summarizes our analysis of equity considerations and other regulatory concerns associated with the final UST regulation. This chapter assesses potential impacts, with respect to the following issues:

- **Regulatory planning and review**: requires examination and quantification of costs and benefits of regulating with and without the regulation.
- **Unfunded mandates**: examines the implications of the regulation with respect to unfunded mandates.
- **Federalism**: considers potential issues related to state sovereignty.
- **Tribal governments**: extends the discussion of federal unfunded mandates to include impacts on tribal governments and their communities.
- **Joint impacts of rules**: discusses how other regulations, together with the final UST regulation, will likely affect the universe of regulated facilities.

6.1 Regulatory Planning and Review

Under Executive Order 12866 (58 FR 51735, October 4, 1993), EPA, in conjunction with the Office of Management and Budget’s (OMB’s) Office of Information and Regulatory Affairs (OIRA), must determine whether a regulatory action is “significant” and therefore subject to OMB review and the full requirements of the Executive Order. The Order defines “significant regulatory action” as one that is likely to result in a regulation that may:

1. Have an annual effect on the economy of $100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities;
2. Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency;
3. Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or
4. Raise novel legal or policy issues arising out of legal mandates, the President’s priorities, or the principles set forth in the Executive Order.

Pursuant to the terms of Executive Order 12866, the Agency has determined that this regulation is an economically significant regulatory action because it may have an annual effect on the economy of $100 million or more, as defined under part 3(f)(1) of the Order. Findings of
the regulatory cost analysis (Chapter 3) indicate that the regulation will have aggregate annual compliance costs of approximately $160 million under the Selected Option, $290 million under Alternative 1, and $70 million under Alternative 2. Separately, this analysis concludes that the regulation is expected to have cost savings related to avoided costs of $120 million to $530 million under the Selected Option, $210 million to $670 million under Alternative 1, and $45 million to $420 million under Alternative 2. These cost savings effectively offset the entire cost of the regulation, resulting in a net beneficial impact on the economy. However, for the purpose of addressing Executive Order 12866, these cost savings are considered to be separate impacts rather than direct reductions in the total cost of the regulation.

6.2 Unfunded Mandates Analysis

Signed into law on March 22, 1995, the Unfunded Mandates Reform Act (UMRA) calls on all federal agencies to provide a statement supporting the need to issue any regulation containing an unfunded federal mandate and describing prior consultation with representatives of affected state, local, and tribal governments.

The final UST regulation is subject to the requirements of sections 202 and 205 of UMRA. In general, a regulation is subject to the requirements of these sections if it contains “Federal mandates” that may result in the expenditure by State, local, and tribal governments, in the aggregate, or by the private sector, of $100 million or more in any one year. Because roughly 95 percent of conventional UST systems are privately owned, EPA estimates that the regulation will have approximately $130 million of costs to the private sector under the Selected Option, $270 million under Alternative 1, and $67 million under Alternative 2 in expenditures for the private sector and is thus subject to the following requirements of these sections.222

- An identification of the provision of Federal law under which the regulation is being promulgated.
- A qualitative and quantitative assessment of the anticipated costs and benefits of the Federal mandate;
 - Costs and benefits to State, local, and tribal governments and the private sector
 - Effect on health, safety, and the natural environment
 - Analysis of extent to which such costs may be paid with Federal financial assistance (or otherwise paid for by the Federal government)
 - Analysis of the extent to which there are available Federal resources to

222 As described in Exhibit 2-3, the number of UST systems owned by state and federal governments is assumed to be two percent, and the number of UST systems owned by local governments is assumed to be four percent. Costs calculated as total compliance costs for conventional UST systems, and EGTs (including costs to read regulations), documented in Exhibit 3-8, net of local and state government compliance costs identified in Exhibit 6-2 below. As commercial airports are not typically privately-owned, we do not include them in private sector costs. However, commercial airports may be run by municipal or state-level organizations that are separately funded and/or may reflect public/private partnerships. Note that the costs to commercial airports are small enough ($1.2 million per year) that including them in the private sector does not change the total rounded private cost figures shown above.
carry out this mandate

- Estimates of future compliance costs with the mandate.
- Estimates of disproportionate budgetary effects on any type of government or segment of the private sector.
- Estimates of the effect on the national economy (if relevant and possible).

Exhibit 6-1 provides references for the analyses that EPA has performed that respond to these requirements.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Location In This Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of provision of federal law under which rule is being promulgated</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Assessment of costs and benefits to state, local, and tribal governments and the private sector</td>
<td>Chapters 3 and 4</td>
</tr>
<tr>
<td>Assessment of the effect on health, safety, and the natural environment</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Assessment of the extent to which such costs may be paid with federal financial assistance</td>
<td>Chapter 3; no Federal assistance is anticipated</td>
</tr>
<tr>
<td>Assessment of the extent to which there are available federal resources to carry out this mandate</td>
<td>Chapter 3; no Federal resources are anticipated</td>
</tr>
<tr>
<td>Estimates of future compliance costs</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Estimates of disproportionate budgetary effects on any type of government or private sector segment</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Estimates of the effect on the national economy</td>
<td>Chapters 3 and 5</td>
</tr>
</tbody>
</table>

6.3 Federalism Analysis

Executive Order 13132, *Federalism* (64 FR 43255, August 10, 1999), requires EPA to develop an accountable process to ensure “meaningful and timely input by state and local officials in the development of regulatory policies that have federalism implications.” “Policies that have federalism implications” is defined in the Executive Order to include regulations that have “substantial direct effects on the states, on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government.” EPA typically considers a policy to have federalism implications if it results in the expenditure by State and/or local governments in the aggregate of $25 million or more in any one year.

Under Executive Order 13132, EPA may not issue a regulation that has federalism implications, that imposes substantial direct compliance costs, and that is not required by statute, unless the Federal government provides the funds necessary to pay the direct compliance costs incurred by State and local governments, or EPA consults with State and local officials early in the process of developing the regulation.
Exhibit 6-2 summarizes annual government costs. Direct compliance costs for local and State governments reflect average costs per UST system; the analysis assumes that states collectively own one percent of total UST systems (5,780), and local governments own 23,119 UST systems (four percent).

In addition, under the final UST regulation, each state will incur labor costs for reading the new regulations, applying for State Program Approval (SPA), and processing one-time notification of existence for AHFDSs, and FCTs. States that do not already require notification of UST ownership change will also incur costs to process and review all ownership change notifications. (See discussion in Chapter 3, Section 3.6.)

In this scenario, total costs to all affected state and local governments (including direct compliance costs, notification costs, and state program costs) are approximately $6.8 million under the Selected Option, $14 million under Alternative 1, and $3.6 million under Alternative 2 in 2012 dollars; this is not considered to be a substantial compliance cost under federalism requirements.223

<table>
<thead>
<tr>
<th>Exhibit 6-2</th>
<th>Summary Of Annual State And Local Government Costs b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selected Option a</td>
</tr>
<tr>
<td>Local Compliance Costs a</td>
<td>$5.4</td>
</tr>
<tr>
<td>State Compliance Costs a</td>
<td>$1.3</td>
</tr>
<tr>
<td>State Government Administrative Costs</td>
<td>$0.12</td>
</tr>
<tr>
<td>Total State and Local Governments Costs c</td>
<td>$6.8</td>
</tr>
</tbody>
</table>

a State and local government compliance costs are included in the total compliance costs presented in Exhibit 3-8.

b Cost estimates were derived using a seven percent discount rate.

c Total may not sum due to rounding.

6.4 Tribal Governments Analysis

Executive Order 13175, \textit{Consultation and Coordination With Indian Tribal Governments} (65 FR 67249, November 9, 2000), requires EPA to develop an accountable process to ensure “meaningful and timely input by tribal officials in the development of regulatory policies that have tribal implications.” EPA has concluded that this action will have tribal implications to the extent that tribally-owned entities with UST systems on Indian country would be affected. However, it will neither impose substantial direct compliance costs on tribal governments, nor preempt Tribal law.

The data sources for the Indian country analysis are the same as those used in the small business analysis. Based on a review of information available about the types of business entities

223 If all applicable state and local government costs were incurred in the first year, rather than annualized and discounted, state and local governments would incur approximately $3.8 million in costs under the Selected Option. This includes $0.2 million for states to apply for state program approval and to read the regulations, $0.2 million for states to process one-time notifications of AHFDSs and FCTs and ownership changes that occur in the first year, and $3.6 million for state and local government owners and operators of UST systems to comply with requirements that come into effect in the first year (approximately 80% of which would be for state and local government owners and operators to read the final UST regulation).
in Indian country, it is assumed that UST systems in Indian country represent a subset of the rest of the universe and are distributed similarly across the same sectors. The total number of UST systems in Indian country is distributed proportionally among the NAICS sectors.

The cost per UST system is higher in Indian country, as the universe is smaller, and all UST systems are assumed to incur costs associated with all the requirements of the final UST regulation. At a 2012 cost of $734 per UST system, the total cost for UST systems in Indian country is approximately $1.9 million. EPA data indicates that 35 percent of all UST systems in Indian country are tribally-owned; correspondingly, the total cost to owners and operators of tribally-owned UST systems is approximately $0.67 million.

EPA consulted with tribal officials early in the process of developing this regulation to engage them to have meaningful and timely input into its development. EPA began its consultation with tribes on possible changes to the UST regulation shortly after the passage of the Energy Policy Act of 2005 (EPAct). EPAct directed EPA to coordinate with tribes to develop and implement an UST program strategy in Indian country to supplement the program’s existing approach. EPA and the tribes worked collaboratively to develop this tribal strategy.

EPAct also included key provisions that apply to states receiving federal funding but the Act did not specify Indian country. Nonetheless, EPA’s goal is to implement the objectives of these provisions in Indian country as an important step in achieving more consistent program results in release prevention. Both EPA and tribes recognize the importance of having policies that can help to ensure parity in program implementation between states and in Indian country. EPA committed to the tribes that we would fully implement the new provisions of the EPAct, and the final UST regulation will realize that commitment.

In addition to our early consultation with the tribes, EPA again reached out to the tribes as we started the official regulatory process and throughout the development of the UST regulation. EPA sent letters to leaders of over 500 tribes, as well as to tribal regulatory staff, inviting their participation in developing the regulation. EPA heard from both tribal officials who work as regulators as well as representatives of owners and operators of UST systems in Indian country. The tribal regulators raised concerns about ensuring parity of environmental protection between states and Indian country.

The changes to the UST regulation under this regulation are needed to ensure parity between sites in states and in Indian country. The final UST regulation will ensure equipment is not just installed but is working properly and protects the environment from potential releases.

6.5 Joint Impacts of Rules

Executive Order 12866 requires that the Agency review whether the regulation creates “a serious inconsistency” or otherwise interferes “with an action taken or planned by another agency.” We do not believe that the regulation creates a serious inconsistency or interferes with
any other actions planned or undertaken by other agencies. The following are the existing regulations that currently affect UST systems:

- **State UST Regulations:** A number of states have existing UST regulations that are more demanding than existing regulations under 40 CFR Part 280. To the extent that these policies are at least as demanding as the regulations under consideration, the systems in these states may already be in partial or full compliance with portions of the regulation. Chapter 2 identifies the number of UST systems in states with existing (baseline) regulations; cost estimates in Chapter 3 reflect the state regulatory programs that exist in the baseline.

- **SPCC Regulation:** Currently, a subset of UST systems in the universe is regulated by the Spill Prevention, Control, and Countermeasure regulation (SPCC); these include emergency generator tanks, airport hydrant fuel distribution systems and UST systems with field-constructed tanks. Specifically, the SPCC regulation in 40 CFR Part 112 apply to above-ground containers and completely buried tanks that are not otherwise covered by 40 CFR Part 280. SPCC regulation does not specify particular leak detection protocols, but require that plans conform to industry standards, which can often be consistent with the requirements of the regulation. To the extent that the requirements imposed on these UST systems via the regulation are more or less stringent than the SPCC regulation currently governing them, the regulation may cause an increase or a reduction in overall inspection and monitoring requirements (and costs) for these UST systems. To account for this, EPA has generated baseline assumptions for these systems using information from the Department of Defense (the owner of the majority of all FCTs and AHFDSs). EGTs are assumed to incur all incremental costs beyond state regulatory baseline costs; to the extent that these systems are regulated under SPCC, this may overstate costs.
Chapter 7. Comparison of Costs, Benefits, and Other Impacts

This chapter compares the costs, cost savings, and benefits of the final UST regulation. Cost-benefit analysis is a useful tool for economic assessments. It is used to evaluate the economic efficiency of environmental policies by measuring their costs and benefits, and hence their net impacts on society. However, adherence to a strict cost-benefit approach provides an incomplete assessment of the effects of the final regulation for two reasons, described below.

A traditional cost-benefit comparison weighs society’s willingness to pay for the benefits of a regulation against the opportunity costs of the regulation. In the case of leaking USTs, though, cleanup of releases is required under RCRA Subtitle I. Therefore, although avoided remediation costs are not a measure of willingness to pay, under the current statutory and regulatory baseline, a sufficient condition for the final UST regulation to improve economic efficiency would be if the expected avoided remediation costs exceed the costs. As discussed in Chapter 4, avoided costs provide a reasonable measure of one set of positive effects of the final UST regulation. Even if avoided remediation costs do not exceed the cost of the regulation, economic efficiency could be enhanced because this analysis does not quantify additional social benefits such as improved water quality.

A traditional cost-benefit comparison also does not consider important distributional issues (e.g., what particular groups of people bear specific benefits or costs). A key effect of the final UST regulation is to reallocate costs from the public to responsible parties. As we discussed in Chapter 5, avoided remediation costs could reduce demand on state financial assurance funds by over $160 million per year.

This chapter uses two approaches to assess the effectiveness of the requirements. First, we compare the compliance costs of the final UST regulation with its total monetized avoided costs (section 7.1). We then consider cost-effectiveness measures which provide estimates of expenditures per unit reduction of releases achieved by the final UST regulation (section 7.2).

EPA’s analysis shows that the final UST regulation will likely provide a net cost savings to society, but the cost-benefit and cost-effectiveness analyses presented here provide an incomplete estimate of benefits, because the final UST regulation is expected to provide other benefits that are not expressed in monetary terms. In addition, the avoided remediation costs associated with the regulation represent an equity-enhancing effect because the demand for publicly-funded remediation is reduced; all else held constant, the increased compliance costs will fall on the specific operators who are not currently implementing the practices and technologies identified in the regulation. This may result in some facilities bearing additional costs, but should improve overall equity and efficiency by ensuring that operators who are adhering to best practices already (in the baseline) are not at a competitive disadvantage because other operators rely on the availability of publicly-funded remediation.

OMB Circular A-4, numerous statutes, and Executive Orders require EPA to consider not only the costs and benefits of the regulation but also distributional impacts (e.g., impacts on minority and low-income populations, children’s health, and energy distribution). As such, the final regulatory decision is a policy judgment that must take into account a number of factors in addition to the benefits and costs.
In addition, the selection of a discount rate for estimating the present value of future costs and benefits is a complex issue. To reflect a range of possible future costs and benefits, we present two estimates of discounted costs and benefits (section 7.3); one based on a seven percent discount rate, and one based on a three percent discount rate.

7.1 Cost Benefit Comparison

In this section, we compare the total costs of the regulation with its total monetized and non-monetized avoided costs and benefits. Exhibit 7-1 summarizes total costs and monetized avoided costs of the final UST regulation. The costs in the exhibit represent the compliance costs of the final UST regulation, including state government administrative costs.

The exhibit also identifies the social benefits of the proposed requirements that are not captured in avoided costs. As discussed in Chapter 4, a number of benefits could not be monetized. These include groundwater protection, mitigation and avoidance of acute events, ecological benefits, and human health risks compared to the baseline in which the releases occur and are remediated. Finally, EPA did not estimate benefits or avoided costs associated with changes in regulation at facilities with FCTs or AHFDSs.

Exhibit 7-1 demonstrates that the final UST regulation will likely avoid more costs than it creates, generating cost savings to society. EPA estimates that the Selected Option could generate $160 million per year in savings to society (reflecting the average of four estimates: $39 million in net costs, and $120 million, $180 million, and $370 million in savings).

Alternatives 1 and 2 could also have a net benefit of $160 million (reflecting the average of four estimates for each alternative: $81 million in net costs and $140 million, $220 million, and $380 million in savings for Alternative 1; or $25 million in net costs and $150 million, $150 million, and $350 million in savings for Alternative 2). These estimates only include cost savings for conventional UST systems and EGTs.
Exhibit 7-1

Comparison Of Annual Compliance Costs And Cost Savings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Avoided Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents: average value</td>
<td>$300 ($110-$510)</td>
<td>$440 ($200-$650)</td>
<td>$220 ($44-$410)</td>
</tr>
<tr>
<td>Vapor intrusion: average value</td>
<td>$4.5 ($1.7-$7.9)</td>
<td>$5.9 ($2.5-$9.1)</td>
<td>$3.1 ($0.56-$6.0)</td>
</tr>
<tr>
<td>Product loss</td>
<td>$3.1 ($0.86-$6.5)</td>
<td>$3.8 ($0.78-$7.6)</td>
<td>$2.4 ($0.36-$5.2)</td>
</tr>
<tr>
<td>Annual Compliance Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional UST systems(^{b})</td>
<td>$130</td>
<td>$280</td>
<td>$63</td>
</tr>
<tr>
<td>Emergency generator tanks (EGTs)</td>
<td>$2.0</td>
<td>$2.3</td>
<td>$2.0</td>
</tr>
<tr>
<td>Airport hydrant fuels distribution systems (AHFDSs)</td>
<td>$10 < $0.1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>UST systems with field-constructed tanks (FCTs)</td>
<td>$11 < $0.1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cost to owners/operators to read regulation</td>
<td>$5.5</td>
<td>$5.5</td>
<td>$5.5</td>
</tr>
<tr>
<td>State government administrative costs(^{c})</td>
<td>$0.12</td>
<td>$0.12</td>
<td>$0.12</td>
</tr>
<tr>
<td>Total Annual Avoided Costs</td>
<td>$310 ($120-$330)</td>
<td>$450 ($210-$670)</td>
<td>$230 ($45-$420)</td>
</tr>
<tr>
<td>Total Annual Compliance Costs</td>
<td>$160 ($160)</td>
<td>$290 ($160)</td>
<td>$70 ($160)</td>
</tr>
<tr>
<td>Net Cost (Savings) to Society(^{d,g})</td>
<td>[Total Compliance Costs less Total Avoided Costs]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater protected (billion gallons)</td>
<td>130 (50-240)</td>
<td>170 (74-270)</td>
<td>92 (17-180)</td>
</tr>
</tbody>
</table>

\(^{a}\) Avoided costs are estimated for conventional UST systems and emergency generator tanks (EGTs) only. Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.

\(^{b}\) Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

\(^{c}\) The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of existence for AHFDS and UST systems with FCTs.

\(^{d}\) Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the total UST regulation’s social costs. See Chapter 3.1 for further discussion.

\(^{e}\) Due to data and resource constraints, EPA is unable to monetize some of the positive impacts of the final UST regulation. Chapter 4 of this document provides a qualitative discussion of these benefits.

\(^{f}\) Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

\(^{g}\) The results show that all but one of the four estimates of cost savings for conventional systems exceed total regulatory costs (including FCT and AHFDS systems). As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. However, this expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with the assumption of 100 percent compliance in the cost estimates. As a result, this low-end estimate of potential cost savings represents likely understates the cost savings that would be associated with a consistent, 100 percent compliance scenario. See Chapter 4 and Appendix H for detailed discussion of how these assumptions affect net benefits of the final UST regulation as calculated using responses from Expert 2.
7.1.1 Net Costs of the Regulation: Potential Underestimates of Cost Savings and Benefits

The results show that three of the four estimates of cost savings for conventional systems exceed total regulatory costs for all systems, including both costs to conventional systems and costs to FCT and AHFDS systems (for which cost savings were not estimated). As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. However, this expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with the assumption of 100 percent compliance in the cost estimates. As a result, this low-end estimate of potential cost savings likely understates the cost savings that would be associated with a consistent, 100 percent compliance scenario.

In addition, this analysis may understate avoided costs for the following reasons:

- This analysis does not monetize benefits associated with groundwater protection, mitigation and avoidance of acute events, ecological benefits, human health risks, and avoided property devaluation relative to the baseline.

- This analysis does not monetize avoided costs associated with FCT and AHFDS systems. Compliance costs for these systems are monetized.

- This analysis does not quantify avoided remediation costs associated with reductions in release size (i.e., extent), other than the change in incidence of groundwater contamination. The same reductions in release volume that lower the incidence of groundwater contamination would likely also reduce the number of large extent releases of all types and decrease the average size of smaller releases.

7.1.2 Net Costs of the Regulation: Cost Savings to Public and Private Entities

While EPA opted to express all cost savings as “benefits to society” in this analysis, it is also common practice in RIAs to calculate the costs of a regulation by subtracting cost savings from cost increases to affected entities. Under this regulation, the cost savings of avoided releases would in some cases reduce burden on state funds, but a portion of the remediation costs would also be borne directly by regulated entities. One option for presenting total costs of the regulation, therefore, would have been to present the net costs to regulated facilities after accounting for avoided remediation costs. However, because it is impossible to predict which facilities would enjoy cost savings, EPA opted to present industry costs and industry-related avoided costs separately in the main analysis.

This section considers the net cost impact on facilities when accounting for avoided remediation costs. Exhibit 7-2 provides a more detailed breakout of the estimated cost savings

225 The practice of subtracting cost savings from cost increases to estimate the net costs of a regulation is consistent with OMB Circular A-4. Circular A-4 explains: “You should also try to monetize any cost savings as a result of an alternative and either add it to the benefits or subtract it from the costs of that alternative.” (U.S. Office of Management and Budget. Circular No. A-4. September 17, 2003.)
for conventional systems and EGTs. The exhibit compares cost savings directly to the private-sector compliance costs of the regulation for those systems.

The exhibit shows that, in general, the net cost of the regulation to private-sector entities falls well below $100 million in the Selected Option and Alternative 2 when avoided costs to the private sector are considered. Only under Alternative 1 do net costs to the private sector exceed $100 million under expert estimates.

Exhibit 7-2

Summary Of Net Costs To Private Sector for Conventional Systems and EGTs (2012$ millions)

<table>
<thead>
<tr>
<th>Selected Option</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Sector Compliance Cost</td>
<td>$130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost Savings(^a)</td>
<td>$330</td>
<td>$120</td>
<td>$270</td>
<td>$530</td>
<td>$310</td>
</tr>
<tr>
<td>Public Sector Cost Savings(^b)</td>
<td>$190</td>
<td>$65</td>
<td>$150</td>
<td>$290</td>
<td>$170</td>
</tr>
<tr>
<td>Private Sector Cost Savings</td>
<td>$150</td>
<td>$52</td>
<td>$120</td>
<td>$240</td>
<td>$140</td>
</tr>
<tr>
<td>Net Cost to Private Sector ([\text{Private Sector Compliance Cost} - \text{Private Sector Cost savings}])</td>
<td>($17)</td>
<td>$77</td>
<td>$6</td>
<td>($110)</td>
<td>($11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative 1</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Sector Compliance Cost</td>
<td>$280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost Savings(^a)</td>
<td>$500</td>
<td>$210</td>
<td>$420</td>
<td>$670</td>
<td>$450</td>
</tr>
<tr>
<td>Public Sector Cost Savings(^b)</td>
<td>$290</td>
<td>$120</td>
<td>$240</td>
<td>$370</td>
<td>$250</td>
</tr>
<tr>
<td>Private Sector Cost Savings</td>
<td>$210</td>
<td>$88</td>
<td>$190</td>
<td>$300</td>
<td>$200</td>
</tr>
<tr>
<td>Net Cost to Private Sector ([\text{Private Sector Compliance Cost} - \text{Private Sector Cost savings}])</td>
<td>$67</td>
<td>$190</td>
<td>$93</td>
<td>($15)</td>
<td>$85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative 2</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Sector Compliance Cost</td>
<td>$65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost Savings(^a)</td>
<td>$220</td>
<td>$45</td>
<td>$220</td>
<td>$420</td>
<td>$230</td>
</tr>
<tr>
<td>Public Sector Cost Savings(^b)</td>
<td>$130</td>
<td>$26</td>
<td>$120</td>
<td>$240</td>
<td>$130</td>
</tr>
<tr>
<td>Private Sector Cost Savings</td>
<td>$92</td>
<td>$19</td>
<td>$99</td>
<td>$190</td>
<td>$99</td>
</tr>
<tr>
<td>Net Cost to Private Sector ([\text{Private Sector Compliance Cost} - \text{Private Sector Cost savings}])</td>
<td>($28)</td>
<td>$45</td>
<td>($34)</td>
<td>($120)</td>
<td>($35)</td>
</tr>
</tbody>
</table>

Notes:
\(^a\) As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. This expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with cost modeling. See Chapter 4 and Appendix H for detailed discussion of how these assumptions affect net benefits of the final UST regulation as calculated using responses from Expert 2.

\(^b\) Values are estimated in Chapter 5.2.4. To provide a conservative estimate of net costs to the private sector, this table presents the low deductible scenario results. These values represent potential reductions in public expenditures in states with active state funds. We note that to realize the savings in public expenditures in the near term, state government action would be required to lower petroleum fees. Alternatively, to the extent that funds are not constrained in their use, a redistribution of funds (e.g., to existing sites awaiting cleanup) could also represent a significant public benefit through more rapid completion of existing sites.
In addition to the primary analysis presented above, we also consider the comparison of costs and benefits of the final UST regulation in the alternative baseline scenario, where the universes of releases and UST systems decline over time in accordance with historical trends. In this alternative baseline, the universe of releases is smaller relative to the original baseline than the universe of UST systems; as described in Chapters 3 and 4, estimates of compliance costs do not change substantially under the alternative baseline, while estimates of avoided costs decrease by approximately 31 percent. However, even in this scenario, the final UST regulation may avoid more costs than it creates, potentially generating cost savings to society. EPA estimates that the Selected Option in the alternative baseline could generate $60 million per year in savings to society (reflecting the average of four estimates: $74 million in net costs, $32 million, $75 million, and $210 million). Alternative 1 could generate $25 million per year in savings to society (reflecting the average of four estimates: $140 million in net costs, $7 million, $61 million, and $170 million), while Alternative 2 could generate savings of $87 million (reflecting the average of four estimates: $39 million in net costs, $81 million, $84 million, and $220 million). These results are presented in Exhibit 7-3.

Exhibit 7-3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Annual Avoided Costs<sup>a,b</sup> (range of all values in italics)</td>
<td>$220 ($81-$360)</td>
<td>$310 ($140-$460)</td>
<td>$160 ($31-$290)</td>
</tr>
<tr>
<td>Total Annual Compliance Costs<sup>c</sup></td>
<td>$160</td>
<td>$290</td>
<td>$70</td>
</tr>
<tr>
<td>Net Cost (Savings) to Society<sup>c,d</sup> (range of all values in italics)</td>
<td>($60) $74-$210</td>
<td>($25) $140-$170</td>
<td>($87) $39-$220</td>
</tr>
</tbody>
</table>

^a Avoided costs are estimated for conventional UST systems and emergency generator tanks (EGTs) only.

^b Due to data and resource constraints, EPA is unable to monetize some of the positive impacts of the final UST regulation. Chapter 4 of this document provides a qualitative discussion of these benefits.

^c Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.

^d The results show that all but one of the four estimates of cost savings for conventional systems exceeded total regulatory costs (including FCT and AHFDS systems). As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. However, this expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with the assumption of 100 percent compliance in the cost estimates. As a result, this low-end estimate of potential cost savings represents likely understates the cost savings that would be associated with a consistent, 100 percent compliance scenario. See Chapter 4 and Appendix H for detailed discussion of how these assumptions affect net benefits of the final UST regulation as calculated using responses from Expert 2.

^e Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.
7.2 Cost-Effectiveness Analysis

We measure cost-effectiveness by considering the expected cost per release avoided. This cost-effectiveness measure is useful for comparing the resources required to eliminate a single release under each alternative. For the purpose of this analysis, we consider avoided releases to be both releases altogether avoided and groundwater incidents averted due to the final UST regulation. As presented in Exhibit 7-4, we find that the cost per release avoided is approximately $43,000 to $200,000 under the Selected Option, compared with $68,000 to $250,000 under Alternative 1 and $25,000 to $270,000 under Alternative 2. In general, this compares favorably with average release remediation costs presented in Exhibit 4-2 in Chapter 4, which range between $98,000 and $210,000.226

This regulatory impact analysis suggests that, in addition to improving the alignment of incentives, release prevention is likely to be less costly than release remediation under the Selected Option and Alternative 2 and in some instances under Alternative 1.

<table>
<thead>
<tr>
<th>Exhibit 7-4</th>
<th>Cost-Effectiveness: Number Of Avoided Releases And Groundwater Incidentsa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selected Option</td>
</tr>
</tbody>
</table>
| Avoided releases and groundwater incidents | 2,073
(772-3,646) | 2,708
(1,148-4,213) | 1,427
(257-2,753) |
| Compliance costb ($ million) | $160 | $290 | $70 |
| Cost per release avoided ($ million) | $(0.04 - $0.20) | $(0.07 - $0.25) | $(0.03 - $0.27) |

a Cost estimates were derived using a seven percent discount rate.
b Compliance cost includes direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.

7.3 Costs and Beneficial Effects Under Alternative Discount Rates

The selection of the rate at which to discount future costs and benefits is complex. To assess the sensitivity of our results to our choice of discount rate, Exhibit 7-5 presents a summary of total compliance costs and avoided remediation costs considering an alternate discount rate of three percent. Costs change little because a reduction in interest rates both reduces time value of money (TVM) costs and increases costs that have a delay before

226 The one exception to this conclusion is Expert 2. As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. This expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with the cost modeling, and likely understates the cost savings associated with the 100 percent compliance that is assumed in the cost analysis. See Chapter 4 and Appendix H for detailed discussion of how these assumptions affect net benefits of the final UST regulation as calculated using responses from Expert 2.
implementation.227,228 The net result of a change from a discount rate of seven percent to a discount rate of three percent is an overall increase in the cost of the regulation of less than $10 million per year, indicating that TVM and delayed-implementation cost effects essentially offset each other.

Discount rates are also involved in our estimate of annual avoided costs. In particular, we use them to obtain constant annual avoided costs for those requirements in which the affected universe grows over time and to calculate the delay until positive impacts accrue.229 Here, the effect of lowering interest rate is more significant, as all requirements are discounted by at least one period. As \textbf{Exhibit 7-5} shows, a change in the discount rate increases avoided costs from a range of $120 million - $530 million using a seven percent discount rate to $130 million - $610 million using a three percent discount rate. This increase is largely due to the fact that we discount all avoided costs by at least one year, as outlined in \textbf{Exhibit 1-2}.

We conclude that, while a reduction in the discount rate to three percent leaves annual compliance costs essentially unchanged at $160 million, avoided costs increase by $16 million to $84 million per year. As such, annual savings to society would increase from a range of $39 million in net costs to $370 million in net savings, to a range of $25 million in net costs to $450 million in net savings if EPA relies on a three percent discount rate.

227 When amortizing a value over time, if all other factors are held constant, a reduction in the rate of interest decreases the annual payment.

228 The rate of discount enters into our calculation of time value of money costs. Higher discount rates increase these costs, while lower discount rates cause them to decrease. See Appendix D for details.

229 Requirements for which the universe is assumed to grow over time are the elimination of flow restrictors as overfill prevention for new tanks and when overfill prevention equipment is replaced, closure of lined tanks that cannot be repaired, and all Energy Policy Act requirements in Indian country, with the exception of operator training.
Exhibit 7-5

<table>
<thead>
<tr>
<th>Annual Avoided Costs<sup>a</sup></th>
<th>7 percent discount rate ($ millions)</th>
<th>3 percent discount rate ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Releases and groundwater incidents</td>
<td>$300</td>
<td>$350</td>
</tr>
<tr>
<td>(110-$510)</td>
<td>(130-$590)</td>
<td></td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$4.5</td>
<td>$4.7</td>
</tr>
<tr>
<td>(1.7-$7.9)</td>
<td>(1.7-$8.2)</td>
<td></td>
</tr>
<tr>
<td>Product loss</td>
<td>$3.1</td>
<td>$3.3</td>
</tr>
<tr>
<td>(0.86-$6.5)</td>
<td>(0.89-$6.8)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual Compliance Costs<sup>b</sup></th>
<th>7 percent discount rate ($ millions)</th>
<th>3 percent discount rate ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems</td>
<td>$130</td>
<td>$130</td>
</tr>
<tr>
<td>Emergency generator tanks (EGT)</td>
<td>$2.0</td>
<td>$2.1</td>
</tr>
<tr>
<td>Airport hydrant fuels distribution systems (AHFDSs)</td>
<td>$10</td>
<td>$12</td>
</tr>
<tr>
<td>UST systems with field-constructed tanks (FCTs)</td>
<td>$11</td>
<td>$12</td>
</tr>
<tr>
<td>Cost to owners/operators to read regulation</td>
<td>$5.5</td>
<td>$3.9</td>
</tr>
<tr>
<td>State government administrative costs<sup>c</sup></td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Annual Avoided Costs</td>
<td>$310</td>
<td>$360</td>
</tr>
<tr>
<td>($120-$530)</td>
<td>($130-$610)</td>
<td></td>
</tr>
<tr>
<td>Total Annual Compliance Costs<sup>d</sup></td>
<td>$160</td>
<td>$160</td>
</tr>
<tr>
<td>Net Cost (Savings) to Society<sup>de</sup></td>
<td>($160)</td>
<td>($200)</td>
</tr>
<tr>
<td>[Total Compliance Costs less Total Avoided Costs]</td>
<td>$39 - ($370)</td>
<td>$25 - ($450)</td>
</tr>
</tbody>
</table>

^a Avoided costs are estimated for conventional UST systems and emergency generator tanks (EGTs) only.

^b Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

^c The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of existence for AHFDS and UST systems with FCTs.

^d Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the final UST regulation’s social costs. See Chapter 3.1 for further discussion.

^e Totals may not add up due to rounding.

^f As explained in Chapter 4 and Appendix H, one of the four experts provided estimates of avoided releases and averted groundwater incidents that do not result in net cost savings to society from the Selected Option. This expert also assumed a high level of noncompliance with the final UST regulation that is not consistent with cost modeling. See Chapter 4 and Appendix H for detailed discussion of how these assumptions affect net benefits of the final UST regulation as calculated using responses from Expert 2.
Sources Cited

40 CFR 280.10 Subpart A – Applicability.

Association of State and Territorial Solid Waste Management Officials. State Fund Survey Results 2012.

Phone conversation and email from Lynne Smith, geologist, and Russ Ellison, Virginia Department of Environmental Quality.

Rhode Island Department of Environmental Management. Underground Storage Tank Environmental Results Program, Final Report, Tables I-IV.

Skeo Solutions. “Summary of Key Data from State Public Record Postings,” Work Order 1006, Table 1, October 25, 2013.

U.S. Census Bureau. 1987 Census of Governments.

U.S. Census Bureau. 2007 Census of Governments.

U.S. Census Bureau. 2011 County Business Patterns.

