GUAM ADMINISTRATIVE RULES AND REGULATIONS (GAR)

TITLE 22

GUAM ENVIRONMENTAL PROTECTION AGENCY

CHAPTER 50

GUAM UNDERGROUND STORAGE TANK REGULATIONS
GUAM ADMINISTRATIVE RULES AND REGULATIONS (GAR)

TITLE 22

GUAM ENVIRONMENTAL PROTECTION AGENCY (Guam EPA)

CHAPTER 50

GUAM UNDERGROUND STORAGE TANK REGULATIONS

Article 1. Scope and Installation Requirements for Partially Excluded UST Systems
Article 2. UST Systems: Design, Construction, and Installation
Article 3. General Operating Requirements
Article 4. Release Detection
Article 5. Release Reporting, Investigation, and Confirmation
Article 6. Release Response Action
Article 7. Out-of-Service UST Systems and Closure
Article 8. Financial Responsibility
Article 9. Lender Liability
Article 10. Operator Training
Article 11. Reserved
Article 12. Permits and Variances
Article 13. Enforcement

ARTICLE 1
SCOPE AND INSTALLATION REQUIREMENTS FOR PARTIALLY EXCLUDED UST SYSTEMS

§ 50101 to § 50109. [Reserved]
§ 50110. Applicability
§ 50111. Installation requirements for partially excluded UST systems
§ 50112. Definitions

§ 50113. Installation requirements for partially excluded UST systems--codes of practice

§ 50114 to § 50119. [Reserved.]

§ 50101 to § 50109. [Reserved]

§ 50110. Applicability.

(a) The requirements of this chapter apply to all owners and operators of an UST system as defined in § 50112 except as otherwise provided in this section.

(1) Airport hydrant fuel distribution systems, UST systems with field-constructed tanks, and UST systems that store fuel solely for use by emergency power generators must meet the requirements of this chapter as follows:
 (A) Airport hydrant fuel distribution systems and UST systems with field-constructed tanks must meet all applicable requirements of this chapter, except that those installed before October 13, 2015 must meet the applicable requirements of Articles 4, 8, 10, and 12 no later than one year after October 13, 2015.
 (B) UST systems that store fuel solely for use by emergency power generators must meet all applicable requirements of this chapter except that those installed before October 13, 2015 must meet the applicable requirements of Article 4 no later than one year after October 13, 2015.

(2) Any UST system listed in subsection (c) must meet the requirements of §50111.

(b) Exclusions. The following UST systems are excluded from the requirements of this chapter:

(1) Any UST system holding hazardous wastes listed or identified under 10 Guam Code Annotated (GCA), Chapter 76, Underground Storage of Regulated Substances, or the
rules adopted thereunder, or Subtitle C of the Solid Waste Disposal Act, or a mixture of such hazardous waste and other regulated substances;

(2) Any wastewater treatment tank system that is part of a wastewater treatment facility regulated under Section 402 or 307(b) of the Clean Water Act;

(3) Equipment or machinery that contains regulated substances for operational purposes such as hydraulic lift tanks and electrical equipment tanks;

(4) Any UST system that contains a de minimis concentration of regulated substances; and

(5) Any emergency spill or overflow containment UST system that is expeditiously emptied after use.

(c) Partial Exclusions. Articles 2, 3, 4, 5, 7, 10, and 12 do not apply to:

(1) Wastewater treatment tank systems not covered under subsection (b)(2);

(2) Aboveground storage tanks associated with:
 (A) Airport hydrant fuel distribution systems; and
 (B) UST systems with field-constructed tanks;

(3) Any UST systems containing radioactive material that are regulated under the Atomic Energy Act of 1954 (42 U.S.C. 2011 and following); and

(4) Any UST system that is part of an emergency generator system at nuclear power generation facilities licensed by the Nuclear Regulatory Commission and subject to Nuclear Regulatory Commission requirements regarding design and quality criteria, including but not limited to 10 C.F.R. Part 50.

§ 50111. Installation requirements for partially excluded UST systems.

(a) Owners and operators must install an UST system listed in section 50110 (11-280.1-10)(c)(1), (3), or (4) storing regulated substances (whether of single or double wall construction) that meets the following requirements:

(1) Will prevent releases due to corrosion or structural failure
for the operational life of the UST system;

(2) Is cathodically protected against corrosion, constructed of non-corrodible material, steel clad with a non-corrodible material, or designed in a manner to prevent the release or threatened release of any stored substance; and

(3) Is constructed or lined with material that is compatible with the stored substance.

(b) Notwithstanding subsection (a), an UST system without corrosion protection may be installed at a site that is determined by a corrosion expert not to be corrosive enough to cause it to have a release due to corrosion during its operating life. Owners and operators must maintain records that demonstrate compliance with the requirements of this subsection for the remaining life of the tank.

§ 50112. Definitions.

When used in this Article, the following terms have the meanings given below:

(a) “Aboveground release” means any release to the surface of the land or to surface water. This includes, but is not limited to, releases from the aboveground portion of an UST system and aboveground releases associated with overfills and transfer operations as the regulated substance moves to or from an UST system.

(b) “Airport hydrant fuel distribution system” (also called “airport hydrant system”) means an UST system which fuels aircraft and operates under high pressure with large diameter piping that typically terminates into one or more hydrants (fill stands). The airport hydrant system begins where fuel enters one or more tanks from an external source such as a pipeline, barge, rail car, or other motor fuel carrier.

(c) “Ancillary equipment” means any devices including, but not limited to, such devices as piping, fittings, flanges, valves, and pumps used to distribute, meter, or control the flow of regulated substances to and from an UST.

(d) “Belowground release” means any release to the subsurface of the land and to groundwater. This includes, but is not limited to, releases
from the belowground portions of an underground storage tank system and belowground releases associated with overfills and transfer operations as the regulated substance moves to or from an underground storage tank.

(e) “Beneath the surface of the ground” means beneath the ground surface or otherwise covered with earthen materials.

(f) “Cathodic protection” is a technique to prevent corrosion of a metal surface by making that surface the cathode of an electrochemical cell. For example, a tank system can be cathodically protected through the application of either galvanic anodes or impressed current.

(g) “Cathodic protection tester” means a person who can demonstrate an understanding of the principles and measurements of all common types of cathodic protection systems as applied to buried or submerged metal piping and tank systems. At a minimum, such persons must have education and experience in soil resistivity, stray current, structure-to-soil potential, and component electrical isolation measurements of buried metal piping and tank systems.

(h) “Class A operator” means the individual who has primary responsibility to operate and maintain the UST system in accordance with applicable requirements established by the agency. The Class A operator typically manages resources and personnel, such as establishing work assignments, to achieve and maintain compliance with regulatory requirements.

(i) “Class B operator” means the individual who has day-to-day responsibility for implementing applicable regulatory requirements established by the agency. The Class B operator typically implements infield aspects of operation, maintenance, and associated recordkeeping for the UST system.

(j) “Class C operator” means the individual responsible for initially addressing emergencies presented by a spill or release from an UST system. The Class C operator typically controls or monitors the dispensing or sale of regulated substances.

(k) “Compatible” means the ability of two or more substances to maintain their respective physical and chemical properties upon contact with one another for the design life of the tank system under conditions
likely to be encountered in the UST.
(l) “Connected piping” means all underground piping including valves, elbows, joints, flanges, and flexible connectors attached to a tank system through which regulated substances flow. For the purpose of determining how much piping is connected to any individual UST system, the piping that joins two UST systems should be allocated equally between them.
(m) “Consumptive use” with respect to heating oil means consumed on the premises.
(n) “Containment sump” means a liquid-tight container that protects the environment by containing leaks and spills of regulated substances from piping, dispensers, pumps, and related components in the containment area. Containment sumps may be single walled or secondarily contained and located at the top of tank (tank top or submersible turbine pump sump), underneath the dispenser (under-dispenser containment sump), or at other points in the piping run (transition or intermediate sump).
(o) “Corrosion expert” means a person who, by reason of thorough knowledge of the physical sciences and the principles of engineering and mathematics acquired by a professional education and related practical experience, is qualified to engage in the practice of corrosion control on buried or submerged metal piping systems and metal tanks. Such a person must be accredited or certified as being qualified by the National Association of Corrosion Engineers or be a registered professional engineer who has certification or licensing that includes education and experience in corrosion control of buried or submerged metal piping systems and metal tanks.
(p) “Dielectric material” means a material that does not conduct direct electrical current. Dielectric coatings are used to electrically isolate UST systems from the surrounding soils. Dielectric bushings are used to electrically isolate portions of the UST system (e.g., tank from piping).
(q) “Dispenser” means equipment located aboveground that dispenses regulated substances from the UST system.
(r) “Dispenser system” means the dispenser and the equipment necessary to connect the dispenser to the underground storage tank.
system. The equipment necessary to connect the dispenser to the underground storage tank system includes check valves, shear valves, unburied risers or flexible connectors, or other transitional components that are underneath the dispenser and connect the dispenser to the underground piping.

(s) “Electrical equipment” means underground equipment that contains dielectric fluid that is necessary for the operation of equipment such as transformers and buried electrical cable.

(t) “EPA” means the United States Environmental Protection Agency.

(u) “Excavation zone” means the volume containing the tank system and backfill material bounded by the ground surface, walls, and floor of the pit and trenches into which the UST system is placed at the time of installation.

(v) “Existing UST system” means an UST system for which installation commenced on or before December 22, 1988.

(w) “Exposure assessment” means a determination regarding the extent of exposure of, or potential for exposure of, individuals to regulated substances from a release from an UST or tank system. An exposure assessment shall be based on factors such as the nature and extent of contamination, the existence of or potential for pathways of human exposure (including ground or surface water contamination, air emissions, dermal exposure, soil ingestion, and food chain contamination), the size of the community or communities within the likely pathways of exposure, an analysis of expected human exposure levels with respect to short-term and long-term health effects associated with identified contaminants, and any available recommended exposure or tolerance limits for the contaminants.

(x) “Farm tank” is a tank located on a tract of land devoted to the production of crops or raising animals, including fish, and associated residences and improvements. A farm tank must be located on the farm property. Farm includes fish hatcheries, rangeland, and nurseries with growing operations.

(y) “Field-constructed tank” means a tank constructed in the field. For example, a tank constructed of concrete that is poured in the field, or a steel or fiberglass tank primarily fabricated in the field is considered field-
constructed.

(z) “Flow-through process tank” is a tank that forms an integral part of a production process through which there is a steady, variable, recurring, or intermittent flow of materials during the operation of the process. Flow-through process tanks do not include tanks used for the storage of materials prior to their introduction into the production process or for the storage of finished products or by-products from the production process.

(aa) “Free product” refers to a regulated substance that is present as a non-aqueous phase liquid (e.g., liquid not dissolved in water).

(bb) “Gathering lines” means any pipeline, equipment, facility, or building used in the transportation of oil or gas during oil or gas production or gathering operations.

(dd) “Hazardous substance UST system” means an underground storage tank system that contains a hazardous substance or any mixture of such substances and petroleum, and that is not a petroleum UST system.

(ee) “Heating oil” means petroleum that is No. 1, No. 2, No. 4—light, No. 4—heavy, No. 5—light, No. 5—heavy, and No. 6 technical grades of fuel oil; other residual fuel oils (including Navy Special Fuel Oil and Bunker C); and other fuels when used as substitutes for one of these fuel oils. Heating oil is typically used in the operation of heating equipment, boilers, or furnaces.

(ff) “Hydraulic lift tank” means a tank holding hydraulic fluid for a closed-loop mechanical system that uses compressed air or hydraulic fluid to operate lifts, elevators, and other similar devices.

(gg) “Liquid trap” means sumps, well cellars, and other traps used in association with oil and gas production, gathering, and extraction operations (including gas production plants), for the purpose of collecting oil, water, and other liquids. These liquid traps may temporarily collect liquids for subsequent disposition or reinjection into a production or pipeline stream, or may collect and separate liquids from a gas stream.
(hh) “Maintenance” means the normal operational upkeep to prevent an underground storage tank system from releasing product.
(ii) “Motor fuel” means a complex blend of hydrocarbons typically used in the operation of a motor engine, such as motor gasoline, aviation gasoline, No. 1 or No. 2 diesel fuel, or any blend containing one or more of these substances (e.g., motor gasoline blended with alcohol).
(jj) “Noncommercial purposes” with respect to motor fuel means not for resale.
(kk) “On the premises where stored” with respect to heating oil means UST systems located on the same property where the stored heating oil is used.
(ll) “Operational life” refers to the period beginning when installation of the tank system has commenced until the time the tank system is properly closed under Article 7.
(mm) “Operator” means any person in control of, or having responsibility for, the daily operation of the UST system.
(nn) “Overfill release” is a release that occurs when a tank is filled beyond its capacity, resulting in a discharge of the regulated substance to the environment.
(oo) “Owner” means:
 1. In the case of an UST system in use on November 8, 1984, or brought into use after that date, any person who owns an UST system used for storage, use, or dispensing of regulated substances; and
 2. In the case of any UST system in use before November 8, 1984, but no longer in use on that date, any person who owned such UST immediately before the discontinuation of its use.
(pp) “Permit” means written authorization, as provided for in 10 GCA, Chapter 76, § 76117, from the Administrator to install or operate an UST or tank system. A permit authorizes owners or operators to install and operate an UST or tank system in a manner, or to do an act, not forbidden by 10 GCA Chapter 76, or by this chapter, but requiring review by the Administrator.
(qq) “Person” means an individual, trust, estate, firm, joint stock
company, corporation (including a government corporation), partnership, association, commission, consortium, joint venture, commercial entity, the state or a county, the United States government, federal agency, interstate body, or any other legal entity.

(rr) “Petroleum” means petroleum, including crude oil or any fraction thereof, that is liquid at standard conditions of temperature and pressure (60 degrees Fahrenheit and 14.7 pounds per square inch absolute).

(ss) “Petroleum UST system” means an underground storage tank system that contains petroleum or a mixture of petroleum with de minimis quantities of other regulated substances. Such systems include those containing motor fuels, jet fuels, distillate fuel oils, residual fuel oils, lubricants, petroleum solvents, and used oils.

(tt) “Pipe” or “piping” means a hollow cylinder or tubular conduit that is constructed of non-earthen materials.

(uu) “Pipeline facilities” (including gathering lines) means pipe rights-of-way and any associated equipment, facilities, or buildings.

(vv) “Regulated substance” means hazardous substances, petroleum, and any other substance designated by the agency that, when released into the environment, may present substantial danger to human health, welfare, or the environment. The term regulated substance includes but is not limited to petroleum and petroleum-based substances comprised of a complex blend of hydrocarbons, such as motor fuels, jet fuels, distillate fuel oils, residual fuel oils, lubricants, petroleum solvents, and used oils.

(ww) “Release” means any spilling, leaking, emitting, discharging, escaping, leaching, or disposing from an UST system into groundwater, surface water, or subsurface soils.

(xx) “Release detection” means determining whether a release of a regulated substance has occurred from the UST system into the environment or a leak has occurred into the interstitial space between the UST system and its secondary barrier or secondary containment around it.

(yy) “Repair” means to restore to proper operating condition a tank, pipe, spill prevention equipment, overfill prevention equipment, corrosion protection equipment, release detection equipment or other UST system component that has caused a release of product from the UST system or has failed to function properly.
“Replaced” means
(1) For an underground storage tank – to remove an underground storage tank and install another underground storage tank; or
(2) For connected piping – to remove 50 percent or more of connected piping and install other piping, excluding connectors, connected to a single underground storage tank. For underground storage tanks with multiple piping runs, this definition applies independently to each piping run.

“Residential tank” is a tank located on property used primarily for dwelling purposes.

“Secondary containment” or “secondarily contained” means a release prevention and release detection system for a tank or piping. This system has an inner and outer barrier with an interstitial space that is monitored for leaks. This term includes containment sumps when used for interstitial monitoring of piping.

“Septic tank” is a water-tight covered receptacle designed to receive or process, through liquid separation or biological digestion, the sewage discharged from a building sewer. The effluent from such receptacle is distributed for disposal through the soil and settled solids and scum from the tank are pumped out periodically and hauled to a treatment facility.

“Storm water collection system” or “wastewater collection system” means piping, pumps, conduits, and any other equipment necessary to collect and transport the flow of surface water run-off resulting from precipitation, or domestic, commercial, or industrial wastewater to and from retention areas or any areas where treatment is designated to occur. The collection of storm water and wastewater does not include treatment except where incidental to conveyance.

“Surface impoundment” is a natural topographic depression, man-made excavation, or diked area formed primarily of earthen materials (although it may be lined with man-made materials) that is not an injection well.

“Tank” is a stationary device designed to contain an accumulation of regulated substances and constructed of non-earthen materials (e.g., concrete, steel, plastic) that provide structural support.
“Temporary closure” or “temporarily closed” means that owners and operators do not deposit regulated substances into the UST or tank system nor dispense regulated substances from the UST or tank system for sixty days or longer, except for UST systems that store fuel solely for use by emergency power generators and UST systems with field-constructed tanks. For UST systems that store fuel solely for use by emergency power generators and UST systems with field-constructed tanks, “temporary closure” or “temporarily closed” means that the UST or tank system is empty, as defined in section 50170(a)(11-280.1-70(a)), and owners and operators do not deposit regulated substances into the UST or tank system for sixty (60) calendar days or longer.

“Under-dispenser containment” or “UDC” means containment underneath a dispenser system designed to prevent leaks from the dispenser and piping within or above the UDC from reaching soil, groundwater, and surface water.

“Underground area” means an underground room, such as a basement, cellar, shaft or vault, providing enough space for physical inspection of the exterior of the tank situated on or above the surface of the floor.

“Underground release” means any belowground or below water release.

“Underground storage tank” or “UST” means any one or combination of tanks (including underground pipes connected thereto) that is used to contain an accumulation of regulated substances, and the volume of which (including the volume of underground pipes connected thereto) is ten (10%) percent or more beneath the surface of the ground. This term does not include any:

1. Farm or residential tank of one thousand one hundred gallons or less capacity used for storing motor fuel for noncommercial purposes;
2. Tank used for storing heating oil for consumptive use on the premises where stored;
3. Septic tank;
4. Pipeline facility (including gathering lines):
 (A) Which is regulated under 49 U.S.C. chapter 601; or
(B) Which is an intrastate pipeline facility regulated under state laws as provided in 49 U.S.C. chapter 601, and which is determined by the Secretary of Transportation to be connected to a pipeline, or to be operated or intended to be capable of operating at pipeline pressure or as an integral part of a pipeline;

(5) Surface impoundment, pit, pond, or lagoon;
(6) Storm water or wastewater collection system;
(7) Liquid trap or associated gathering lines directly related to oil or gas production and gathering operations; or
(8) Storage tank situated in an underground area (such as a basement, cellar, mine working, drift, shaft, or tunnel) if the storage tank is situated upon or above the surface of the floor.

The term underground storage tank or UST does not include any pipes connected to any tank which is described in paragraphs (1) to (8).

(jjj) “Upgrade” means the addition or retrofit of some systems such as cathodic protection, lining, or spill and overfill controls to improve the ability of an underground storage tank system to prevent the release of product.

(kkk) “UST system” or “tank system” means an underground storage tank, connected underground piping, underground ancillary equipment, and containment system, if any.

(lll) “Variance” means a special written authorization from the Administrator to own, install, or operate an UST or tank system in a manner deviating from, or to do an act that deviates from, the requirements of this chapter that are more stringent than 40 C.F.R. Part 280.

(mmm) “Wastewater treatment tank” means a tank that is designed to receive and treat an influent wastewater through physical, chemical, or biological methods.

§50113. Installation requirements for partially excluded UST systems--codes of practice.
(a) The following current codes of practice may be used as guidance for complying with § 50111:

(1) NACE International Standard Practice SP 0285, “External Corrosion Control of Underground Storage Tank Systems by Cathodic Protection”;
(2) NACE International Standard Practice SP 0169, “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”;
(3) American Petroleum Institute Recommended Practice 1632, “Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems”; or
(4) Steel Tank Institute Recommended Practice R892, “Recommended Practice for Corrosion Protection of Underground Piping Networks Associated with Liquid Storage and Dispensing Systems”.

§ 50114 to § 50119. [Reserved.]

ARTICLE 2
UST SYSTEMS: DESIGN, CONSTRUCTION, AND INSTALLATION

§ 50120. Performance Standards for UST Systems
§ 50121. Upgrading of UST Systems
§ 50122. [Reserved.]
§ 50123. Tank and Piping Design for Hazardous Substances UST System
§ 50124. Secondary Containment Design
§ 50125. Under-Dispenser Containment
§ 50126. Performance Standards and Design for UST System – Code of Practice
§ 50127 to § 50129. [Reserved.]

(a) In order to prevent releases due to structural failure, corrosion, or spills and overfills for as long as the UST system is used to store regulated substances, owners and operators of UST systems must meet all applicable requirements of this Article. UST systems must meet the requirements of this section as follows:

1. UST systems installed after December 22, 1988, other than airport hydrant fuel distribution systems and UST systems with field-constructed tanks, must meet the requirements of this section, except as specified in this Article.

2. Airport hydrant fuel distribution systems and UST systems with field-constructed tanks installed after October 13, 2015 must meet the requirements of this section.

(b) Tanks. Each tank must be properly designed, constructed, and installed, and any portion underground that routinely contains product must be protected from corrosion, in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory as specified below:

1. The tank is constructed of fiberglass-reinforced plastic; or

2. The tank is constructed of steel and cathodically protected in the following manner:
 (A) The tank is coated with a suitable dielectric material;
 (B) Field-installed cathodic protection systems are designed by a corrosion expert;
 (C) Impressed current systems are designed to allow determination of current operating status as required in § 50131(3); and
 (D) Cathodic protection systems are operated and maintained in accordance with § 50131 or according to guidelines established by the agency; or

3. The tank is constructed of steel and clad or jacketed with a non-corrodible material; or

4. The tank is constructed of metal without additional corrosion protection measures provided that:
 (A) The tank is installed at a site that is determined by a corrosion expert not to be corrosive enough to cause it
to have a release due to corrosion during its operating life; and

(B) Owners and operators maintain records that demonstrate compliance with the requirements of subparagraph (A) for the remaining life of the tank; or

(5) The tank construction and corrosion protection are determined by the agency to be designed to prevent the release or threatened release of any stored regulated substance in a manner that is no less protective of human health and the environment than paragraphs (1) to (4).

(c) Piping. The piping that routinely contains regulated substances and is in contact with the ground must be properly designed, constructed, installed, and protected from corrosion in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory as specified below:

(1) The piping is constructed of a non-corrodible material; or

(2) The piping is constructed of steel and cathodically protected in the following manner:

(A) The piping is coated with a suitable dielectric material;

(B) Field-installed cathodic protection systems are designed by a corrosion expert;

(C) Impressed current systems are designed to allow determination of current operating status as required in § 50131(3); and

(D) Cathodic protection systems are operated and maintained in accordance with § 50131 or guidelines established by the agency; or

(3) The piping is constructed of metal without additional corrosion protection measures provided that:

(A) The piping is installed at a site that is determined by a corrosion expert to not be corrosive enough to cause it to have a release due to corrosion during its operating life; and
(B) Owners and operators maintain records that demonstrate compliance with the requirements of subparagraph (A) for the remaining life of the piping; or

(4) The piping construction and corrosion protection are determined by the agency to be designed to prevent the release or threatened release of any stored regulated substance in a manner that is no less protective of human health and the environment than the requirements in paragraphs (1) to (3).

(d) Spill and overfill prevention equipment.

(1) Except as provided in paragraphs (2) and (3), to prevent spilling and overfilling associated with product transfer to the UST system, owners and operators must use the following spill and overfill prevention equipment:

(A) Spill prevention equipment that will prevent release of product to the environment when the transfer hose is detached from the fill pipe (for example, a spill catchment basin); and

(B) Overfill prevention equipment that will:

(i) Automatically shut off flow into the tank when the tank is no more than ninety-five (95%) percent full;

(ii) Alert the transfer operator when the tank is no more than ninety (90%) percent full by restricting the flow into the tank or triggering a high-level alarm; or

(iii) Restrict flow thirty (30) minutes prior to overfilling, alert the transfer operator with a high-level alarm one minute before overfilling, or automatically shut off flow into the tank so that none of the fittings located on top of the tank are exposed to product due to overfilling.
 Owners and operators are not required to use the spill and overfill prevention equipment specified in paragraph (1) if:

(A) Alternative equipment is used that is determined by the agency to be no less protective of human health and the environment than the equipment specified in paragraph (1)(A) or (B); or

(B) The UST system is filled by transfers of no more than twenty-five (25) gallons at one time.

Flow restrictors used in vent lines may not be used to comply with paragraph (1)(B) when overfill prevention is installed or replaced after October 13, 2015.

Overfill prevention methods that rely on the use of alarms must have the alarms clearly labeled “overfill alarm” and located where the delivery person can clearly see and hear the alarm in order to immediately stop delivery of the product.

Spill and overfill prevention equipment must be periodically tested or inspected in accordance with § 50135.

(e) Installation. The UST system must be properly installed in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory and in accordance with the manufacturer’s instructions.

(f) Certification of installation. All owners and operators must ensure that one or more of the following methods of certification, testing, or inspection is used to demonstrate compliance with subsection (e) by providing a certification of compliance on the “Certification of Underground Storage Tank Installation” form prescribed by the Administrator and in accordance with § 501325(d).

1. The installer has been certified by the tank and piping manufacturers;
2. The installer has been certified or licensed by the agency;
3. The installation has been inspected and certified by a
licensed professional engineer with education and experience in UST system installation;

(4) The installation has been inspected and approved by the agency;

(5) All work listed in the manufacturer’s installation checklists has been completed and the checklists maintained; or

(6) The owner and operator have complied with another method for ensuring compliance with subsection (e) that is determined by the agency to be no less protective of human health and the environment.

(g) Secondary containment.

(1) UST systems installed after April 11, 2016, other than airport hydrant fuel distribution systems and UST systems with field-constructed tanks, must be provided with secondary containment that meets the requirements of § 50124, except for suction piping that meets the requirements of § 50141(b)(6).

(2) Airport hydrant fuel distribution systems and UST systems with field-constructed tanks must be provided with secondary containment that meets the requirements of § 50124, except for:

(A) Suction piping that meets the requirements of § 50141(b)(6);

(B) Piping associated with UST systems with field constructed tanks greater than 50,000 gallons; and

(C) Piping associated with airport hydrant systems.

§ 50121. Upgrading of UST Systems.

(a) All UST systems must comply with one of the following requirements:

(1) UST system performance standards in § 50120(b) to (d);

(2) For airport hydrant fuel distribution systems and UST systems with field-constructed tanks installed on or before October 13, 2015:

(A) The system performance standards in §50120(b) and
(c); and
(B) Not later than October 13, 2018, the system performance standards under § 50120(d); or
(3) Closure requirements under Article 7.

§ 50122. [Reserved.]

Owners and operators of hazardous substance UST systems must provide secondary containment for tanks and underground piping that meets the requirements of § 50124

§ 50124. Secondary Containment Design.

(a) Secondary containment systems must be designed, constructed, and installed to:
 (1) Contain regulated substances leaked from the primary containment until they are detected and removed;
 (2) Prevent the release of regulated substances to the environment at any time during the operational life of the UST system; and
 (3) Be checked for evidence of a release at least every thirty (30) calendar days.
(b) Double-walled tanks must be designed, constructed, and installed to:
 (1) Contain a leak from any portion of the inner tank within the outer wall; and
 (2) Detect the failure of the inner wall.
(c) External liners (including vaults) must be designed, constructed, and installed to:
 (1) Contain one hundred (100%) percent of the capacity of the largest tank within its boundary;
 (2) Prevent precipitation and groundwater intrusion from interfering with the ability to contain or detect a leak or
release of regulated substances; and

(3) Surround the UST completely to effectively prevent lateral and vertical migration of regulated substances.

§ 50125. Under-Dispenser Containment.

(a) Dispenser systems installed on or after April 11, 2016, must have under-dispenser containment that meets the requirements in this subsection. Under-dispenser containment requirement must:
 A. Be liquid-tight on its sides, bottom, and at any penetrations;
 B. Be compatible with the substance conveyed by the piping;
 C. Allow for visual inspection and access to the components in the containment system; and
 D. Be monitored for leaks from the dispenser system with a sensing device that signals the operator of the presence of regulated substances.

(a) The following current codes of practice may be used to comply with § 50120(b)(1):
 (1) Underwriters Laboratories Standard 1316, “Glass-Fiber-Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures”; or

(b) The following current codes of practice may be used to comply with § 50120(b)(2):
 (1) Steel Tank Institute “Specification STI-P3® Specification and Manual for External Corrosion Protection of Underground Steel Storage Tanks”;
 (2) Underwriters Laboratories Standard 1746, “External
Corrosion Protection Systems for Steel Underground Storage Tanks’;

(4) Steel Tank Institute Standard F841, “Standard for Dual Wall Underground Steel Storage Tanks”; or

c) The following current codes of practice may be used to comply with § 50120(b)(3):

(1) Underwriters Laboratories Standard 1746, “External Corrosion Protection Systems for Steel Underground Storage Tanks”;

(3) Steel Tank Institute ACT–100–U® Specification F961, “Specification for External Corrosion Protection of Composite Steel Underground Storage Tanks”; or

(4) Steel Tank Institute Specification F922, “Steel Tank Institute Specification for Permatank®”.

d) The following current codes of practice may be used to comply with § 50120(c)(1):

(1) Underwriters Laboratories Standard 971, “Nonmetallic Underground Piping for Flammable Liquids”; or

Flammable and Combustible Liquids”.

(e) The following current codes of practice may be used to comply with § 50120(c)(2):

3. Steel Tank Institute Recommended Practice R892, “Recommended Practice for Corrosion Protection of Underground Piping Networks Associated with Liquid Storage and Dispensing Systems”;
4. NACE International Standard Practice SP 0169, “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”; or

(f) Tank and piping system installation practices and procedures described in the following current codes of practice may be used to comply with the requirements of § 50120(e):

2. Petroleum Equipment Institute Publication RP100, “Recommended Practices for Installation of Underground Liquid Storage Systems”; or

(g) When designing, constructing, and installing airport hydrant systems and UST systems with field-constructed tanks, owners and operators may use military construction criteria, such as Unified Facilities Criteria (UFC) 3–460–01, “Petroleum Fuel Facilities”.

24
ARTICLE 3
GENERAL OPERATING REQUIREMENTS

§ 50130. Spill and Overfill Control
§ 50131. Operation and Maintenance of Corrosion Protection
§ 50132. Compatibility
§ 50133. Repairs Allowed
§ 50134. Notification, Reporting, and Recordkeeping
§ 50136. Periodic Operation and Maintenance Walkthrough Inspections
§ 50137. Periodic Inspection and Maintenance of Under-Dispenser Containment Sensing Devices
§ 50138. General Operating Requirement – Codes of Practice
§ 50139. [Reserved.]

§ 50130. Spill and Overfill Control.

(a) Owners and operators must ensure that releases due to spilling or overfilling do not occur. The owner and operator must ensure that the volume available in the tank is greater than the volume of product to be transferred to the tank before the transfer is made and that the transfer operation is monitored constantly to prevent overfilling and spilling.

(b) The owner and operator must report, investigate, and clean up any spills and overfills in accordance with § 50153.

§ 50131. Operation and Maintenance of Corrosion Protection.

All owners and operators of metal UST systems with corrosion protection must comply with the following requirements to ensure that releases due
to corrosion are prevented until the UST system is permanently closed or undergoes a change-in-service pursuant to § 50171:

(1) All corrosion protection systems must be operated and maintained to continuously provide corrosion protection to the metal components of that portion of the tank and piping that routinely contain regulated substances and are in contact with the ground.

(2) All UST systems equipped with cathodic protection systems must be inspected for proper operation by a qualified cathodic protection tester in accordance with the following requirements:
 (A) Frequency. All cathodic protection systems must be tested within six (6) months of installation and at least every three (3) years thereafter; and
 (B) Inspection criteria. The criteria that are used to determine that cathodic protection is adequate as required by this section must be in accordance with a code of practice developed by a nationally recognized association.

(3) UST systems with impressed current cathodic protection systems must also be inspected every sixty (60) calendar days to ensure the equipment is operating properly.

(4) For UST systems using cathodic protection, records of the operation of the cathodic protection must be maintained, in accordance with § 50134, to demonstrate compliance with the performance standards in this section. These records must provide the following:
 (A) The results of the last three (3) inspections required in paragraph (3); and
 (B) The results of testing from the last two (2) inspections required in paragraph (2).

§ 50132. Compatibility.

(a) Owners and operators must use an UST system made of or lined with
materials that are compatible with the substance stored in the UST system.

(b) Owners and operators must notify the agency at least thirty (30) days prior to switching to a regulated substance containing greater than ten (10%) percent ethanol, greater than twenty (20%) percent biodiesel, or any other regulated substance identified by the agency. In addition, owners and operators with UST systems storing these regulated substances must meet one of the following:

(1) Demonstrate compatibility of the UST system (including the tank, piping, containment sumps, pumping equipment, release detection equipment, spill equipment, and overfill equipment). Owners and operators may demonstrate compatibility of the UST system by using one of the following options:

(A) Certification or listing of UST system equipment or components by a nationally recognized, independent testing laboratory for use with the regulated substance stored; or

(B) Equipment or component manufacturer approval. The manufacturer’s approval must be in writing, indicate an affirmative statement of compatibility, specify the range of biofuel blends the equipment or component is compatible with, and be from the equipment or component manufacturer; or

(2) Use another option determined by the agency to be no less protective of human health and the environment than the options listed in paragraph (1).

(c) Owners and operators must maintain records in accordance with §50134(d) documenting compliance with subsection (b) for as long as the UST system is used to store the regulated substance.

§ 50133. Repairs Allowed.

(a) Owners and operators of UST systems must ensure that repairs will prevent releases due to structural failure or corrosion as long as the UST system is used to store regulated substances. The repairs must meet the
following requirements:

(1) Repairs to UST systems must be properly conducted in accordance with a code of practice developed by a nationally recognized association or an independent testing laboratory;

(2) Repairs to fiberglass-reinforced plastic tanks may be made by the manufacturer’s authorized representatives or in accordance with a code of practice developed by a nationally recognized association or an independent testing laboratory;

(3) Metal pipe sections and fittings that have released product as a result of corrosion or other damage must be replaced. Non-corrodible pipes and fittings may be repaired in accordance with the manufacturer’s specifications;

(4) Prior to the return to use of a repaired UST system, any repaired USTs must pass a tank tightness test in accordance with § 50143(3);

(5) Prior to the return to use of a repaired UST system, any repaired piping that routinely contains product must pass a line tightness test in accordance with § 50144(2);

(6) Prior to return to use of a repaired UST system, repairs to secondary containment areas of tanks and piping used for interstitial monitoring, containment sumps used for interstitial monitoring of piping, and containment walls must have the secondary containment tested for integrity using vacuum, pressure, or liquid methods in accordance with requirements developed by the manufacturer, a code of practice developed by a nationally recognized association or independent testing laboratory, or requirements established by the agency;

(7) Within six (6) months following the repair of any cathodically protected UST system, the cathodic protection system must be tested in accordance with § 50131(2) and(3) to ensure that it is operating properly; and

(8) Prior to the return to use of repaired spill or overfill prevention equipment, the repaired spill or overfill prevention equipment must be tested or inspected, as
appropriate, in accordance with § 50135 to ensure it is operating properly.

(b) UST system owners and operators must maintain records, in accordance with § 50134, of each repair until the UST system is permanently closed or undergoes a change-in-service pursuant to § 50171.

§ 50134. Notification, Reporting, and Recordkeeping.

(a) Notification. Owners and operators shall notify the agency of any of the following changes in information relating to an UST or tank system by submitting the “Notification for Underground Storage Tanks” form prescribed by the Administrator:

(1) Planned permanent closure or change-in-service, scheduled excavation work for permanent closure or change-in-service, or completed closure or change-in-service;
(2) Temporary closure or the return to currently-in-use status;
(3) Changes in product dispensing method, dispenser, or under dispenser containment;
(4) Changes in financial responsibility mechanism;
(5) Changes in leak detection method;
(6) Changes in spill and overfill prevention method;
(7) Changes in piping;
(8) Changes in type of regulated substances stored;
(9) Changes in corrosion protection mechanism; and
(10) Installation of or changes in secondary containment.

(b) Timing of notification. Owners and operators shall submit the notifications required in subsection (a) within thirty (30) calendar days following any of the changes requiring notification, except that:

(1) Notification of planned permanent closure or change-in-service must be received by the agency at least thirty (30) calendar days before commencement of excavation work for closure or change-in-service;

(2) Notification of scheduled excavation work for permanent closure or change-in-service must be received by the agency at least seven (7) calendar days before the scheduled work
date;

(3) Notification of change in type of regulated substance stored to a regulated substance containing greater than ten (10%) percent ethanol or greater than twenty (20%) percent biodiesel must be received by the agency at least thirty (30) calendar days before the change; and

(4) Notification of temporary closure must be received by the agency within thirty (30) calendar days of the UST system having met the definition of temporary closure in § 50112.

(c) Reporting. Owners and operators must submit the following information to the agency:

(1) Reports of all releases including suspected releases § 50150 and § 50152, spills and overfills § 50153, and confirmed releases § 50161;

(2) Release response actions planned or taken, including initial abatement measures § 50162, initial site characterization § 50163, free product removal § 50164, investigation of soil and groundwater cleanup § 50165, and corrective action plan § 50166.

(3) Quarterly release response reports § 50165.2;

(4) Current evidence of financial responsibility as required in § 501110; and

(5) Notice of changes in Designated Class A or B Operators § 501241(c).

(d) Recordkeeping. Owners and operators must maintain the following information:

(1) A corrosion expert’s analysis of site corrosion potential if corrosion protection equipment is not used § 50120(b)(4); § 50120(c)(3);

(2) Documentation of operation of corrosion protection equipment § 50131(4);

(3) Documentation of compatibility for UST systems § 50132(c);

(4) Documentation of UST system repairs § 50133(b);

(5) Documentation of compliance for spill and overfill prevention equipment and containment sumps used for
interstitial monitoring of piping § 50135(b);

(6) Documentation of periodic walkthrough inspections § 50136(b);

(7) Documentation of compliance with under-dispenser containment sensing device requirements § 50137(b);

(8) Documentation of compliance with release detection requirements § 50145;

(9) Results of the site investigation conducted at permanent closure or change-in-service § 50174;

(10) Documentation of operator training § 501245;

(11) Permits or variances or both, including all documentation, as specified in § 501334(a); and

(12) Evidence of current financial assurance mechanisms used to demonstrate financial responsibility § 501111.

(e) Availability and maintenance of records.

(1) Owners and operators must keep the required records at the UST site or an alternative location approved by the agency.

(2) Owners and operators must make the records immediately available for inspection by the agency at the UST site.

(3) Permanent closure records required under § 50174 may be maintained or submitted to the agency as provided in § 50174.

(f) Owners and operators of UST systems must cooperate fully with inspections, monitoring, and testing conducted by the agency, as well as requests by the agency for document submission, testing, and monitoring by the owner or operator pursuant to 10 GCA, Chapter 76.

(a) Owners and operators of UST systems with spill and overfill prevention equipment and containment sumps used for interstitial monitoring of piping must meet these requirements by October 13, 2018 to ensure the equipment is operating properly and will prevent releases to
the environment:

(1) Spill prevention equipment (such as a catchment basin, spill bucket, or other spill containment device) must prevent releases to the environment by meeting one of the following:

(A) The equipment is double walled and the integrity of both walls is periodically monitored at a frequency not less than once every thirty (30) calendar days. Owners and operators must begin meeting the requirements of subparagraph (B) and conduct a test within thirty (30) calendar days of discontinuing periodic monitoring of this equipment; or

(B) The spill prevention equipment is tested at least once every three hundred sixty-five (365) calendar days to ensure the equipment is liquid tight by using vacuum, pressure, or liquid testing in accordance with one of the following criteria:

(i) Requirements developed by the manufacturer. (Note: Owners and operators may use this option only if the manufacturer has developed requirements);

(ii) Code of practice developed by a nationally recognized association or independent testing laboratory; or

(iii) Requirements determined by the agency to be no less protective of human health and the environment than the requirements listed in clauses (i) and (ii).

(2) Containment sumps used for interstitial monitoring of piping must prevent releases to the environment by meeting one of the following:

(A) The equipment is double walled and the integrity of both walls is periodically monitored at a frequency not less than annually. Owners and operators must begin meeting the requirements of subparagraph (B) and conduct a test within thirty (30) calendar days of...
discontinuing periodic monitoring of this equipment; or

(B) The containment sumps used for interstitial monitoring of piping are tested at least once every three (3) years to ensure the equipment is liquid tight by using vacuum, pressure, or liquid testing in accordance with one of the criteria in paragraph (1)(B)(i) to (iii).

(3) Overfill prevention equipment must be inspected at least once every three years. At a minimum, the inspection must ensure that overfill prevention equipment is set to activate at the correct level specified in § 50120(d) and will activate when regulated substance reaches that level. Inspections must be conducted in accordance with one of the criteria in paragraph (1)(B)(i) to (iii).

(b) Owners and operators must maintain records as follows (in accordance with § 50134 for spill prevention equipment, containment sumps used for interstitial monitoring of piping, and overfill prevention equipment:

(1) All records of testing or inspection must be maintained for three (3) years; and

(2) For spill prevention equipment not tested every three hundred sixty-five (365) calendar days and containment sumps used for interstitial monitoring of piping not tested every three (3) years, documentation showing that the prevention equipment is double walled and the integrity of both walls is periodically monitored must be maintained for as long as the equipment is periodically monitored.

§ 50136. Periodic Operation and Maintenance Walkthrough Inspections.

(a) To properly operate and maintain UST systems, not later than October 13, 2018, owners and operators must conduct walkthrough inspections that, at a minimum, check the following equipment as specified below:

(1) Every thirty (30) calendar days:
(A) Spill prevention equipment:
 (i) Visually check for damage;
 (ii) Remove liquid or debris;
 (iii) Check for and remove obstructions in the fill pipe;
 (iv) Check the fill cap to make sure it is securely on the fill pipe; and
 (v) For double walled spill prevention equipment with interstitial monitoring, check for a leak in the interstitial area; and

(B) Release detection equipment:
 (i) Check to make sure the release detection equipment is operating with no alarms or other unusual operating conditions present; and
 (ii) Ensure records of release detection testing are reviewed and current;

(2) Annually:
 (A) Containment sumps:
 (i) Visually check for damage, leaks to the containment area, or releases to the environment;
 (ii) Remove liquid (in contained sumps) or debris; and
 (iii) For double walled sumps with interstitial monitoring, check for a leak in the interstitial area; and
 (B) Hand held release detection equipment: Check devices such as tank gauge sticks or groundwater bailers for operability and serviceability;

(3) For UST systems receiving deliveries at intervals greater than every thirty (30) calendar days, spill prevention equipment may be checked in accordance with paragraph (1)(A) prior to each delivery; and

(4) For airport hydrant systems, at least once every thirty (30) days if confined space entry according to the Occupational Safety and
Health Administration is not required or at least annually if confined space entry is required (see 29 C.F.R. Part 1910):

A. Hydrant pits:
 (i) Visually check for any damage;
 (ii) Remove any liquid or debris; and
 (iii) Check for any leaks; and

B. Hydrant piping vaults: Check for any hydrant piping leaks.

(b) Owners and operators must maintain records, in accordance with §50134, of operation and maintenance walkthrough inspections for three (3) years. Records must include a list of each area checked, whether each area checked was acceptable or needed action taken, a description of actions taken to correct an issue, and delivery records if spill prevention equipment is checked less frequently than every thirty (30) calendar days due to infrequent deliveries.

§ 50137. Periodic Inspection and Maintenance of Under-Dispenser Containment Sensing Devices.

(a) Sensing devices for under-dispenser containment required by §50125 must:

 (1) Be operated and maintained in accordance with one of the following:
 (A) The manufacturer’s instructions;
 (B) A code of practice developed by a nationally recognized association or independent testing laboratory; or
 (C) Requirements determined by the agency to be no less protective of human health and the environment than those in subparagraphs (A) and (B).

 (2) Be inspected for proper operation, and electronic and mechanical components tested, at least annually.

(b) UST system owners and operators must maintain records in accordance with §50134 demonstrating compliance with subsection (a). Written documentation of all inspection, testing, and maintenance must be maintained for at least three (3) years. All records that the UDC sensor
and connected equipment are designed to produce must be maintained for at least three (3) years after the record is generated.

§ 50138. General Operating Requirements - Codes of Practice.

(a) The following current codes of practice may be used to comply with § 50130(a):

1. the transfer procedures described in National Fire Protection Association Standard 385;
2. “Standard for Tank Vehicles for Flammable and Combustible Liquids” or American Petroleum Institute Recommended Practice 1007;
3. “Loading and Unloading of MC 306/DOT 406 Cargo Tank Motor Vehicles”; or
4. Further guidance on spill and overfill prevention appears in American Petroleum Institute Recommended Practice 1621, “Bulk Liquid Stock Control at Retail Outlets”.

(b) The following current codes of practice may be used to comply with § 50131(2):

3. Steel Tank Institute Recommended Practice R051, “Cathodic Protection Testing Procedures for STI–P3® USTs”;
4. NACE International Standard Practice SP 0285, “External Control of Underground Storage Tank Systems by Cathodic Protection”; or
5. NACE International Standard Practice SP 0169, “Control of External Corrosion on Underground or Submerged Metallic Piping Systems”.

(c) The following current code of practice may be useful in complying with § 50132:
American Petroleum Institute Recommended Practice 1626, “Storing and Handling Ethanol and Gasoline-Ethanol Blends at Distribution Terminals and Filling Stations”.

(d) The following current codes of practice may be used to comply with § 50133(a)(1):

6. Steel Tank Institute Recommended Practice R972, “Recommended Practice for the Addition of Supplemental Anodes to STI-P3® Tanks”;
7. NACE International Standard Practice SP 0285, “External Control of Underground Storage Tank Systems by Cathodic Protection”; or

(e) The following current codes of practice may be used to comply with § 50133(a)(6):

1. Steel Tank Institute Recommended Practice R012, “Recommended Practice for Interstitial Tightness Testing of Existing Underground Double Wall Steel Tanks”;
Underground Fiberglass Double and Triple-Wall Tanks with Dry Annular Space”; or

(f) The following current code of practice may be used to comply with § 50135(a)(1),(2),(3) and 50137(a)(1)(B):

§ 50139. [Reserved.]

ARTICLE 4
RELEASE DETECTION

§ 50140. General Requirements for all UST Systems
§ 50141. Requirements for Petroleum UST Systems
§ 50142. Requirements for Hazardous Substance UST Systems
§ 50143. Methods of Release Detection for Tanks
§ 50144. Methods of Release Detection for Piping
§ 50145. Release Detection Recordkeeping
§ 50146. Release Detection – Code of Practice
§ 50147 to § 50149. [Reserved.]

§ 50140. General Requirements for all UST Systems.

(a) Owners and operators of UST systems must provide a method, or combination of methods, of release detection that:

(1) Can detect a release from any portion of the tank and the connected underground piping that routinely contains product;

(2) Utilizes equipment compatible with the regulated
substances being stored;

(3) Is installed, calibrated, operated, and maintained in accordance with the manufacturer’s instructions;

(4) Is operated and maintained, and electronic and mechanical components are tested for proper operation, in accordance with one of the following: manufacturer’s instructions; a code of practice developed by a nationally recognized association or independent testing laboratory; or requirements determined by the agency to be no less protective of human health and the environment than the requirements of paragraphs (a)(1) to (3) of this section. All maintenance and service of the release detection equipment must be conducted by a technician with current certification or training appropriate to the equipment serviced. A test of the proper operation must be performed at least every three hundred sixty-five (365) calendar days, or in a time frame recommended by the equipment manufacturer, whichever is more frequent. Beginning October 13, 2018, as applicable to the facility, the test must cover at a minimum the following components and criteria:

(A) Automatic tank gauge and other controllers: test alarm; verify system configuration; test battery backup;

(B) Probes and sensors: inspect for residual buildup; ensure floats move freely; ensure shaft is not damaged; ensure cables are free of kinks and breaks; test alarm operability and communication with controller;

(C) Automatic line leak detector: test operation to meet criteria in § 50144(1) by simulating a leak;

(D) Vacuum pumps and pressure gauges: ensure proper communication with sensors and controller; and

(E) Hand-held electronic sampling equipment associated with groundwater and vapor monitoring: ensure proper operation; and
Meets the performance requirements in § 50143 or § 50144, as applicable, with any performance claims and their manner of determination described in writing by the equipment manufacturer or installer. In addition, the methods listed in § 50143 (2), (3), (4), (8), (9), and (10) and §50144(1), (2), and (4) must be capable of detecting the leak rate or quantity specified for that method in the corresponding section of the rule with a probability of detection of 0.95 and a probability of false alarm of 0.05.

(b) When a release detection method operated in accordance with the performance standards in § 50143 or § 50144 indicates a release may have occurred, owners and operators must notify the agency in accordance with Article 5.

(c) Any UST system that cannot apply a method of release detection that complies with the requirements of this Article must complete the change-in-service or closure procedures in Article 7.

§ 50141. Requirements for Petroleum UST Systems.

(a) Tanks. Owners and operators of petroleum UST systems must provide release detection for tanks as follows:

(1) UST systems other than airport hydrant fuel distribution systems and UST systems with field-constructed tanks:

(A) Tanks installed on or before April 11, 2016, must be monitored for releases at least every thirty (30) calendar days using one of the methods listed in § 50143(4) to (9), except that:

(i) UST systems that meet the performance standards in § 50120, and the monthly inventory control requirements in § 50143(1) or (2), may use tank tightness testing (conducted in accordance with § 50143(3) at least every five (5) years until ten (10) years after the tank was installed; and

(ii) Tanks with capacity of 550 gallons or less and
tanks with a capacity of 551 to 1,000 gallons that meet the tank diameter criteria in § 50143(2) may use manual tank gauging (conducted in accordance with § 50143(2)).

(B) Tanks installed after April 11, 2016 must be monitored for releases at least every thirty (30) calendar days in accordance with § 50143(7).

(2) Airport hydrant fuel distribution systems and UST systems with field-constructed tanks with a capacity less than or equal to 50,000 gallons:

(A) Tanks installed before October 13, 2015 must be monitored for releases at least every thirty (30) calendar days using one of the methods listed in § 50143(4) to (9), except that:

(i) UST systems that meet the performance standards in § 50120 (section 11-280.1-20, and the monthly inventory control requirements in § 50143(1) or (2), may use tank tightness testing (conducted in accordance with § 50143(3) at least every five (5) years until ten (10) years after the tank was installed; and

(ii) Tanks with capacity of 550 gallons or less and tanks with a capacity of 551 to 1,000 gallons that meet the tank diameter criteria in § 50143(2) may use manual tank gauging (conducted in accordance with § 50143(2)).

(B) Tanks installed on or after October 13, 2015 must be monitored for releases at least every thirty (30) calendar days in accordance with § 50143(7).

(3) UST systems with field-constructed tanks with a capacity greater than 50,000 gallons:

(A) Tanks installed before October 13, 2015 must be monitored for releases at least every thirty (30) calendar days using one of the methods listed in § 50143(4), (7), (8), and (9) or use one or a combination
of the methods of release detection listed in § 50143(10); and

(B) Tanks installed on or after October 13, 2015 must be monitored for releases at least every thirty (30) calendar days in accordance with § 50143(7).

(b) Piping. Underground piping that routinely contains regulated substances must be monitored for releases as follows:

(1) Piping installed on or before April 11, 2016, for UST systems other than airport hydrant fuel distribution systems and UST systems with field-constructed tanks, must meet one of the following:

(A) Pressurized piping. Underground piping that conveys regulated substances under pressure must:
 (i) Be equipped with an automatic line leak detector conducted in accordance with § 50144(1); and
 (ii) Have an annual line tightness test conducted in accordance with § 50144(2) or have monthly monitoring conducted in accordance with § 50144(3).

(B) Suction piping. Underground piping that conveys regulated substances under suction must:
 (i) Have a line tightness test conducted at least every three (3) years and in accordance with § 50144(2);
 (ii) Use a monthly monitoring method conducted in accordance with § 50144(3); or
 (iii) Meet the standards in paragraph (6)(A) to (E).

(2) Piping installed or replaced after April 11, 2016, for UST systems other than airport hydrant fuel distribution systems and UST systems with field-constructed tanks, must meet one of the following:

(A) Pressurized piping. Underground piping that conveys regulated substances under pressure must:
 (i) Be monitored for releases at least every thirty
(30) calendar days in accordance with § 50143(7); and

(ii) Be equipped with an automatic line leak detector in accordance with § 50144(1).

(B) Suction piping. Underground piping that conveys regulated substances under suction must:

(i) Be monitored for releases at least every thirty (30) calendar days in accordance with § 50143(7); or

(ii) Meet the standards in paragraph (6)(A) to (E).

(3) Piping installed on or after October 13, 2015, for UST systems other than airport hydrant fuel distribution systems and UST systems with field-constructed tanks, must meet the technical specifications in paragraph (2)(A) or (B).

(4) Piping for UST systems with field-constructed tanks with a capacity less than or equal to 50,000 gallons and not part of an airport hydrant fuel distribution system:

(A) Piping installed before October 13, 2015 must meet the technical specifications in paragraph (1)(A) or (B).

(B) Piping installed on or after October 13, 2015 must meet the technical specifications in paragraph (2)(A) or (B).

(5) Piping for airport hydrant fuel distribution systems and UST systems with field-constructed tanks with a capacity greater than 50,000 gallons must meet one of the following:

(A) Pressurized piping. Underground piping that conveys regulated substances under pressure must:

(i) Be equipped with an automatic line leak detector conducted in accordance with § 50144(1); and

(ii) Have an annual line tightness test conducted in
accordance with § 50144(2) or have monthly monitoring conducted in accordance with any of the methods in § 50143(7) to (9) designed to detect a release from any portion of the underground piping that routinely contains regulated substances; or

(iii) Use one or a combination of the methods of release detection listed in § 50144(4).

(B) Suction piping. Underground piping that conveys regulated substances under suction must:

(i) Have a line tightness test conducted at least every three (3) years and in accordance with § 50144(2);

(ii) Use a monthly monitoring method conducted in accordance with § 50143(7) to (9) designed to detect a release from any portion of the underground piping that routinely contains regulated substances;

(iii) Use one or a combination of the methods of release detection listed in § 50144(4); or

(iv) Meet the standards in paragraph (6)(A) to (E).

(6) No release detection is required for suction piping that is designed and constructed to meet the following standards:

(A) The below-grade piping operates at less than atmospheric pressure;

(B) The below-grade piping is sloped so that the contents of the pipe will drain back into the storage tank if the suction is released;

(C) Only one check valve is included in each suction line;

(D) The check valve is located directly below and
as close as practical to the suction pump; and
(E) A method is provided that allows compliance with subparagraphs (B) to (D) to be readily determined.

§ 50142. Requirements for Hazardous Substance UST Systems.

Owners and operators of hazardous substance UST systems must monitor these systems in accordance with § 50143(7) at least every thirty (30) calendar days. In addition, underground piping that conveys hazardous substances under pressure must be equipped with an automatic line leak detector in accordance with § 50144(1).

Each method of release detection for tanks used to meet the requirements of § 50140 to § 50142 must be conducted in accordance with the following:

(1) Inventory control. Product inventory control (or another test of equivalent performance) must be conducted monthly to detect a release of at least one (1%) percent of flow-through plus one hundred thirty (130) gallons on a monthly basis in the following manner:

(A) Inventory volume measurements for regulated substance inputs, withdrawals, and the amount still remaining in the tank are recorded each operating day;

(B) The equipment used is capable of measuring the level of product over the full range of the tank’s height to the nearest one-eighth of an inch;

(C) If a manual measuring device is used (e.g., a gauge stick), the measurements must be made through a drop tube that extends to within one foot of the tank bottom. Level measurements shall be to the nearest one-eighth of an inch;

(D) The regulated substance inputs are reconciled with
delivery receipts by measurement of the tank inventory volume before and after delivery;

(E) Deliveries are made through a drop tube that extends to within one foot of the tank bottom;

(F) Product dispensing is metered and recorded within the state standards for meter calibration or an accuracy of six cubic inches for every five (5) gallons of product withdrawn, and the meter is calibrated every three hundred sixty-five (365) calendar days; and

(G) The measurement of any water level in the bottom of the tank is made to the nearest one-eighth of an inch at least once a month.

(2) Manual tank gauging. Manual tank gauging must meet the following requirements:

(A) Tank liquid level measurements are taken at the beginning and ending of a period using the appropriate minimum duration of test value in the table below during which no liquid is added to or removed from the tank;

(B) If a manual measuring device is used (e.g., a gauge stick), the measurements must be made through a drop tube that extends to within one foot of the tank bottom. Level measurements shall be to the nearest one-eighth of an inch;

(C) Level measurements are based on an average of two (2) consecutive stick readings at both the beginning and ending of the period;

(D) The equipment used is capable of measuring the level of product over the full range of the tank’s height to the nearest one-eighth of an inch;

(E) A release is suspected and subject to the requirements of Article 5 if the variation between beginning and ending measurements
exceeds the weekly or monthly standards in the following table:

<table>
<thead>
<tr>
<th>Nominal tank capacity</th>
<th>Minimum duration of test</th>
<th>Weekly standard (one test)</th>
<th>Monthly standard (four test average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>550 gallons or less</td>
<td>36 hours</td>
<td>10 gallons</td>
<td>5 gallons</td>
</tr>
<tr>
<td>551–1,000 gallons (when tank diameter is 48 inches)</td>
<td>44 hours</td>
<td>9 gallons</td>
<td>4 gallons</td>
</tr>
<tr>
<td>551–1,000 gallons (also requires periodic tank tightness testing)</td>
<td>58 hours</td>
<td>12 gallons</td>
<td>6 gallons</td>
</tr>
<tr>
<td>1,001–2,000 gallons (also requires periodic tank tightness testing)</td>
<td>36 hours</td>
<td>13 gallons</td>
<td>7 gallons</td>
</tr>
<tr>
<td>1,001–2,000 gallons (also requires periodic tank tightness testing)</td>
<td>36 hours</td>
<td>26 gallons</td>
<td>13 gallons</td>
</tr>
</tbody>
</table>

(F) Tanks of five hundred fifty (550) gallons or less nominal capacity and tanks with a nominal capacity of five hundred fifty-one (551) to one thousand (1,000) gallons that meet the tank diameter criteria in the table in subparagraph (E) may use manual tank gauging as the sole method of release detection. All other tanks with a nominal capacity of five hundred fifty-one (551) to two thousand (2,000) gallons may use manual tank gauging in place of inventory control in paragraph (1), combined with tank tightness testing as indicated in the table. Tanks of greater than two thousand (2,000) gallons nominal capacity may not use this method to meet the requirements of this Article.

(3) Tank tightness testing. Tank tightness testing (or another test of equivalent performance) must be capable of detecting a 0.1 gallon per hour leak rate from any portion of the tank that routinely contains product while accounting for the effects of thermal expansion or contraction of the product, vapor pockets, tank deformation, evaporation or condensation, and the location of the water table.

(4) Automatic tank gauging. Equipment for automatic
tank gauging that tests for the loss of product and conducts inventory control must meet the following requirements:

(A) The automatic product level monitor test can detect a 0.2 gallon per hour leak rate from any portion of the tank that routinely contains product;

(B) The automatic tank gauging equipment must meet the inventory control (or other test of equivalent performance) requirements of paragraph (1); and

(C) The test must be performed with the system operating in one of the following modes:
 (i) In-tank static testing conducted at least once every thirty (30) calendar days; or
 (ii) Continuous in-tank leak detection operating on an uninterrupted basis or operating within a process that allows the system to gather incremental measurements to determine the leak status of the tank at least once every thirty (30) calendar days.

5 Vapor monitoring. Testing or monitoring for vapors within the soil gas of the excavation zone must meet the following requirements:

(A) The materials used as backfill are sufficiently porous (e.g., gravel, sand, crushed rock) to readily allow diffusion of vapors from releases into the excavation area;

(B) The stored regulated substance, or a tracer compound placed in the tank system, is sufficiently volatile (e.g., gasoline) to result in a vapor level that is detectable by the monitoring devices located in the excavation zone in the
event of a release from the tank;

(C) The measurement of vapors by the monitoring device is not rendered inoperative by the groundwater, rainfall, or soil moisture or other known interferences so that a release could go undetected for more than thirty (30) calendar days;

(D) The level of background contamination in the excavation zone will not interfere with the method used to detect releases from the tank;

(E) The vapor monitors are designed and operated to detect any significant increase in concentration above background of the regulated substance stored in the tank system, a component or components of that substance, or a tracer compound placed in the tank system;

(F) In the UST excavation zone, the site is assessed to ensure compliance with the requirements in subparagraphs (A) to (D) and to establish the number and positioning of monitoring wells that will detect releases within the excavation zone from any portion of the tank that routinely contains product; and

(G) Monitoring wells are clearly marked and secured to avoid unauthorized access and tampering.

(6) Groundwater monitoring. Testing or monitoring for liquids on the groundwater must meet the following requirements:

(A) The regulated substance stored is immiscible in water and has a specific gravity of less than one;

(B) Groundwater is never more than twenty (20) feet from the ground surface and the hydraulic conductivity of the soils between the UST system and the monitoring wells or devices is not less than 0.01 cm/sec (e.g., the soil should consist of gravels, coarse to medium sands,
coarse silts or other permeable materials);

(C) The slotted portion of the monitoring well casing must be designed to prevent migration of natural soils or filter pack into the well and to allow entry of regulated substance on the water table into the well under both high and low groundwater conditions;

(D) Monitoring wells shall be sealed from the ground surface to the top of the filter pack;

(E) Monitoring wells or devices intercept the excavation zone or are as close to it as is technically feasible;

(F) The continuous monitoring devices or manual methods used can detect the presence of at least one-eighth of an inch of free product on top of the groundwater in the monitoring wells;

(G) Within and immediately below the UST system excavation zone, the site is assessed to ensure compliance with the requirements in subparagraphs (A) to (E) and to establish the number and positioning of monitoring wells or devices that will detect releases from any portion of the tank that routinely contains product; and

(H) Monitoring wells are clearly marked and secured to avoid unauthorized access and tampering.

(7) Interstitial monitoring. Interstitial monitoring between the UST system and a secondary barrier immediately around or beneath it may be used, but only if the system is designed, constructed, and installed to detect a leak from any portion of the tank that routinely contains product and also meets one of the following requirements:

(A) For double walled UST systems, the sampling
or testing method can detect a leak through the inner wall in any portion of the tank that routinely contains product;

(B) For UST systems with a secondary barrier within the excavation zone, the sampling or testing method used can detect a leak between the UST system and the secondary barrier;

(i) The secondary barrier around or beneath the UST system consists of artificially constructed material that is sufficiently thick and impermeable (at least 10^{-6} cm/sec for the regulated substance stored) to direct a leak to the monitoring point and permit its detection;

(ii) The barrier is compatible with the regulated substance stored so that a leak from the UST system will not cause a deterioration of the barrier allowing a release to pass through undetected;

(iii) For cathodically protected tanks, the secondary barrier must be installed so that it does not interfere with the proper operation of the cathodic protection system;

(iv) The groundwater, soil moisture, or rainfall will not render the testing or sampling method used inoperative so that a release could go undetected for more than thirty (30) calendar days;

(v) The site is assessed to ensure that the secondary barrier is always above the groundwater and not in a twenty-five-year flood plain, unless the barrier and monitoring designs are for use under such conditions; and,
(vi) Monitoring wells are clearly marked and secured to avoid unauthorized access and tampering.

(C) For tanks with an internally fitted liner, an automated device can detect a leak between the inner wall of the tank and the liner, and the liner is compatible with the substance stored.

(8) Statistical inventory reconciliation. Release detection methods based on the application of statistical principles to inventory data similar to those described in paragraph (1) must meet the following requirements:

(A) Report a quantitative result with a calculated leak rate;

(B) Be capable of detecting a leak rate of 0.2 gallon per hour or a release of one hundred fifty (150) gallons within thirty (30) calendar days; and

(C) Use a threshold that does not exceed one-half the minimum detectible leak rate.

(9) Other methods. Any other type of release detection method, or combination of methods, can be used if:

(A) It can detect a 0.2 gallon per hour leak rate or a release of one hundred fifty (150) gallons within a month with a probability of detection of 0.95 and a probability of false alarm of 0.05; or

(B) The owner and operator can demonstrate to the agency that the method can detect a release as effectively as any of the methods allowed in paragraphs (3) to (8), and the agency approves the method. In comparing methods, the agency shall consider the size of release that the method can detect and the frequency and reliability with which it can be detected. If the method is approved, the owner and operator must comply with any conditions imposed by the agency on its use to ensure the
protection of human health and the environment.

(10) Methods of release detection for field-constructed tanks. One or a combination of the following methods of release detection for tanks may be used when allowed by §50141.

(A) Conduct an annual tank tightness test that can detect a 0.5 gallon per hour leak rate;

(B) Use an automatic tank gauging system to perform release detection at least every thirty (30) calendar days that can detect a leak rate less than or equal to one (1) gallon per hour. This method must be combined with a tank tightness test that can detect a 0.2 gallon per hour leak rate performed at least every three (3) years;

(C) Use an automatic tank gauging system to perform release detection at least every thirty (30) calendar days that can detect a leak rate less than or equal to two (2) gallons per hour. This method must be combined with a tank tightness test that can detect a 0.2 gallon per hour leak rate performed at least every two (2) years;

(D) Perform vapor monitoring (conducted in accordance with paragraph (5) for a tracer compound placed in the tank system) capable of detecting a 0.1 gallon per hour leak rate at least every two (2) years;

(E) Perform inventory control (conducted in accordance with Department of Defense Directive 4140.25, ATA Airport Fuel Facility Operations and Maintenance Guidance Manual, or equivalent procedures) at least every thirty (30) calendar days that can detect a leak equal to or less than 0.5 percent of flow-through; and

(i) Perform a tank tightness test that can detect a 0.5 gallon per hour leak rate at least every two (2) years; or

(ii) Perform vapor monitoring or groundwater monitoring (conducted in accordance with
paragraph (5) or (6), respectively, for the stored regulated substance) at least every thirty (30) calendar days; or

(F) Another method approved by the agency if the owner and operator can demonstrate that the method can detect a release as effectively as any of the methods allowed in subparagraphs (A) to (E). In comparing methods, the agency shall consider the size of release that the method can detect and the frequency and reliability of detection.

Each method of release detection for piping used to meet the requirements of § 50140 to § 50142 must be conducted in accordance with the following:

(1) Automatic line leak detectors. Methods which alert the operator to the presence of a leak by restricting or shutting off the flow of regulated substances through piping may be used only if they detect leaks of three (3) gallons per hour at ten (10) pounds per square inch line pressure within one hour. An annual test of the operation of the leak detector must be conducted in accordance with § 50140(a)(4).

(2) Line tightness testing. A periodic test of piping may be conducted only if it can detect a 0.1 gallon per hour leak rate at one and one-half times the operating pressure.

(3) Applicable tank methods. Any of the methods in § 50143(5) to (9) may be used if they are designed to detect a release from any portion of the underground piping that routinely contains regulated substances.

(4) Methods of release detection for piping associated with airport hydrant systems and field-constructed tanks. One or a combination of the following methods of release detection for piping may be used when allowed by § 50141.

(A) (i) Perform a semiannual or annual line tightness test at or above the piping
operating pressure in accordance with the table below.

MAXIMUM LEAK DETECTION RATE PER TEST SECTION VOLUME

<table>
<thead>
<tr>
<th>Test section volume (gallons)</th>
<th>Semiannual test—leak detection rate not to exceed (gallons per hour)</th>
<th>Annual test—leak detection rate not to exceed (gallons per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td><50,000</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>50,000 to <75,000</td>
<td>1.5</td>
<td>0.75</td>
</tr>
<tr>
<td>75,000 to <100,000</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>≥100,000</td>
<td>3.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(ii) Piping segment volumes ≥100,000 gallons not capable of meeting the maximum 3.0 gallon per hour leak rate for the semiannual test may be tested at a leak rate up to 6.0 gallons per hour according to the following schedule:

PHASE IN FOR PIPING SEGMENTS ≥100,000 GALLONS IN VOLUME

- **First test** Not later than three years after the effective date of these rules (may use up to 6.0 gph leak rate).
- **Second test** Between three and six years after the effective date of these rules (may use up to 6.0 gph leak rate).
- **Third test** Between six and seven years after the effective date of these rules (must use 3.0 gph for leak rate).
- **Subsequent tests**.. Not later than seven years after the effective date of these rules, begin using semiannual or annual line testing according to the Maximum Leak Detection Rate Per Test Section Volume table above.

(B) Perform vapor monitoring (conducted in accordance with § 50143(5) for a tracer compound placed in the tank system) capable of detecting a 0.1 gallon per hour leak rate at least every two (2) years;

(C) Perform inventory control (conducted in accordance
with Department of Defense Directive 4140.25, ATA Airport Fuel Facility Operations and Maintenance Guidance Manual, or equivalent procedures) at least every thirty (30) calendar days that can detect a leak equal to or less than 0.5 percent of flow-through; and

(i) Perform a line tightness test (conducted in accordance with subparagraph (A) using the leak rates for the semiannual test) at least every two (2) years; or

(ii) Perform vapor monitoring or groundwater monitoring (conducted in accordance with § 50143(5) or (6), respectively, for the stored regulated substance) at least every thirty (30) calendar days; or

(D) Another method approved by the agency if the owner and operator can demonstrate that the method can detect a release as effectively as any of the methods allowed in subparagraphs (A) to (C). In comparing methods, the agency shall consider the size of release that the method can detect and the frequency and reliability of detection.

§ 50145. Release Detection Recordkeeping.

All UST system owners and operators must maintain records in accordance with § 50134 demonstrating compliance with all applicable requirements of this subchapter. These records must include the following:

(1) All written performance claims pertaining to any release detection system used, and the manner in which these claims have been justified or tested by the equipment manufacturer or installer, must be maintained for the operating life of the UST system. Records of site assessments required under § 50143(5)(F) and (6)(G) must be
maintained for as long as the methods are used. Records of site assessments developed after October 13, 2015, must be signed by a professional engineer or professional geologist, or equivalent licensed professional with experience in environmental engineering, hydrogeology, or other relevant technical discipline acceptable to the agency;

(2) The results of any sampling, testing, or monitoring must be maintained for at least three (3) years, except as follows:

(A) The results of annual operation tests conducted in accordance with § 50140(a)(4) must be maintained for three (3) years. At a minimum, the results must list each component tested, indicate whether each component tested meets criteria in § 50140(a)(4) or needs to have action taken, and describe any action taken to correct an issue;

(B) The results of tank tightness testing conducted in accordance with § 50143(3) must be retained until the next test is conducted; and

(C) The results of tank tightness testing, line tightness testing, and vapor monitoring using a tracer compound placed in the tank system conducted in accordance with § 50143(10) or § 50144(4) must be retained until the next test is conducted;

(3) All records that the equipment being utilized to monitor or maintain the UST system is designed to produce must be maintained for at least three (3) years after the record is generated; and

(4) Written documentation of all calibration, maintenance, and repair of release detection equipment permanently located on-site must be maintained for at least three (3) years. Any schedules of required calibration and maintenance provided by the release detection equipment manufacturer must be retained for five (5) years from the date of installation.

The following current code of practice may be used to comply with § 50140(a)(4):

(1) Petroleum Equipment Institute Publication RP1200, “Recommended Practices for the Testing and Verification of Spill, Overfill, Leak Detection and Secondary Containment Equipment at UST Facilities”; and

(2) Practices described in the American Petroleum Institute Recommended Practice RP 1621, “Bulk Liquid Stock Control at Retail Outlets” may be used, where applicable, as guidance in meeting the requirements of § 50143(1).

§ 50147 to § 50149. [Reserved;]

ARTICLE 5
RELEASE REPORTING, INVESTIGATION, AND CONFIRMATION

§ 50150. Reporting of Suspected Release
§ 50151. Investigation of Off-site Impacts
§ 50152. Release Investigation and Confirmation Steps
§ 50153. Reporting and Cleanup of Spills and Overfill
§ 50154 to § 50159. [Reserved.]

§ 50150. Reporting of Suspected Release.

Owners and operators of UST systems must notify the agency within twenty-four (24) hours and follow the procedures in § 50152 for any of the following conditions:

(1) The discovery by any person of evidence of released regulated substances at the UST site or in the surrounding area (such as the presence of free product or vapors in soils, basements, sewer and utility lines, and nearby surface water).

(2) Unusual UST or tank system operating conditions observed
or experienced by owners and operators (such as the erratic behavior of product dispensing equipment, the sudden loss of product from the UST system, an unexplained presence of water in the tank, or liquid in the interstitial space of secondarily contained systems), unless:

(A) The system equipment or component is found not to be releasing regulated substances to the environment;

(B) Any defective system equipment or component is immediately repaired or replaced; and

(C) For secondarily contained systems, except as provided for in § 50143(7)(B)(iv), any liquid in the interstitial space not used as part of the interstitial monitoring method (for example, brine filled) is immediately removed.

(3) Monitoring results, including investigation of an alarm, from a release detection method required under § 50141 and § 50142 that indicate a release may have occurred unless:

(A) The monitoring device is found to be defective, and is immediately repaired, recalibrated or replaced, and additional monitoring does not confirm the initial result;

(B) The leak is contained in the secondary containment and:

 (i) Except as provided for in § 50143(7)(B)(iv), any liquid in the interstitial space not used as part of the interstitial monitoring method (for example, brine filled) is immediately removed; and

 (ii) Any defective system equipment or component is immediately repaired or replaced;

(C) In the case of inventory control described in § 50143(1), a second month of data does not confirm the initial result or the investigation determines no release has occurred; or
(D) The alarm was investigated and determined to be a non-release event (for example, from a power surge or caused by filling the tank during release detection testing).

§ 50151. Investigation of Off-site Impacts.

When required by the agency, owners and operators of UST systems must follow the procedures in § 50152 to determine if the UST system is the source of off-site impacts. These impacts include the discovery of regulated substances (such as the presence of free product or vapors in soils, basements, sewer and utility lines, and nearby surface and drinking waters) that has been observed by the agency or brought to the agency’s attention by any person.

§ 50152. Release Investigation and Confirmation Steps.

(a) Unless release response action is initiated in accordance with Article 6, owners and operators must immediately investigate and confirm all suspected releases of regulated substances requiring reporting under § 50150 within seven (7) calendar days following the discovery of the suspected release, unless a written request for extension of time is granted by the Administrator.

(b) Investigations and confirmations required in subsection (a) must use the following steps or another procedure approved by the agency:

1. System test. Owners and operators must conduct tests (according to the requirements for tightness testing in § 50143(3) and § 50144(2) or, as appropriate, secondary containment testing described in § 50133(a)(6).

 A) The test must determine whether:

 (i) A leak exists in that portion of the tank that routinely contains product, or the attached delivery piping; or

 (ii) A breach of either wall of the secondary
containment has occurred.

(B) If the system test confirms a leak into the interstice or a release, owners and operators must repair, replace, or close the UST system. In addition, owners and operators must begin release response action in accordance with Article 6 if the test results for the system, tank, or delivery piping indicate that a release exists.

(C) Further investigation is not required if the test results for the system, tank, and delivery piping do not indicate that a release exists and if environmental contamination is not the basis for suspecting a release.

(D) Owners and operators must conduct a site assessment as described in paragraph (2) if the test results for the system, tank, and delivery piping do not indicate that a release exists but environmental contamination is the basis for suspecting a release.

(2) Site assessment. Owners and operators must measure for the presence of a release where contamination is most likely to be present at the UST site. In selecting sample types, sample locations, and measurement methods, owners and operators must consider the nature of the stored substance, the type of initial alarm or cause for suspicion, the type of backfill and surrounding soil, the depth and flow of groundwater, and other factors as appropriate for identifying the presence and source of the release.

(A) If the test results for the excavation zone or the UST site indicate that a release has occurred, owners and operators must begin release response action in accordance with Article 6;

(B) If the test results for the excavation zone or the UST site do not indicate that a release has occurred, further investigation is not
required.

(c) If it is determined that a release has not occurred, owners and operators must report the results of the investigation in writing to the agency within thirty (30) calendar days following discovery of the suspected release. The report shall include, but not be limited to, results of the tests required by subsection (b) as well as performance claims pursuant to § 50140(a)(5).

§ 50153. Reporting and Cleanup of Spills and Overfill.

(a) Owners and operators of UST systems must contain and immediately clean up all spills and overfills in a manner which is protective of human health and the environment as set forth in § 50165.3.

(b) Owners and operators must notify the agency within twenty-four (24) hours and begin release response action in accordance with Article 6 in the following cases:

 1. Spill or overfill of petroleum that results in a release to the environment that exceeds twenty-five (25) gallons or that causes a sheen on nearby surface waters; and

 2. Spill or overfill of a hazardous substance that results in a release to the environment that equals or exceeds its reportable quantity under CERCLA (40 CFR part 302).

(c) Owners and operators of UST systems must contain and immediately clean up a spill or overfill of petroleum that is less than twenty-five (25) gallons or a spill or overfill of a hazardous substance that is less than the reportable quantity. If cleanup cannot be accomplished within twenty-four (24) hours, then the owners and operators must immediately notify the agency of the incident and continue cleaning up the spill or overfill. Owners and operators must also complete and submit to the agency a written report of the actions taken in response to the spill or overfill within twenty (20) calendar days.

(d) An owner or operator must submit the appropriate forms listed in § 501111(b) documenting current evidence of financial responsibility to the Administrator within thirty (30) days after identifying a release from an underground storage tank or tank system required to be reported under
§ 50154 to § 50159. [Reserved.]

ARTICLE 6
RELEASE RESPONSE ACTION

§ 50160. General
§ 50161. Immediate Response Action
§ 50161.1. Posting of Signs
§ 50162. Initial Abatement Measures and Site Assessment
§ 50163. Initial Site Characterization
§ 50164. Free Product Removal
§ 50165. Investigation for Soil and Groundwater Cleanup
§ 50165.1. Notification of Confirmed Release
§ 50165.2. Release Response Reporting
§ 50165.3. Site Cleanup Criteria
§ 50166. Corrective Action
§ 50167. Public Participation for Corrective Action Plans
§ 50168 to § 50169. [Reserved.]

§ 50160. General.

Owners and operators of petroleum or hazardous substance UST systems must, in response to a confirmed release from the UST system, comply with the requirements of this Article, except for USTs excluded under § 50110(b) and UST systems subject to RCRA Subtitle C corrective action requirements under section 3004(u) of the Resource Conservation and Recovery Act, as amended.

§ 50161. Immediate Response Action.

(a) Upon confirmation of a release in accordance with § 50152 or after a release from the UST system is identified in any other manner, owners
and operators must perform the following response actions within twenty-four (24) hours:

(1) Report the release to the agency by telephone;

(2) Take necessary actions to prevent any further release of the regulated substance into the environment, including removal of as much of the regulated substance from the UST or tank system as possible;

(3) Identify and mitigate any safety hazards (such as fire, explosion, and vapor hazards) posed by the release of the regulated substance; and

(4) Take necessary action to minimize the spread of contamination.

(b) Within seven (7) days of confirmation, owners and operators must submit to the agency a written notice of confirmation. The notice shall include, but not be limited to, the following information: source of the release, method of discovery and confirmation, estimated quantity of substance released, type of substance released, immediate hazards, release impact, migration pathways, and actions taken.

(c) An owner or operator must submit the appropriate forms listed in § 501111(b) documenting current evidence of financial responsibility to the Administrator within thirty (30) calendar days after identifying a release from an underground storage tank or tank system required to be reported under this section.

§ 50161.1. Posting of Signs.

(a) If the agency determines that posting of signs is appropriate, owners and operators shall post signs around the perimeter of the site informing passersby of the potential hazards. In this instance, “site” means an area where contamination poses an immediate health risk or an area where contaminated media is exposed to the surface.

(b) Signs shall be placed at each entrance to the site and at other locations in sufficient numbers to be seen from any approach to the site.

(c) Signs shall be legible and readable from a distance of at least twenty-five (25) feet. The sign legend shall read, “Caution Petroleum/Hazardous
Substance Contamination - Unauthorized Personnel Keep Out”. Other sign legends may be used if the legend on the sign indicates that only authorized personnel are allowed to enter the site and that entry onto the site may be dangerous. A contact person and telephone number shall be listed on the sign.

(d) The sign may be removed upon determination by the agency that no further release response action is necessary or that posting of signs is no longer appropriate.

§ 50162. Initial Abatement Measures and Site Assessment.

(a) Unless directed to do otherwise by the agency, owners and operators must perform the following abatement measures:

1. Continue to remove as much of the regulated substance from the UST system as is necessary to prevent further release to the environment;
2. Visually inspect the area around the UST or tank system for evidence of any aboveground releases or exposed belowground releases and continue to take necessary actions to minimize the spread of contamination and to prevent further migration of the released substance into surrounding soils, air, surface water, and groundwater;
3. Continue to monitor and mitigate any additional fire and safety hazards posed by vapors or free product that have migrated from the UST excavation zone and entered into subsurface structures (such as sewers or basements);
4. Remedy hazards (such as dust and vapors and the potential for leachate generation) posed by contaminated soils and debris that are excavated or exposed as a result of release confirmation, site investigation, abatement, or release response action activities;
5. Conduct an assessment of the release by measuring for the presence of a release where contamination is most likely to be present at the UST site, unless the presence and source of the release have been confirmed in accordance with the
site assessment required by § 50152(b) or the site assessment required for change-in-service or permanent closure in § 50172(a). In selecting sample types, sample locations, and measurement methods, the owner and operator must consider the nature of the stored substance, the type of backfill and surrounding soil, depth and flow of groundwater and other factors as appropriate for identifying the presence and source of the release;

(6) Investigate to determine the possible presence of free product, and begin free product removal in accordance with § 50164;

(7) Remove or remediate contaminated soil at the site to the extent necessary to prevent the spread of free product; and

(8) If any of the remedies in this section include treatment or disposal of contaminated soils, owners or operators must comply with all applicable local, state, and federal requirements.

(b) Within twenty (20) calendar days after release confirmation, or within another reasonable period of time determined by the agency, owners and operators must submit a report to the agency summarizing the initial abatement steps taken under subsection (a) and any resulting information or data.

§ 50163. Initial Site Characterization.

(a) Owners and operators must assemble information about the site and the nature of the release, including information gained while confirming the release or completing the initial abatement measures in § 50160 and § 50161. This information must include, but is not necessarily limited to the following:

(1) Data on the nature and estimated quantity of release;

(2) Data from available sources and all previous site investigations concerning the following factors: surrounding populations, water quality, use and approximate locations of wells potentially affected by the release, subsurface soil
conditions, locations of subsurface sewers, climatological conditions, and land use;
(3) Results of the site assessment required under § 50162(a)(5); and
(4) Results of the free product investigations required under § 50162(a)(6), to be used by owners and operators to determine whether free product must be recovered under § 50164.

(b) Within forty-five (45) calendar days of release confirmation, or another reasonable period of time determined by the agency, owners and operators must submit the information collected in compliance with subsection (a) to the agency in a manner that demonstrates its applicability and technical adequacy.

§ 50164. Free Product Removal.

(a) At sites where investigations under § 50162(a)(6) indicate the presence of free product, owners and operators must remove free product to the maximum extent practicable as determined by the agency while continuing, as necessary, any actions initiated under §§ 50161 to 50163, or preparing for actions required under §§ 50165 to 50166. In meeting the requirements of this section, owners and operators must:
(1) Conduct free product removal in a manner that minimizes the spread of contamination into previously uncontaminated zones by using recovery and disposal techniques appropriate to the hydrogeologic conditions at the site, and that properly treats, discharges or disposes of recovery byproducts in compliance with applicable local, state, and federal regulations;
(2) Use abatement of free product migration as a minimum objective for the design of the free product removal system;
(3) Handle any flammable products in a safe and competent manner to prevent fires or explosions; and
(4) Prepare and submit to the agency, within forty-five (45) calendar days after confirming a release, a free product removal report that provides at least the following
information:

(A) The name of the person responsible for implementing the free product removal measures;

(B) The estimated quantity, type, and thickness of free product observed or measured in wells, boreholes, and excavations;

(C) The type of free product recovery system used;

(D) Whether any discharge will take place on-site or off-site during the recovery operation and where this discharge will be located;

(E) The type of treatment applied to, and the effluent quality expected from, any discharge;

(F) All actions already performed or currently underway to remove free product, including steps that have been or are being taken to obtain necessary permits for any discharge;

(G) The disposition of the recovered free product; and

(H) Schedule for completion of free product removal.

(b) Owners and operators shall initiate free product removal as soon as practicable but no later than thirty (30) calendar days following confirmation of a release, or sooner if directed by the agency.

§ 50165. Investigation for Soil and Groundwater Cleanup.

(a) In order to determine the full extent and location of soils contaminated by the release and the presence and concentrations of dissolved product contamination in the groundwater and surface water, owners and operators must conduct investigations of the release, the release site, and the surrounding area possibly affected by the release if any of the
following conditions exist:

1. There is evidence that groundwater wells have been affected by the release (e.g., as found during release confirmation or previous release response actions);

2. Free product is found to need recovery in compliance with § 50164;

3. There is evidence that contaminated soils may be in contact with groundwater (e.g., as found during conduct of the initial response measures or investigations required under §§ 50160 to 50164; and

4. The agency requests an investigation, based on the potential effects of contaminated soil or groundwater on nearby surface water and groundwater resources.

(b) Owners and operators must include information collected in accordance with this section with each quarterly report required pursuant to § 50165.2.

§ 50165.1. Notification of Confirmed Release.

(a) Within ninety (90) calendar days following confirmation of a release, the owner and operator shall notify those members of the public directly affected by the release in writing of the release and the proposed response to the release, including a historical account of actions performed since the discovery of the release. Members of the public directly affected by the release shall include:

1. Persons who own, hold a lease for, or have easements at, any property on which the regulated substance released from the UST was discovered; and

2. Other persons identified by the director.

(b) The owner and operator shall send a letter to all members of the public directly affected by the release. Model language for the letter shall be provided by the agency and shall include at least the following information:

1. Name and address of the UST or UST system;

2. Statement that a release of regulated substance has been
confirmed at the UST or UST system;

(3) Name of a contact person at the agency; and

(4) Reference to an attached factsheet pursuant to subsection (c).

(c) The letter to the members of the public directly affected by the release shall include a factsheet which contains the following information:

(1) Name and address of the UST or UST system;
(2) Name and address of the owner and operator of the UST or UST system;
(3) Name, address, and telephone contact of the party performing the cleanup activities;
(4) Date of the confirmed release;
(5) Nature and extent of the confirmed release;
(6) Summary of measures taken to assess the release and extent of contamination; and
(7) Summary of the proposed response to the release.

(d) The factsheet shall be updated on a quarterly basis and sent to all members of the public directly affected by the release. If additional members of the public directly affected by the release are identified in the course of release response actions, then the owner and operator shall provide those persons with all previous and future letters and factsheets.

(e) The owner and operator shall include in the quarterly report required pursuant to § 50165.2 the following information:

(1) Copy of the letter pursuant to subsection (b);
(2) List of the members of the public directly affected by the release and to whom the letter was sent; and
(3) Copies of the factsheet and amended factsheets pursuant to subsections (c) and (d).

§ 50165.2. Release Response Reporting.

(a) No later than ninety (90) calendar days following the confirmation of a release, owners and operators must submit to the agency a written report in the format specified by the agency. The report must include:

(1) All release response actions taken pursuant to this
Article during the first ninety-day (90) period (first quarter); and

(2) A plan for future release response actions to be taken.

(b) Beginning one hundred eighty (180) calendar days following confirmation of a release, owners and operators must submit to the agency written quarterly progress reports and an electronic copy of the written report in a format specified by the agency. The reports must document:

(1) All response actions taken pursuant to this subchapter after the last reported date;
(2) A plan for future release response actions to be taken; and
(3) Information required pursuant to § 50165.1.

(c) Quarterly progress reports are not required if:

(1) Response actions have met the requirements of § 50165.3; and
(2) A final quarterly report has been submitted.

§ 50165.3. Site Cleanup Criteria.

(a) Owners and operators must remediate soil, surface water, and groundwater, and materials contaminated by releases from USTs or tank systems in a manner that is protective of human health and the environment and achieves cleanup as described in subsection (b).

(b) Owners and operators must remediate contaminated soil, groundwater, and surface water at the site to residual concentrations that meet one of the following criteria:

(1) Default Tier 1 Screening Levels as presented in Table 1 in subsection (e); or
(2) Site-specific action levels as approved by the agency.

Owners and operators should consult with the agency on how the standards in this paragraph can be met. Site-specific action levels must take into account the following factors:

(A) For systemic toxicants, acceptable levels shall represent concentration levels to which the human
population may be exposed without adverse effect during a lifetime or part of a lifetime, and incorporating an adequate margin of safety;

(B) For known or suspected carcinogens, acceptable levels are generally concentration levels in soil, groundwater and vapor that represent an excess upper bound lifetime cancer risk to an individual of between 10^{-4} and 10^{-6} using information on the relationship between dose and response. The 10^{-6} excess risk level shall be used as the point of departure for determining acceptable levels for alternatives when chemical-specific state or federal requirements are not available or are not sufficiently protective because of the presence of multiple contaminants at the site or multiple pathways of exposure;

(C) Impacts to ecological receptors, including but not limited to plants and animals; and

(D) Other applicable requirements, including but not limited to nuisance concerns for odor and taste, if applicable.

(c) The agency may require the owners and operators to modify cleanup activities being performed at a site if the agency determines that the activities are not being carried out in accordance with this subchapter, or are not achieving cleanup levels that are protective of human health and the environment. The agency may impose modifications to cleanup activities by written notice to the owners and operators, and the owners and operators must implement necessary changes to the cleanup activities in response to the agency’s notice by a time schedule established by the agency.

(d) A schedule for estimated completion of site cleanup shall be included in each fourth quarter report required pursuant to § 50165.2(b).

(e) The figure labeled “Table 1. Tier 1 Screening Levels of Soil and Groundwater” is made a part of this subsection.
Table 1. Tier 1 Screening Levels for Soil and Groundwater

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>DRINKING WATER SOURCE THREATENED</th>
<th>DRINKING WATER SOURCE NOT THREATENED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Groundwater (ug/l)</td>
<td>Basis¹</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Benzene</td>
<td>5.0</td>
<td>DWP</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Dichloroethylene, cis 1,2-</td>
<td>70</td>
<td>DWP</td>
</tr>
<tr>
<td>Dichloroethylene, trans 1,2-</td>
<td>100</td>
<td>DWP</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>7.3</td>
<td>CAT</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Lead</td>
<td>2.5</td>
<td>CAT</td>
</tr>
<tr>
<td>Methyl Tert Butyl Ether (MTBE)</td>
<td>5.0</td>
<td>DWS</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>12</td>
<td>CAT</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (PCBs)</td>
<td>0.014</td>
<td>-</td>
</tr>
<tr>
<td>Tetrachloroethylene (PCE)</td>
<td>5.0</td>
<td>DWP</td>
</tr>
<tr>
<td>Toluene</td>
<td>9.8</td>
<td>CAT</td>
</tr>
<tr>
<td>TPH-gasolines</td>
<td>300</td>
<td>DWP</td>
</tr>
<tr>
<td>TPH-middle distillates</td>
<td>400</td>
<td>DWP</td>
</tr>
<tr>
<td>TPH-residual fuels</td>
<td>500</td>
<td>DWS</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>5.0</td>
<td>DWP</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>2.0</td>
<td>DWP</td>
</tr>
<tr>
<td>Xylenes</td>
<td>13</td>
<td>CAT</td>
</tr>
</tbody>
</table>
Notes to Table 1.

1. Drinking water screening levels are the lowest of screening levels for: drinking water primary maximum contaminant levels based on toxicity ("DWP"), drinking water secondary maximum contaminant levels based on taste and odor concerns ("DWS"), vapor intrusion ("VI"), and chronic aquatic toxicity ("CAT").

2. Soil screening levels are the lowest of screening levels for: direct exposure ("DE"), vapor intrusion ("VI"), leaching ("L"), and gross contamination ("GC").

3. Non-drinking water screening levels are the lowest of screening levels vapor intrusion ("VI"), chronic aquatic toxicity ("CAT"), and gross contamination ("GC").

§ 50166. Corrective Action.

(a) The agency may require that the owner and operator submit a written corrective action plan for responding to a release, if one or more of the following minimum threshold criteria is met:

(1) Actual or probable release to groundwater which is a drinking water supply;

(2) Actual or probable release to surface water which is a drinking water supply;

(3) Actual or probable release to air that poses a threat to public health;

(4) Actual or probable release to and extensive contamination of soil that poses a direct contact hazard due to uncontrolled access;

(5) Actual or probable existence of uncontrolled regulated substances that pose a direct contact hazard due to uncontrolled access;

(6) Actual or probable adverse impact to natural resources;

(7) Actual or probable imminent danger of fire or explosion; or
(8) A determination by the Administrator that a release poses a substantial endangerment to public health or welfare, the environment, or natural resources.

(b) If a plan is required, owners and operators must submit the plan to the agency in a format established by the agency within thirty (30) calendar days of the agency’s request, unless an extension of time is granted by the agency.

(c) Corrective action plans which are required to be submitted to the agency shall be subject to the review and discretionary approval of the agency in accordance with the procedures set forth in this section. Owners and operators are responsible for submitting a corrective action plan that provides for adequate protection of human health and the environment as determined by the agency and must make necessary modifications to the plan when directed to do so by the agency.

(d) The agency will approve the corrective action plan only after ensuring that implementation of the plan will adequately protect human health, safety, and the environment. In making this determination, the agency will consider the following factors as appropriate:

1. Physical and chemical characteristics of the regulated substance, including its toxicity, persistence, and potential for migration;
2. Hydrogeologic characteristics of the facility and the surrounding area;
3. Proximity, quality, and current and future uses of nearby surface water and groundwater;
4. Potential effects of residual contamination on nearby surface water and groundwater;
5. An exposure assessment; and
6. All other information assembled in compliance with this subchapter.

(e) The public participation procedures set forth in § 50167 apply to all corrective action plans submitted under this section.

(f) Upon approval of a corrective action plan, owners and operators must implement the plan, including any modifications to the plan made by the agency. Owners and operators must monitor, evaluate, and report
quarterly to the agency the results of implementing the corrective action plan pursuant to this section and § 50165.2.

(g) Owners and operators who have been requested by the agency to submit a corrective action plan are encouraged to begin cleanup of contaminated soils, surface water, groundwater, and materials before the plan is approved by the agency provided that they:

1. Notify the agency of their intention to begin cleanup;
2. Ensure that cleanup measures undertaken are consistent with the cleanup actions required pursuant to § 50165.3;
3. Comply with any conditions imposed by the agency, including halting cleanup or mitigating adverse consequences from cleanup activities; and
4. Incorporate self-initiated cleanup measures in the corrective action plan that is submitted to the agency for approval.

§ 50167. Public Participation for Corrective Action Plans.

(a) The agency shall conduct public participation activities in accordance with subsections (c) through (h) when:

1. A corrective action plan required pursuant to § 50166(a) has been submitted and the agency has made a tentative decision concerning the proposed plan; or
2. Implementation of any previously approved corrective action plan has not achieved the cleanup levels established in the plan and termination of the plan is under consideration by the agency.

(b) The agency will provide notice to the public of the release and the applicable response as required in subsections (c) and (d). Costs for all public participation activities described in subsections (c) through (h) shall be borne by the owner and operator of the UST or UST system, including the costs of making copies of materials to the public under subsection (f).

(c) Notice to members of the public directly affected by the release, as defined in § 50165.1(a), shall be given in the form of a letter from the agency and shall include at least the following information:

1. Name and address of the UST or UST system;
(2) Name and address of the owner and operator of the UST or UST system;

(3) Summary of the release information and the proposed or previously approved corrective action plan;

(4) The agency’s tentative decision concerning the proposed corrective action plan or concerning the termination of the previously approved corrective action plan;

(5) Announcement that an informational meeting will be held in accordance with subsection (g);

(6) Request for comments on the corrective action plan and the agency’s tentative decision; and

(7) Availability of information on the release and the agency’s tentative decision.

d Notice to the general public shall be given in the form of a notice in a local newspaper and shall include at least the information required in subsection (c)(1) to (7).

e Comments shall be received by the agency no later than thirty (30) calendar days after the notice provided in subsections (c) and (d) or after the end of the public meeting held pursuant to subsection (g), if any, whichever occurs later.

f Information on the release, the proposed corrective action plan, and the agency’s tentative decision on the plan shall be made available to the public for inspection upon request.

g Before approving a corrective action plan, the agency may conduct a public meeting to provide information and receive comments on the proposed plan. A meeting will be held if there is sufficient public interest. Public interest shall be indicated by written request to the agency.

h At the Administrator’s discretion, a notice of final decision may be issued.

§ 50168 to § 50169. [Reserved.]

ARTICLE 7
OUT-OF-SERVICE UST SYSTEMS AND CLOSURE
§ 50170. Temporary Closure

(a) When an UST system is temporarily closed, owners and operators must continue operation and maintenance of corrosion protection in accordance with § 50131, and applicable release detection in accordance with Article 4. Articles 5 and 6 must be complied with if a release is suspected or confirmed. Spill and overfill operation and maintenance testing and inspections in Article 3 are not required during temporary closure. If the UST system is empty, release detection and release detection operation and maintenance testing and inspections in Articles 3 and 4 are not required. The UST system is empty when all materials have been removed using commonly employed practices so that no more than 2.5 centimeters (one inch) of residue, or 0.3 percent by weight of the total capacity of the UST system, remain in the system.

(b) When an UST system is temporarily closed for ninety (90) calendar days or more, owners and operators must also comply with the following requirements:

(1) Leave vent lines open and functioning; and

(2) Cap and secure all other lines, pumps, manways, and ancillary equipment.

(c) When an UST system is temporarily closed for more than twelve (12) months, owners and operators must permanently close the UST system if it does not meet the applicable design, construction, and installation requirements in Article 2, except that the spill and overfill equipment requirements do not have to be met. Owners and operators must
permanently close the substandard UST systems at the end of this twelve-month period in accordance with §§ 50171 to 50174, unless the agency provides an extension of the twelve-month temporary closure period. Owners and operators must complete a site assessment in accordance with § 50172 before such an extension can be applied for.

§ 50171. Permanent Closure and Change-in-Service.

(a) At least thirty (30) calendar days before beginning either permanent closure or a change-in-service of an UST or tank system under subsections (c) and (d), owners and operators must notify the agency in writing of their intent to permanently close or make the change-in-service, unless such action is in response to a confirmed release. The required assessment of the excavation zone under § 50172 must be performed after notifying the agency but before completion of the permanent closure or change-in-service.

(b) At least seven (7) calendar days before excavation work for a permanent closure or change-in-service, owners or operators must notify the agency of the exact date that the work will occur.

(c) To permanently close an UST or tank system, owners and operators must:

 (1) Empty and clean the UST and tank system by removing all liquids and accumulated sludge;
 (2) Remove the UST or tank system from the ground, fill the UST or tank system with an inert solid material, or close the tank in place in a manner approved by the agency; and
 (3) Conduct a site assessment in accordance with § 50172.

(d) Continued use of an UST system to store a non-regulated substance is considered a change-in-service. Before a change-in-service, owners and operators must:

 (1) Empty and clean the UST and tank system by removing all liquids and accumulated sludge; and
 (2) Conduct a site assessment in accordance with § 50172.

(e) Within thirty (30) calendar days of completing a permanent closure or change-in-service, owners and operators must submit a notification to the
agency indicating completion of the closure or change-in-service.

§ 50172. Assessing the Site at Closure or Change-in-Service.

(a) Before permanent closure or a change-in-service is completed, owners and operators must measure for the presence of a release where contamination is most likely to be present at the UST site. In selecting sample types, sample locations, and measurement methods, owners and operators must consider the method of closure, the nature of the stored substance, the types of backfill and surrounding soil, the depth and flow of groundwater, and other factors appropriate for identifying the presence of a release.
(b) If contaminated soils, contaminated groundwater, or free product as a liquid or vapor is discovered under subsection (a), or by any other manner, owners and operators must begin release response action in accordance with Article 6.

§ 50173. Applicability to Previously Closed UST Systems.

(a) When directed by the agency, the owner and operator of an UST system permanently closed before December 22, 1988 must assess the excavation zone and close the UST system in accordance with this Article if releases from the UST may, in the judgment of the agency, pose a current or potential threat to human health and the environment.
(b) When directed by the agency, the owner and operator of an UST system with field-constructed tanks or an airport hydrant fuel distribution system permanently closed before October 13, 2015, must assess the excavation zone and close the UST system in accordance with this Article if releases from the UST may, in the judgment of the agency, pose a current or potential threat to human health and the environment.

§ 50174. Closure Records.

Owners and operators must maintain records in accordance with § 50134 that are capable of demonstrating compliance with closure requirements
under this Article. The results of the excavation zone assessment required in § 50172 must be maintained for at least three (3) years after completion of permanent closure or change-in-service in one of the following ways:

(1) By the owners and operators who took the UST system out of service;
(2) By the current owners and operators of the UST system site; or
(3) By mailing these records to the agency if they cannot be maintained at the closed facility.

§ 50175. Closure--Code of Practice.

The following current cleaning and closure procedures may be used to comply with § 50171:

(1) American Petroleum Institute Recommended Practice RP 1604, “Closure of Underground Petroleum Storage Tanks”;
(2) American Petroleum Institute Standard 2015, “Safe Entry and Cleaning of Petroleum Storage Tanks, Planning and Managing Tank Entry From Decommissioning Through recommissioning”;
(4) American Petroleum Institute Recommended Practice RP 1631, “Interior Lining and Periodic Inspection of Underground Storage Tanks”, may be used as guidance for compliance with this section;
(5) National Fire Protection Association Standard 326, “Standard for the Safeguarding of Tanks and Containers for Entry, Cleaning, or Repair”; and
(6) National Institute for Occupational Safety and Health Publication 80–106, “Criteria for a Recommended Standard...Working in Confined Space”, may be used as guidance for conducting safe closure procedures at some
tanks containing hazardous substances.

§§ 50176 to 50189. [Reserved.]

ARTICLE 8
FINANCIAL RESPONSIBILITY

§ 50190. Applicability
§ 50191. [Reserved]
§ 50192. Definition of Terms
§ 50193. Amount and Scope of Required Financial Responsibility
§ 50194. Allowable Mechanism and Combinations of Mechanisms
§ 50195. Financial Test of Self-Insurance
§ 50196. Guarantee
§ 50197. Insurance and Risk Retention Group Coverage
§ 50198. Surety Bond
§ 50199. Letter of Credit
§ 501100 to § 501101. [Reserved]
§ 501102. Trust Fund
§ 501103. Standby Trust Fund
§ 501104. Local Government Bond Rating Test
§ 501105. Local Government Financial Test
§ 501106. Local Government Guarantee
§ 501107. Local Government Fund
§ 501108. Substitution of Financial Assurance Mechanisms by Owner or Operator
§ 501109. Cancellation or Non-renewal by a Provider of Financial Assurance
§ 501110. Reporting by Owner or Operator
§ 501111. Record Keeping
§ 501112. Drawing of Financial Assurance Mechanisms
§ 501113. Release from the Requirements
§ 501114. Bankruptcy or Other Incapacity of Owner or Operator or Provider of Financial Assurance
§ 50115. Replenishment of Guarantee, Letters of Credit, or Surety Bond

§ 50116. to § 501199 [Reserved]

§ 50190. Applicability.

(a) This Article applies to owners and operators of all petroleum underground storage tank (UST) systems except as otherwise provided in this section.

(b) State and federal government entities whose debts and liabilities are the debts and liabilities of a state or the United States are exempt from the requirements of this Article.

(c) The requirements of this Article do not apply to owners and operators of any UST system described in § 50110(b), (c)(1), (c)(3), or (c)(4).

(d) If the owner and operator of a petroleum underground storage tank system are separate persons, only one person is required to demonstrate financial responsibility; however, both parties are liable in the event of noncompliance.

§ 50191. [Reserved.]

§ 50192. Definition of Terms.

When used in this Article, the following terms have the meanings given below:

“Accidental release” means any sudden or nonsudden release of petroleum arising from operating an underground storage tank system that results in a need for release response action and/or compensation for bodily injury or property damage neither expected nor intended by the tank system owner or operator.

“Bodily injury” shall have the meaning given to this term by applicable state law; however, this term shall not include those liabilities which, consistent with standard insurance industry practices, are excluded from coverage in liability insurance policies for bodily injury.

“Chief financial officer” in the case of local government owners and
operators, means the individual with the overall authority and responsibility for the collection, disbursement, and use of funds by the local government.

“Controlling interest” means direct ownership of at least fifty percent of the voting stock of another entity.

“Financial reporting year” means the latest consecutive twelve-month period for which any of the following reports used to support a financial test is prepared:

1. A 10-K report submitted to the U.S. Securities and Exchange Commission;
2. An annual report of tangible net worth submitted to Dun and Bradstreet; or
3. Annual reports submitted to the Energy Information Administration or the Rural Utilities Service.

“Financial reporting year” may thus comprise a fiscal or a calendar year period.

“Legal defense cost” is any expense that an owner or operator or provider of financial assurance incurs in defending against claims or actions brought:

1. By EPA or the state to require release response action or to recover the costs of release response action;
2. By or on behalf of a third party for bodily injury or property damage caused by an accidental release; or
3. By any person to enforce the terms of a financial assurance mechanism.

“Occurrence” means an accident, including continuous or repeated exposure to conditions, which results in a release from an underground storage tank system. This definition is intended to assist in the understanding of these regulations and is not intended either to limit the meaning of “occurrence” in a way that conflicts with standard insurance usage or to prevent the use of other standard insurance terms in place of “occurrence”.

“Owner or operator”, when the owner or operator are separate parties, refers to the party that is obtaining or has obtained financial assurances.
“Petroleum marketing facilities” include all facilities at which petroleum is produced or refined and all facilities from which petroleum is sold or transferred to other petroleum marketers or to the public.

“Property damage” shall have the meaning given this term by applicable state law. This term shall not include those liabilities which, consistent with standard insurance industry practices, are excluded from coverage in liability insurance policies for property damage. However, such exclusions for property damage shall not include response actions associated with releases from USTs or tank systems which are covered by the policy.

“Provider of financial assurance” means an entity that provides financial assurance to an owner or operator of an underground storage tank system through one of the financial mechanisms listed in §§ 50195 through 501107, including a guarantor, insurer, risk retention group, surety, issuer of a letter of credit, issuer of a state-required mechanism, or a state.

“Substantial business relationship” means the extent of a business relationship necessary under applicable state law to make a guarantee contract issued incident to that relationship valid and enforceable. A guarantee contract is issued “incident to that relationship” if it arises from and depends on existing economic transactions between the guarantor and the owner or operator.

“Substantial governmental relationship” means the extent of a governmental relationship necessary under applicable state law to make an added guarantee contract issued incident to that relationship valid and enforceable. A guarantee contract is issued “incident to that relationship” if it arises from a clear commonality of interest in the event of an UST or tank system release such as coterminous boundaries, overlapping constituencies, common groundwater aquifer, or other relationship other than monetary compensation that provides a motivation for the guarantor to provide a guarantee.

“Tangible net worth” means the tangible assets that remain after deducting liabilities; such assets do not include intangibles such as goodwill and rights to patents or royalties. For purposes of this definition, “assets” means all existing and all probable future economic benefits.
obtained or controlled by a particular entity as a result of past transactions.

“Termination” under § 50197(b)(1) and (2) means only those changes that could result in a gap in coverage as where the insured has not obtained substitute coverage or has obtained substitute coverage with a different retroactive date than the retroactive date of the original policy.

§ 50193. Amount and Scope of Required Financial Responsibility.

(a) Owners or operators of petroleum USTs or tank systems must demonstrate financial responsibility for taking corrective action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum USTs or tank systems in at least the following per-occurrence amounts:

(1) For owners or operators of petroleum USTs or tank systems that are located at petroleum marketing facilities, or that handle an average of more than ten thousand gallons of petroleum per month based on annual throughput for the previous calendar year: $1,000,000; and

(2) For all other owners or operators of petroleum USTs or tank systems: $500,000.

(b) Owners or operators of petroleum USTs or tank systems must demonstrate financial responsibility for taking corrective action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum USTs or tank systems in at least the following annual aggregate amounts:

(1) For owners or operators of one to one hundred petroleum USTs: $1,000,000; and

(2) For owners or operators of one hundred one or more petroleum USTs: $2,000,000.

(c) For the purposes of subsections (b) and (f) only, “a petroleum underground storage tank” or “a petroleum UST” means a single containment unit and does not mean combinations of single containment units.

(d) Except as provided in subsection (e), if the owner or
operator uses separate mechanisms or separate combinations of mechanisms to demonstrate financial responsibility for:

(1) Taking corrective action;
(2) Compensating third parties for bodily injury and property damage caused by sudden accidental releases; or
(3) Compensating third parties for bodily injury and property damage caused by nonsudden accidental releases, the amount of assurance provided by each mechanism or combination of mechanisms must be in the full amount specified in subsections (a) and (b).

(e) If an owner or operator uses separate mechanisms or separate combinations of mechanisms to demonstrate financial responsibility for different petroleum underground storage tanks, the annual aggregate required shall be based on the number of tanks covered by each such separate mechanism or combination of mechanisms.

(f) Owners or operators shall review the amount of aggregate assurance provided whenever additional petroleum underground storage tanks are acquired or installed. If the number of petroleum underground storage tanks for which assurance must be provided exceeds one hundred, the owner or operator shall demonstrate financial responsibility in the amount of at least $2,000,000 of annual aggregate assurance by the anniversary of the date on which the mechanism demonstrating financial responsibility became effective. If assurance is being demonstrated by a combination of mechanisms, the owner or operator shall demonstrate financial responsibility in the amount of at least $2,000,000 of annual aggregate assurance by the first-occurring effective date anniversary of any one of the mechanisms combined (other than a financial test or guarantee) to provide assurance.

(g) The amounts of assurance required under this section exclude legal defense costs.

(h) The required per-occurrence and annual aggregate coverage amounts do not in any way limit the liability of the owner or operator.

§ 50194. Allowable Mechanism and Combinations of Mechanisms.
(a) Subject to the limitations of subsections (b) and (c):

(1) An owner or operator, including a local government owner or operator, may use any one or combination of the mechanisms listed in §§ 50195 through 501103 to demonstrate financial responsibility under this Article for one or more USTs or tank systems; and

(2) A local government owner or operator may use any one or combination of the mechanisms listed in §§ 501104 through 501107 to demonstrate financial responsibility under this subchapter for one or more USTs or tank systems.

(b) An owner or operator may use a guarantee under § 50196 or surety bond under § 50198 to establish financial responsibility only if the State Attorney General has submitted a written statement to the administrator that a guarantee or surety bond executed as described in this section is a legally valid and enforceable obligation in the State.

(c) An owner or operator may use self-insurance in combination with a guarantee only if, for the purpose of meeting the requirements of the financial test under this rule, the financial statements of the owner or operator are not consolidated with the financial statements of the guarantor.

§ 50195. Financial Test of Self-Insurance.

(a) An owner or operator, and/or guarantor, may satisfy the requirements of § 50193, Guam Administrative Rules and Regulations by passing a financial test as specified in this section. To pass the financial test of self-insurance, the owner or operator, and/or guarantor, must meet the criteria of subsection (b) or (c) based on year-end financial statements for the latest completed fiscal year.

(b) (1) The owner or operator, and/or guarantor, must have a tangible net worth of at least ten times:

(A) The total of the applicable aggregate amount required by § 50193, Guam Administrative Rules and Regulations, based on the number of underground storage tanks for which a financial test is used to
demonstrate financial responsibility to the agency, to EPA, or to a state implementing agency under a state program approved by EPA under 40 C.F.R. part 281;

(B) The sum of the RCRA subtitle C corrective action cost estimates, the current closure and post-closure care cost estimates, and amount of liability coverage for which a financial test is used to demonstrate financial responsibility to the agency under 40 C.F.R. sections 261.143 and 261.147, as incorporated and amended in section 11-261.1-1, 40 C.F.R. sections 264.101, 264.143, 264.145, and 264.147, as incorporated and amended in section 11-264.1-1, 40 C.F.R. sections 265.143, 265.145, and 265.147, as incorporated and amended in section 11-265.1-1, to EPA under 40 C.F.R. sections 261.143, 261.147, 264.101, 264.143, 264.145, 264.147, 265.143, 265.145, and 265.147, or to a state implementing agency under a state program authorized by EPA under 40 C.F.R. part 271; and

(C) The sum of current plugging and abandonment cost estimates for which a financial test is used to demonstrate financial responsibility to EPA under 40 C.F.R. section 144.63 or to a state implementing agency under a state program authorized by EPA under 40 C.F.R. part 145.

(2) The owner or operator, and/or guarantor, must have a tangible net worth of at least $10,000,000.

(3) The owner or operator, and/or guarantor, must have a letter signed by the chief financial officer worded as specified in subsection (d).

(4) The owner or operator, and/or guarantor, must either:

(A) File financial statements annually with the U.S. Securities and Exchange Commission, the Energy Information Administration, or the Rural Utilities Service; or
(B) Report annually the firm’s tangible net worth to Dun and Bradstreet, and Dun and Bradstreet must have assigned the firm a financial strength rating of 4A or 5A.

(5) The firm’s year-end financial statements, if independently audited, cannot include an adverse auditor’s opinion, a disclaimer of opinion, or a “going concern” qualification.

(c) (1) The owner or operator, and/or guarantor, must meet the financial test requirements of 40 C.F.R. section 264.147(f)(1), substituting the appropriate amounts specified in § 50193(b)(1) and (2), Guam Administrative Rules and Regulations for the “amount of liability coverage” each time specified in that section.

(2) The fiscal year-end financial statements of the owner or operator, and/or guarantor, must be examined by an independent certified public accountant and be accompanied by the accountant’s report of the examination.

(3) The firm’s year-end financial statements cannot include an adverse auditor’s opinion, a disclaimer of opinion, or a “going concern” qualification.

(4) The owner or operator, and/or guarantor, must have a letter signed by the chief financial officer, worded as specified in subsection (d).

(5) If the financial statements of the owner or operator, and/or guarantor, are not submitted annually to the U.S. Securities and Exchange Commission, the Energy Information Administration or the Rural Utilities Service, the owner or operator, and/or guarantor, must obtain a special report by an independent certified public accountant stating that:

(A) The accountant has compared the data that the letter from the chief financial officer specifies as having been derived from the latest year-end financial statements of the owner or operator, and/or guarantor, with the amounts in such financial statements; and

(B) In connection with that comparison, no matters came
to the accountant’s attention, which caused the accountant to believe that the specified data should be adjusted.

(d) To demonstrate that it meets the financial test under subsection (b) or (c), the chief financial officer of the owner or operator, or guarantor, must sign, within one hundred twenty days of the close of each financial reporting year, as defined by the twelve-month period for which financial statements used to support the financial test are prepared, a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

LETTER FROM CHIEF FINANCIAL OFFICER

I am the chief financial officer of [insert: name and address of the owner or operator, or guarantor]. This letter is in support of the use of [insert: “the financial test of self-insurance” or “guarantee” or both] to demonstrate financial responsibility for [insert: “taking corrective action” or “compensating third parties for bodily injury and property damage” or both] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an) underground storage tank(s).

Underground storage tanks at the following facilities are assured by this financial test, or a corresponding financial test under EPA or another authorized state program, by this [insert: “owner or operator” or “guarantor”]:

[List for each facility: the name and address of the facility where tanks assured by this financial test are located, and whether tanks are assured by this financial test or a corresponding financial test under EPA or under a state program approved under 40 C.F.R. part 281. If separate mechanisms or combinations of mechanisms are being used to assure any of the tanks at this facility, list each tank assured by this financial test by the tank identification number provided in the notification submitted pursuant to 40 C.F.R. section 280.22, or in the permit applications submitted under §§ 501324 and
A [insert: “financial test” and/or “guarantee”] is also used by this [insert: “owner or operator” or “guarantor”] to demonstrate evidence of financial responsibility in the following amounts under other EPA regulations or state programs authorized by EPA under 40 C.F.R. parts 271 and 145:

<table>
<thead>
<tr>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA Regulations:</td>
</tr>
<tr>
<td>Closure (§§261.143, 264.143, and 265.143) $</td>
</tr>
<tr>
<td>Post-Closure Care (§§264.145 and 265.145) $</td>
</tr>
<tr>
<td>Liability Coverage (§§261.147, 264.147, and 265.147) $</td>
</tr>
<tr>
<td>Corrective Action (§264.101(b)) $</td>
</tr>
<tr>
<td>Plugging and Abandonment (§144.63) $</td>
</tr>
<tr>
<td>Authorized State Programs:</td>
</tr>
<tr>
<td>Closure $</td>
</tr>
<tr>
<td>Post-Closure Care $</td>
</tr>
<tr>
<td>Liability Coverage $</td>
</tr>
<tr>
<td>Corrective Action $</td>
</tr>
<tr>
<td>Plugging and Abandonment $</td>
</tr>
<tr>
<td>TOTAL $</td>
</tr>
</tbody>
</table>

This [insert: “owner or operator” or “guarantor”] has not received an adverse opinion, a disclaimer of opinion, or a “going concern” qualification from an independent auditor on his or her financial statements for the latest completed fiscal year.

[Fill in the information for Alternative I if the criteria of subsection (b) are being used to demonstrate compliance with the financial test requirements. Fill in the information for Alternative II if the criteria of}
subsections (c) are being used to demonstrate compliance with the financial test requirements.]

ALTERNATIVE I

1. Amount of annual UST aggregate coverage being assured by a financial test, or guarantee or both $
2. Amount of corrective action, closure and post-closure care costs, liability coverage, and plugging and abandonment costs covered by a financial test, or guarantee or both $
3. Sum of lines 1 and 2 $
4. Total tangible assets $
5. Total liabilities [if any of the amount reported on line 3 is included in total liabilities, you may deduct that amount from this line and add that amount to line 6] $
6. Tangible net worth [subtract line 5 from line 4] $
7. Is line 6 at least $10,000,000? Yes No
8. Is line 6 at least ten times line 3? Yes No
9. Have financial statements for the latest fiscal year been filed with the U.S. Securities and Exchange Commission? Yes No
10. Have financial statements for the latest fiscal year been filed with the federal Energy Information Administration? Yes No
11. Have financial statements for the latest fiscal year been filed with the federal Rural Utilities Service? Yes No
12. Has financial information been provided to Dun and Bradstreet, and has Dun and Bradstreet provided a financial strength rating of 4A or 5A? [Answer “Yes” only if both criteria have been met.] Yes No
ALTERNATIVE II

<table>
<thead>
<tr>
<th></th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Amount of annual UST aggregate coverage being assured by a financial test, or guarantee or both</td>
</tr>
<tr>
<td>2.</td>
<td>Amount of corrective action, closure and post-closure care costs, liability coverage, and plugging and abandonment costs covered by a financial test, or guarantee or both</td>
</tr>
<tr>
<td>3.</td>
<td>Sum of lines 1 and 2</td>
</tr>
<tr>
<td>4.</td>
<td>Total tangible assets</td>
</tr>
<tr>
<td>5.</td>
<td>Total liabilities [if any of the amount reported on line 3 is included in total liabilities, you may deduct that amount from this line and add that amount to line 6]</td>
</tr>
<tr>
<td>6.</td>
<td>Tangible net worth [subtract line 5 from line 4]</td>
</tr>
<tr>
<td>7.</td>
<td>Total assets in the U.S. [required only if less than ninety per cent of assets are located in the U.S.]</td>
</tr>
<tr>
<td>8.</td>
<td>Is line 6 at least $10,000,000?</td>
</tr>
<tr>
<td>9.</td>
<td>Is line 6 at least six times line 3?</td>
</tr>
<tr>
<td>10.</td>
<td>Are at least ninety per cent of assets located in the U.S.? [If “No,” complete line 11]</td>
</tr>
<tr>
<td>11.</td>
<td>Is line 7 at least six times line 3?</td>
</tr>
<tr>
<td>12.</td>
<td>Current assets</td>
</tr>
<tr>
<td>13.</td>
<td>Current liabilities</td>
</tr>
<tr>
<td>14.</td>
<td>Net working capital [subtract line 13 from line 12]</td>
</tr>
<tr>
<td>15.</td>
<td>Is line 14 at least six times line 3?</td>
</tr>
<tr>
<td>16.</td>
<td>Current bond rating of most recent bond issue</td>
</tr>
</tbody>
</table>
17. Name of rating service

18. Date of maturity of bond

19. Have financial statements for the latest fiscal year Yes No
 been filed with the U.S. Securities and Exchange
 Commission, the federal Energy Information
 Administration, or the federal Rural Utilities
 Service?

 [If “No,” please attach a report from an independent certified
 public accountant certifying that there are no material differences between
 the data as reported in lines 4-18 above and the financial statements for
 the latest fiscal year.]
 [For both Alternative II and I complete the certification with this
 statement.]
 I hereby certify that the wording of this letter is identical to the
 wording specified in § 50195(d), Guam Administrative Rules and
 Regulations, as such regulations were constituted on the date shown
 immediately below.

 [Signature]
 [Name]
 [Title]
 [Date]

 (e) If an owner or operator using the test to provide financial
 assurance finds that he or she no longer meets the requirements of the
 financial test based on the year-end financial statements, the owner or
 operator must obtain alternative coverage within one hundred fifty days
 of the end of the year for which financial statements have been prepared.

 (f) The Administrator may require reports of financial condition
 at any time from the owner or operator, and/or guarantor. If the director
 finds, on the basis of such reports or other information, that the owner or
 operator, and/or guarantor, no longer meets the financial test
 requirements of subsections (b) or (c) and (d), the owner or operator must
obtain alternate coverage within thirty days after notification of such a finding.

(g) If the owner or operator fails to obtain alternate assurance within one hundred fifty days of finding that he or she no longer meets the requirements of the financial test based on the year-end financial statements, or within thirty days of notification by the Administrator that he or she no longer meets the requirements of the financial test, the owner or operator must notify the director of such failure within ten days.

§ 50196. Guarantee.

(a) An owner or operator may satisfy the requirements of § 50193 by obtaining a guarantee that conforms to the requirements of this section. The guarantor must be:

(1) A firm that:
 (A) Possesses a controlling interest in the owner or operator;
 (B) Possesses a controlling interest in a firm described under subparagraph (A); or
 (C) Is controlled through stock ownership by a common parent firm that possesses a controlling interest in the owner or operator; or

(2) A firm engaged in a substantial business relationship with the owner or operator and issuing the guarantee as an act incident to that business relationship.

(b) Within one hundred twenty days of the close of each financial reporting year the guarantor must demonstrate that it meets the financial test criteria of § 50195, Guam Administrative Rules and Regulations based on year-end financial statements for the latest completed financial reporting year by completing the letter from the chief financial officer described in § 50195(d), Guam Administrative Rules and Regulations and must deliver the letter to the owner or operator. If the guarantor fails to meet the requirements of the financial test at the end of any financial reporting year, within one hundred twenty days of the end of that financial reporting year the guarantor shall send by certified mail,
before cancellation or nonrenewal of the guarantee, notice to the owner or operator. If the Administrator notifies the guarantor that it no longer meets the requirements of the financial test of § 50195(b) or (c) and (d), Guam Administrative Rules and Regulations, the guarantor must notify the owner or operator within ten days of receiving such notification from the Administrator. In both cases, the guarantee will terminate no less than one hundred twenty days after the date the owner or operator receives the notification, as evidenced by the return receipt. The owner or operator must obtain alternative coverage as specified in § 501114(e), Guam Administrative Rules and Regulations.

(c) The guarantee must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

GUARANTEE

Guarantee made this [date] by [name of guaranteeing entity], a business entity organized under the laws of the State of [name of state], herein referred to as guarantor, to Guam Environmental Protection Agency and to any and all third parties, and obligees, on behalf of [owner or operator] of [business address].

Recitals.

(1) Guarantor meets or exceeds the financial test criteria of § 50195(b) or (c) and (d), Guam Administrative Rules and Regulations, and agrees to comply with the requirements for guarantors as specified in § 50196(b), Guam Administrative Rules and Regulations.

(2) [Owner or operator] owns or operates the following underground storage tank(s) covered by this guarantee: [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 C.F.R. section 280.22, or in the permit.
applications submitted under §§ 501324 and 501326 and the name and address of the facility.] This guarantee satisfies Article 8 of Guam Administrative Rules and Regulations, requirements for assuring funding for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the above-identified underground storage tank(s) in the amount of [insert dollar amount] per occurrence and [insert dollar amount] annual aggregate.

(3) [Insert appropriate phrase: “On behalf of our subsidiary” (if guarantor is corporate parent of the owner or operator); “On behalf of our affiliate” (if guarantor is a related firm of the owner or operator); or “Incident to our business relationship with” (if guarantor is providing the guarantee as an incident to a substantial business relationship with owner or operator)] [owner or operator], guarantor guarantees to Guam Environmental Protection Agency and to any and all third parties that:

In the event that [owner or operator] fails to provide alternative coverage within sixty days after receipt of a notice of cancellation of this guarantee and the Administrator of Guam Environmental Protection Agency has determined or suspects that a release has occurred at an underground storage tank covered by this guarantee, the guarantor, upon instructions from the Administrator of Guam Environmental Protection Agency, shall fund a standby trust fund in accordance with the provisions of § 501112 Guam Administrative Rules and Regulations, in an amount not to exceed the coverage limits specified above.

In the event that the Administrator of Guam Environmental Protection Agency determines that [owner or operator] has failed to perform corrective action for releases arising out of the operation of the above-identified tank(s) in accordance with Article 6 Guam Administrative Rules and Regulations, the guarantor, upon written instructions from the Administrator of Guam Environmental Protection Agency, shall fund a standby trust in accordance with the provisions of § 501112, Guam Administrative Rules and Regulations, in an amount not to
exceed the coverage limits specified above.

If [owner or operator] fails to satisfy a judgment or award based on a determination of liability for bodily injury or property damage to third parties caused by [“sudden” and/or “nonsudden”] accidental releases arising from the operation of the above-identified tank(s), or fails to pay an amount agreed to in settlement of a claim arising from or alleged to arise from such injury or damage, the guarantor, upon written instructions from the Administrator of Guam Environmental Protection Agency, shall fund a standby trust in accordance with the provisions of § 501112, Guam Administrative Rules and Regulations, to satisfy such judgment(s), award(s), or settlement agreement(s) up to the limits of coverage specified above.

(4) Guarantor agrees that if, at the end of any fiscal year before cancellation of this guarantee, the guarantor fails to meet the financial test criteria of § 50195(b) or (c) and (d), Guam Administrative Rules and Regulations, guarantor shall send within one hundred twenty days of such failure, by certified mail, notice to [owner or operator]. The guarantee will terminate one hundred twenty days from the date of receipt of the notice by [owner or operator], as evidenced by the return receipt.

(5) Guarantor agrees to notify [owner or operator] by certified mail of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming guarantor as debtor, within ten days after commencement of the proceeding.

(6) Guarantor agrees to remain bound under this guarantee notwithstanding any modification or alteration of any obligation of [owner or operator] pursuant to Title 22, Guam Administrative Rules and Regulations, Chapter 50.

(7) Guarantor agrees to remain bound under this guarantee for so long as [owner or operator] must comply with the applicable financial responsibility requirements of Article 8, Guam Administrative Rules and Regulations, for the above-identified tank(s), except that guarantor may cancel this guarantee by sending notice by certified mail to [owner or operator], such cancellation to become effective no earlier than one hundred twenty days after receipt of such notice by [owner or operator],
as evidenced by the return receipt.

(8) The guarantor’s obligation does not apply to any of the following:

(a) Any obligation of [insert owner or operator] under a workers’ compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of, employment by [insert owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily damage or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50193, Guam Administrative Rules and Regulations.

(9) Guarantor expressly waives notice of acceptance of this guarantee by the Guam Environmental Protection Agency, by any or all third parties, or by [owner or operator].

I hereby certify that the wording of this guarantee is identical to the wording specified in § 50196(c) Guam Administrative Rules and Regulations, as such regulations were constituted on the effective date shown immediately below.

Effective date:
[Name of guarantor]
[Authorized signature for guarantor]
[Name of person signing]
[Title of person signing]
(d) An owner or operator who uses a guarantee to satisfy the requirements of § 50193 Guam Administrative Rules and Regulations must establish a standby trust fund when the guarantee is obtained. Under the terms of the guarantee, all amounts paid by the guarantor under the guarantee will be deposited directly into the standby trust fund in accordance with instructions from the Administrator of Guam Environmental Protection Agency under § 501112. This standby trust fund must meet the requirements specified in § 501103.

§ 50197. Insurance and Risk Retention Group Coverage.

(a) An owner or operator may satisfy the requirements of § 50193, Guam Administrative Rules and Regulations by obtaining liability insurance that conforms to the requirements of this section from a qualified insurer or risk retention group. Such insurance may be in the form of a separate insurance policy or an endorsement to an existing insurance policy.

(b) Each insurance policy must be amended by an endorsement worded as specified in paragraph (1) or evidenced by a certificate of insurance worded as specified in paragraph (2), except that instructions in brackets must be replaced with the relevant information and the brackets deleted:

(1) ENDORSEMENT

Name: [name of each covered location]
Address: [address of each covered location]
Policy Number:
Period of Coverage: [current policy period]
Name of [Insurer or Risk Retention Group]:
Address of [Insurer or Risk Retention Group]:
Name of Insured:
Address of Insured:
Endorsement:

1. This endorsement certifies that the policy to which the endorsement is attached provides liability insurance covering the following underground storage tanks:

 [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 C.F.R. 280.22, or in the permit applications submitted under §§ 501324 and 501326, Guam Administrative Rules and Regulations, and the name and address of the facility.] for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; in accordance with and subject to the limits of liability, exclusions, conditions, and other terms of the policy; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the underground storage tank(s) identified above.

 The limits of liability are [insert the dollar amount of the “each occurrence” and “annual aggregate” limits of the Insurer’s or Group’s liability; if the amount of coverage is different for different types of coverage or for different underground storage tanks or locations, indicate the amount of coverage for each type of coverage, and/or for each underground storage tank or location], exclusive of legal defense costs, which are subject to a separate limit under the policy. This coverage is provided under [policy number]. The effective date of said policy is [date].

2. The insurance afforded with respect to such
occurrences is subject to all of the terms and conditions of
the policy; provided, however, that any provisions
inconsistent with subsections (a) to (e) of this paragraph are
hereby amended to conform with subsections (a) to (e);

a. Bankruptcy or insolvency of the insured shall not
relieve the [“Insurer” or “Group”] of its obligations
under the policy to which this endorsement is
attached.

b. The [“Insurer” or “Group”] is liable for the payment
of amounts within any deductible applicable to the
policy to the provider of corrective action or a
damaged third-party, with a right of reimbursement
by the insured for any such payment made by the
[“Insurer” or “Group”]. This provision does not
apply with respect to that amount of any deductible
for which coverage is demonstrated under another
mechanism or combination of mechanisms as
specified in §§ 50195 to 501102 and §§ 501104 to
501107, Guam Administrative Rules and Regulations.

c. Whenever requested by the Administrator of Guam
Environmental Protection Agency, the [“Insurer” or
“Group”] agrees to furnish to the Administrator of
Guam Environmental Protection Agency a signed
duplicate original of the policy and all endorsements.

d. Cancellation or any other termination of the insurance
by the [“Insurer” or “Group”], except for non-
payment of premium or misrepresentation by the
insured, will be effective only upon written notice
and only after the expiration of sixty days after a copy
of such written notice is received by the insured.
Cancellation for non-payment of premium or
misrepresentation by the insured will be effective
only upon written notice and only after expiration of
a minimum of ten days after a copy of such written
notice is received by the insured. Insert for claims-
made policies:
e. The insurance covers claims otherwise covered by the policy that are reported to the [“Insurer” or “Group”] within six months of the effective date of cancellation or non-renewal of the policy except where the new or renewed policy has the same retroactive date or a retroactive date earlier than that of the prior policy, and which arise out of any covered occurrence that commenced after the policy retroactive date, if applicable, and prior to such policy renewal or termination date. Claims reported during such extended reporting period are subject to the terms, conditions, limits, including limits of liability, and exclusions of the policy.]

I hereby certify that the wording of this instrument is identical to the wording in § 50197(b)(1), Guam Administrative Rules and Regulations, and that the [“Insurer” or “Group”] is [“licensed to transact the business of insurance or eligible to provide insurance as an excess or surplus lines insurer in Guam”].

[Signature of authorized representative of Insurer or Risk Retention Group]
[Name of person signing]
[Title of person signing], Authorized Representative of [name of Insurer or Risk Retention Group]
[Address of Representative]

(2) CERTIFICATE OF INSURANCE

Name: [name of each covered location]
Address: [address of each covered location]
Policy Number:
Endorsement (if applicable):

Period of Coverage: [current policy period]

Name of [Insurer or Risk Retention Group]:

Address of [Insurer or Risk Retention Group]:

Name of Insured:

Address of Insured:

Certification:

1. [Name of Insurer or Risk Retention Group], [the “Insurer” or “Group”], as identified above, hereby certifies that it has issued liability insurance covering the following underground storage tank(s):

 [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 C.F.R. 280.22, or in the permit applications submitted under §§ 501324 and 501326, Guam Administrative Rules and Regulations, and the name and address of the facility.] for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; in accordance with and subject to the limits of liability, exclusions, conditions, and other terms of the policy; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the underground storage tank(s) identified above.

 The limits of liability are [insert the dollar amount of the “each occurrence” and “annual aggregate” limits of the Insurer’s or Group’s liability; if the amount of coverage is different for different types of coverage or for different
underground storage tanks or locations, indicate the amount of coverage for each type of coverage and/or for each underground storage tank or location, exclusive of legal defense costs, which are subject to a separate limit under the policy. This coverage is provided under [policy number]. The effective date of said policy is [date].

2. The [“Insurer” or “Group”] further certifies the following with respect to the insurance described in Paragraph 1:
 a. Bankruptcy or insolvency of the insured shall not relieve the [“Insurer” or “Group”] of its obligations under the policy to which this certificate applies.
 b. The [“Insurer” or “Group”] is liable for the payment of amounts within any deductible applicable to the policy to the provider of corrective action or a damaged third-party, with a right of reimbursement by the insured for any such payment made by the [“Insurer” or “Group”]. This provision does not apply with respect to that amount of any deductible for which coverage is demonstrated under another mechanism or combination of mechanisms as specified in §§ 50195 to 501102 and 501104 to 501107, Guam Administrative Rules and Regulations.
 c. Whenever requested by the Administrator of Guam Environmental Protection Agency, the [“Insurer” or “Group”] agrees to furnish to the director a signed duplicate original of the policy and all endorsements.
 d. Cancellation or any other termination of the insurance by the [“Insurer” or “Group”], except for non-payment of premium or misrepresentation by the insured, will be effective only upon written notice and only after the expiration of sixty days after a copy of such written notice is received by the insured. Cancellation for non-payment of premium or misrepresentation by the insured will be effective
only upon written notice and only after expiration of a minimum of ten days after a copy of such written notice is received by the insured. Insert for claims-made policies:

e. The insurance covers claims otherwise covered by the policy that are reported to the [“Insurer” or “Group”] within six months of the effective date of cancellation or non-renewal of the policy except where the new or renewed policy has the same retroactive date or a retroactive date earlier than that of the prior policy, and which arise out of any covered occurrence that commenced after the policy retroactive date, if applicable, and prior to such policy renewal or termination date. Claims reported during such extended reporting period are subject to the terms, conditions, limits, including limits of liability, and exclusions of the policy.]

I hereby certify that the wording of this instrument is identical to the wording in § 50197(b)(2), Guam Administrative Rules and Regulations, and that the [“Insurer” or “Group”] is [“licensed to transact the business of insurance, or eligible to provide insurance as an excess or surplus lines insurer, in Guam”].

[Signature of authorized representative of Insurer]
[Type Name]
[Title], Authorized Representative of [name of Insurer or Risk Retention Group]
[Address of Representative]

(c) Each insurance policy must be issued by an insurer or a risk retention group that, at a minimum, is licensed to transact the business of insurance or eligible to provide insurance as an excess or surplus lines
§ 50198. Surety Bond.

(a) An owner or operator may satisfy the requirements of § 50193, Guam Administrative Rules and Regulations by obtaining a surety bond that conforms to the requirements of this section. The surety company issuing the bond must be among those listed as acceptable sureties on federal bonds in the latest Circular 570 of the U.S. Department of the Treasury.

(b) The surety bond must be worded as follows, except that instructions in brackets must be replaced with the relevant information and the brackets deleted:

PERFORMANCE BOND

Date bond executed:
Period of coverage:
Principal: [legal name and business address of owner or operator]
Type of organization: [insert: “individual”, “joint venture”, “partnership”, or “corporation”]
State of incorporation (if applicable):
Surety(ies): [name(s) and business address(es)]
Scope of Coverage: [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 C.F.R. 280.22, or in the permit applications submitted under §§ 501324 and 501326, Guam Administrative Rules and Regulations, and the name and address of the facility. List the coverage guaranteed by the bond: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases” “arising from operating the underground storage tank”].
Penal sums of bond:
Per occurrence $
Annual aggregate $
Surety’s bond number:

Know All Persons by These Presents, that we, the Principal and Surety(ies), hereto are firmly bound to the Guam Environmental Protection Agency, in the above penal sums for the payment of which we bind ourselves, our heirs, executors, administrators, successors, and assigns jointly and severally; provided that, where the Surety(ies) are corporations acting as co-sureties, we, the Sureties, bind ourselves in such sums jointly and severally only for the purpose of allowing a joint action or actions against any or all of us, and for all other purposes each Surety binds itself, jointly and severally with the Principal, for the payment of such sums only as is set forth opposite the name of such Surety, but if no limit of liability is indicated, the limit of liability shall be the full amount of the penal sums.

Whereas said Principal is required under Article 8, Guam Administrative Rules and Regulations, to provide financial assurance for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the underground storage tanks identified above, and

Whereas said Principal shall establish a standby trust fund as is required when a surety bond is used to provide such financial assurance;

Now, therefore, the conditions of the obligation are such that if the Principal shall faithfully [“take corrective action, in accordance with Article 6, Guam Administrative Rules and Regulations, and the Administrator of Guam Environmental Protection Agency instructions for,” and/or “compensate injured third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “sudden and nonsudden accidental releases”] arising from operating the tank(s) identified above, or if the
Principal shall provide alternate financial assurance, as specified in Article 8, Guam Administrative Rules and Regulations, within one hundred twenty days after the date the notice of cancellation is received by the Principal from the Surety(ies), then this obligation shall be null and void; otherwise it is to remain in full force and effect.

Such obligation does not apply to any of the following:

(a) Any obligation of [insert owner or operator] under a workers’ compensation, disability benefits, or unemployment compensation law or other similar law;
(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of, employment by [insert owner or operator];
(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;
(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;
(e) Bodily injury or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50193, Guam Administrative Rules and Regulations.

The Surety(ies) shall become liable on this bond obligation only when the Principal has failed to fulfill the conditions described above.

Upon notification by the Administrator of Guam Environmental Protection Agency that the Principal has failed to [“take corrective action, in accordance with Article 6, Guam Administrative Rules and Regulations and the Administrator of Guam Environmental Protection Agency’s instructions,” and/or “compensate injured third parties”] as guaranteed by this bond, the Surety(ies) shall either perform [“corrective action in accordance with Chapter 50, Guam Administrative Rules and Regulations and the Administrator of Guam Environmental Protection Agency’s
instructions,” and/or “third party liability compensation”] or place funds in an amount up to the annual aggregate penal sum into the standby trust fund as directed by the Administrator of Guam Environmental Protection Agency under § 501112, Guam Administrative Rules and Regulations.

Upon notification by the Administrator of Guam Environmental Protection Agency that the Principal has failed to provide alternate financial assurance within sixty days after the date the notice of cancellation is received by the determined or suspects that a release has occurred, the Surety(ies) shall place funds in an amount not exceeding the annual aggregate penal sum into the standby trust fund as directed by the Administrator of Guam Environmental Protection Agency and § 501112, Guam Administrative Rules and Regulations.

The Surety(ies) hereby waive(s) notification of amendments to applicable laws, statutes, rules, and regulations and agrees that no such amendment shall in any way alleviate its (their) obligation on this bond.

The liability of the Surety(ies) shall not be discharged by any payment or succession of payments hereunder, unless and until such payment or payments shall amount in the annual shall the obligation of the Surety(ies) hereunder exceed the amount of said annual aggregate penal sum.

The Surety(ies) may cancel the bond by sending notice of cancellation by certified mail to the Principal, provided, however, that cancellation shall not occur during the one hundred twenty days beginning on the date of return receipt.

The Principal may terminate this bond by sending written notice to the Surety(ies).

In Witness Thereof, the Principal and Surety(ies) have executed this Bond and have affixed their seals on the date set forth above.

The persons whose signatures appear below hereby certify that they are authorized to execute this surety bond on behalf of the Principal and Surety(ies) and that the wording of this surety bond is identical to the wording specified in § 50198(b), Guam Administrative Rules and Regulations, as such regulations were constituted on the date this bond was executed.
Principal
[Signature(s)]
[Name(s)]
[Title(s)]
[Corporate seal]

Corporate Surety(ies)
[Name and address]
State of Incorporation:
Liability limit: $
[Signature(s)]
[Name(s) and title(s)]
[Corporate seal]

[For every co-surety, provide signature(s), corporate seal, and other information in the same manner as for Surety above.]

Bond premium: $

(c) Under the terms of the bond, the surety will become liable on the bond obligation when the owner or operator fails to perform as guaranteed by the bond. In all cases, the surety’s liability is limited to the per-occurrence and annual aggregate penal sums.

(d) The owner or operator who uses a surety bond to satisfy the requirements of § 50193, Guam Administrative Rules and Regulations must establish a standby trust fund when the surety bond is acquired. Under the terms of the bond, all amounts paid by the surety under the bond will be deposited directly into the standby trust fund in accordance with instructions from the Administrator of Guam Environmental Protection Agency under § 501112, Guam Administrative Rules and Regulations. This standby trust fund must meet the requirements specified in § 501103, Guam Administrative Rules and Regulations.

§ 50199. Letter of Credit.
(a) An owner or operator may satisfy the requirements of § 50193, Guam Administrative Rules and Regulations by obtaining an irrevocable standby letter of credit that conforms to the requirements of this section. The issuing institution must be an entity that has the authority to issue letters of credit in Guam and whose letter-of-credit operations are regulated and examined by a federal or Guam agency.

(b) The letter of credit must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

IRREVOCABLE STANDBY LETTER OF CREDIT

[Name and address of issuing institution]
[Name and address of the Administrator of Guam Environmental Protection Agency]

Dear Sir or Madam: We hereby establish our Irrevocable Standby Letter of Credit No. __ in your favor, at the request and for the account of [owner or operator name] of [address] up to the aggregate amount of [in words] U.S. dollars ($[insert dollar amount]), available upon presentation of

(1) Your sight draft, bearing reference to this letter of credit, No. __, and

(2) Your signed statement reading as follows: “I certify that the amount of the draft is payable pursuant to regulations issued under authority of 10 GCA Chapter 76.”

This letter of credit may be drawn on to cover [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] arising from operating the underground storage tank(s) identified below in the amount of [in words] $[insert dollar amount] per occurrence and [in words] $[insert dollar amount] annual aggregate:

[List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for
each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 40 C.F.R. 280.22, or permit applications submitted under §§ 501324 and 501326, Guam Administrative Rules and Regulations, and the name and address of the facility.

The letter of credit may not be drawn on to cover any of the following:

(a) Any obligation of [insert owner or operator] under a workers’ compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of, employment by [insert owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily injury or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50193, Guam Administrative Rules and Regulations.

This letter of credit is effective as of [date] and shall expire on [date], but such expiration date shall be automatically extended for a period of [at least the length of the original term] on [expiration date] and on each successive expiration date, unless, at least one hundred twenty days before the current expiration date, we notify [owner or operator] by certified mail that we have decided not to extend this letter of credit beyond the current expiration date. In the event that [owner or operator] is so notified, any unused portion of the credit shall be available upon presentation of your sight draft for one hundred twenty days after the date of receipt by [owner or operator], as shown on the signed return
Whenever this letter of credit is drawn on under and in compliance with the terms of this credit, we shall duly honor such draft upon presentation to us, and we shall deposit the amount of the draft directly into the standby trust fund of [owner or operator] in accordance with your instructions.

We certify that the wording of this letter of credit is identical to the wording specified in § 50199(b), Guam Administrative Rules and Regulations, as such regulations were constituted on the date shown immediately below.

[Signature(s) and title(s) of official(s) of issuing institution]
[Date]

This credit is subject to [insert: “the most recent edition of the Uniform Customs and Practice for Documentary Credits, published and copyrighted by the International Chamber of Commerce,” or “the Uniform Commercial Code”].

(c) An owner or operator who uses a letter of credit to satisfy the requirements of § 50193, Guam Administrative Rules and Regulations must also establish a standby trust fund when the letter of credit is acquired. Under the terms of the letter of credit, all amounts paid pursuant to a draft by the Administrator will be deposited by the issuing institution directly into the standby trust fund in accordance with instructions from the Administrator of Guam Environmental Protection Agency under § 501112, Guam Administrative Rules and Regulations. This standby trust fund must meet the requirements specified in § 501103, Guam Administrative Rules and Regulations.

(d) The letter of credit must be irrevocable with a term specified by the issuing institution. The letter of credit must provide that credit be automatically renewed for the same term as the original term, unless, at least one hundred twenty days before the current expiration date, the issuing institution notifies the owner or operator by certified mail of its decision not to renew the letter of credit. Under the terms of the letter of credit, the one hundred twenty days will begin on the date when the
§ 501100 to § 501101. [Reserved.]

§ 501102. Trust Fund.

(a) An owner or operator may satisfy the requirements of § 50193, Guam Administrative Rules and Regulations by establishing a trust fund that conforms to the requirements of this section. The trustee must be an entity that has the authority to act as a trustee and whose trust operations are regulated and examined by a federal agency or an agency of the state in which the fund is established.

(b) The wording of the trust agreement must be identical to the wording specified in § 501103(b)(1), Guam Administrative Rules and Regulations, and must be accompanied by a formal certification of acknowledgment as specified in § 501103(b)(2), Guam Administrative Rules and Regulations.

(c) The trust fund, when established, must be funded for the full required amount of coverage, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining required coverage.

(d) If the value of the trust fund is greater than the required amount of coverage, the owner or operator may submit a written request to the Administrator for release of the excess.

(e) If other financial assurance as specified in this subchapter is substituted for all or part of the trust fund, the owner or operator may submit a written request to the Administrator for release of the excess.

(f) Within sixty days after receiving a request from the owner or operator for release of funds as specified in subsection (d) or (e), the Administrator will instruct the trustee to release to the owner or operator such funds as the Administrator specifies in writing.

§ 501103. Standby Trust Fund.

a) An owner or operator using any one of the mechanisms
authorized by §§ 50196, 50198, or 50199, Guam Administrative Rules and Regulations must establish a standby trust fund when the mechanism is acquired. The trustee of the standby trust fund must be an entity that has the authority to act as a trustee and whose trust operations are regulated and examined by a federal agency or an agency of the state in which the fund is established.

(b)(l) The standby trust agreement, or trust agreement, must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

TRUST AGREEMENT

Trust agreement, the “Agreement,” entered into as of [date] by and between [name of the owner or operator], a [name of state] [insert: “corporation”, “partnership”, “association”, or “proprietorship”], the “Grantor,” and [name of corporate trustee], [insert: “Incorporated in the State of ___” or “a national bank”], the “Trustee”.

Whereas, Guam Environmental Protection Agency has established certain regulations applicable to the Grantor, requiring that an owner or operator of an underground storage tank shall provide assurance that funds will be available when needed for corrective action and third-party compensation for bodily injury and property damage caused by sudden and nonsudden accidental releases arising from the operation of the underground storage tank. The attached Schedule A lists the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located that are covered by the [insert “standby” where trust agreement is standby trust agreement] trust agreement;

[Whereas, the Grantor has elected to establish [insert either “a guarantee”, “surety bond”, or “letter of credit”] to provide all or part of such financial assurance for the
underground storage tanks identified herein and is required to establish a standby trust fund able to accept payments from the instrument (This paragraph is only applicable to the standby trust agreement.));

Whereas, the Grantor, acting through its duly authorized officers, has selected the Trustee to be the trustee under this agreement, and the Trustee is willing to act as trustee;

Now, therefore, the Grantor and the Trustee agree as follows:

Section 1. Definitions. As used in this Agreement:
(a) The term “Grantor” means the owner or operator who enters into this Agreement and any successors or assigns of the Grantor.
(b) The term “Trustee” means the Trustee who enters into this Agreement and any successor Trustee.

Section 2. Identification of the Financial Assurance Mechanism. This Agreement pertains to the [identify the financial assurance mechanism, either a guarantee, surety bond, or letter of credit, from which the standby trust fund is established to receive payments (This paragraph is only applicable to the standby trust agreement.)].

Section 3. Establishment of Fund. The Grantor and the Trustee hereby establish a trust fund, the “Fund,” for the benefit of Guam Environmental Protection Agency. The Grantor and the Trustee intend that no third party have access to the Fund except as herein provided. [The Fund is established initially as a standby to receive payments and shall not consist of any property.] Payments made by the provider of financial assurance pursuant to the Administrator of Guam Environmental Protection Agency’s instruction are transferred to the Trustee and are referred to as the Fund, together with all earnings and profits thereon, less any payments or distributions made by the Trustee pursuant to this Agreement. The Fund shall be held by the
Trustee, IN TRUST, as hereinafter provided. The Trustee shall not be responsible nor shall it undertake any responsibility for the amount or adequacy of, nor any duty to collect from the Grantor as provider of financial assurance, any payments necessary to discharge any liability of the Grantor established by Guam Environmental Protection Agency.

Section 4. Payment for [“Corrective Action” or “Third-Party Liability Claims” or both]. The Trustee shall make payments from the Fund as the Administrator of Guam Environmental Protection Agency shall direct, in writing, to provide for the payment of the costs of [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] arising from operating the tanks covered by the financial assurance mechanism identified in this Agreement.

The Fund may not be drawn upon to cover any of the following:

(a) Any obligation of [insert owner or operator] under a workers’ compensation, disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert owner or operator] arising from, and in the course of employment by [insert owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert owner or operator] that is not the direct result of a release from a petroleum underground storage tank;
Bodily injury or property damage for which [insert owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50193 Guam Administrative Rules and Regulations.

The Trustee shall reimburse the Grantor, or other persons as specified by the Administrator of Guam Environmental Protection Agency, from the Fund for corrective action expenditures and/or third-party liability claims, in such amounts as the director shall direct in writing. In addition, the Trustee shall refund to the Grantor such amounts as the Administrator specifies in writing. Upon refund, such funds shall no longer constitute part of the Fund as defined herein.

Section 5. Payments Comprising the Fund. Payments made to the Trustee for the Fund shall consist of cash and securities acceptable to the Trustee.

Section 6. Trustee Management. The Trustee shall invest and reinvest the principal and income of the Fund and keep the Fund invested as a single fund, without distinction between principal and income, in accordance with general investment policies and guidelines which the Grantor may communicate in writing to the Trustee from time to time, subject, however, to the provisions of this Section. In investing, reinvesting, exchanging, selling, and managing the Fund, the Trustee shall discharge his or her duties with respect to the trust fund solely in the interest of the beneficiaries and with the care, skill, prudence, and diligence under the circumstances then prevailing which persons of prudence, acting in a like capacity and familiar with such matters, would use in the conduct of an enterprise of a like character and with like aims; except that:

(i) Securities or other obligations of the Grantor, or any other owner or operator of the tanks, or any of their
affiliates as defined in the Investment Company Act of 1940, as amended, 15 U.S.C. 80a-2(a), shall not be acquired or held, unless they are securities or other obligations of the federal or a state government;

(ii) The Trustee is authorized to invest the Fund in time or demand deposits of the Trustee, to the extent insured by an agency of the federal or state government; and

(iii) The Trustee is authorized to hold cash awaiting investment or distribution uninvested for a reasonable time and without liability for the payment of interest thereon.

Section 7. Commingling and Investment. The Trustee is expressly authorized in its discretion:

(a) To transfer from time to time any or all of the assets of the Fund to any common, commingled, or collective trust fund created by the Trustee in which the Fund is eligible to participate, subject to all of the provisions thereof, to be commingled with the assets of other trusts participating therein; and

(b) To purchase shares in any investment company registered under the Investment Company Act of 1940, 15 U.S.C. 80a-1 et seq., including one which may be created, managed, underwritten, or to which investment advice is rendered or the shares of which are sold by the Trustee. The Trustee may vote such shares in its discretion.

Section 8. Express Powers of Trustee. Without in any way limiting the powers and discretions conferred upon the Trustee by the other provisions of this Agreement or by law, the Trustee is expressly authorized and empowered:

(a) To sell, exchange, convey, transfer, or otherwise dispose of any property held by it, by public or private sale. No person dealing with the Trustee shall be bound to see to the application of the purchase
money or to inquire into the validity or expediency of any such sale or other disposition;

(b) To make, execute, acknowledge, and deliver any and all documents of transfer and conveyance and any and all other instruments that may be necessary or appropriate to carry out the powers herein granted;

(c) To register any securities held in the Fund in its own name or in the name of a nominee and to hold any security in bearer form or in book entry, or to combine certificates representing such securities with certificates of the same issue held by the Trustee in other fiduciary capacities, or to deposit or arrange for the deposit of such securities in a qualified central depository even though, when so deposited, such securities may be merged and held in bulk in the name of the nominee of such depository with other securities deposited therein by another person, or to deposit or arrange for the deposit of any securities issued by the United States Government, or any agency or instrumentality thereof, with a Federal Reserve bank, but the books and records of the Trustee shall at all times show that all such securities are part of the Fund;

(d) To deposit any cash in the Fund in interest-bearing accounts maintained or savings certificates issued by the Trustee, in its separate corporate capacity, or in any other banking institution affiliated with the Trustee, to the extent insured by an agency of the federal or state government; and

(e) To compromise or otherwise adjust all claims in favor of or against the Fund.

Section 9. Taxes and Expenses. All taxes of any kind that may be assessed or levied against or in respect of the Fund and all brokerage commissions incurred by the Fund shall be paid from the Fund. All other expenses incurred by
the Trustee in connection with the administration of this Trust, including fees for legal services rendered to the Trustee, the compensation of the Trustee to the extent not paid directly by the Grantor, and all other proper charges and disbursements of the Trustee shall be paid from the Fund.

Section 10. Advice of Counsel. The Trustee may from time to time consult with counsel, who may be counsel to the Grantor, with respect to any questions arising as to the construction of this Agreement or any action to be taken hereunder. The Trustee shall be fully protected, to the extent permitted by law, in acting upon the advice of counsel.

Section 11. Trustee Compensation. The Trustee shall be entitled to reasonable compensation for its services as agreed upon in writing from time to time with the Grantor.

Section 12. Successor Trustee. The Trustee may resign or the Grantor may replace the Trustee, but such resignation or replacement shall not be effective until the Grantor has appointed a successor trustee and this successor accepts the appointment. The successor trustee shall have the same powers and duties as those conferred upon the Trustee hereunder. Upon the successor trustee’s acceptance of the appointment, the Trustee shall assign, transfer, and pay over to the successor trustee the funds and properties then constituting the Fund. If for any reason the Grantor cannot or does not act in the event of the resignation of the Trustee, the Trustee may apply to a court of competent jurisdiction for the appointment of a successor trustee or for instructions. The successor trustee shall specify the date on which it assumes administration of the trust in writing sent to the Grantor and the present Trustee by certified mail ten days before such change becomes effective. Any expenses incurred by the Trustee as a result of any of the acts contemplated by this Section shall be paid as provided in Section 9.
Section 13. Instructions to the Trustee. All orders, requests, and instructions by the Grantor to the Trustee shall be in writing, signed by such persons as are designated in the attached Schedule B or such other designees as the Grantor may designate by amendment to Schedule B. The Trustee shall be fully protected in acting without inquiry in accordance with the Grantor’s orders, requests, and instructions. All orders, requests, and instructions by the Administrator of Guam Environmental Protection Agency to the Trustee shall be in writing, signed by the Administrator, and the Trustee shall act and shall be fully protected in acting in accordance with such orders, requests, and instructions. The Trustee shall have the right to assume, in the absence of written notice to the contrary, that no event constituting a change or a termination of the authority of any person to act on behalf of the Grantor or the Administrator hereunder has occurred. The Trustee shall have no duty to act in the absence of such orders, requests, and instructions from the Grantor and/or the Administrator of Guam Environmental Protection Agency, except as provided for herein.

Section 14. Amendment of Agreement. This Agreement may be amended by an instrument in writing executed by the Grantor and the Trustee, or by the Trustee and the Administrator of Guam Environmental Protection Agency if the Grantor ceases to exist.

Section 15. Irrevocability and Termination. Subject to the right of the parties to amend this Agreement as provided in Section 14, this Trust shall be irrevocable and shall continue until terminated at the written direction of the Grantor and the Trustee, or by the Trustee and the Administrator of Guam Environmental Protection Agency, if the Grantor ceases to exist. Upon termination of the Trust, all remaining trust property, less final trust administration expenses, shall be delivered to the Grantor.
Section 16. Immunity and Indemnification. The Trustee shall not incur personal liability of any nature in connection with any act or omission, made in good faith, in the administration of this Trust, or in carrying out any directions by the Grantor or the Administrator of Guam Environmental Protection Agency issued in accordance with this Agreement. The Trustee shall be indemnified and saved harmless by the Grantor, from and against any personal liability to which the Trustee may be subjected by reason of any act or conduct in its official capacity, including all expenses reasonably incurred in its defense in the event the Grantor fails to provide such defense.

Section 17. Choice of Law. This Agreement shall be administered, construed, and enforced according to the laws of Guam or the Comptroller of the Currency in the case of National Association banks.

Section 18. Interpretation. As used in this Agreement, words in the singular include the plural and words in the plural include the singular. The descriptive headings for each section of this Agreement shall not affect the interpretation or the legal efficacy of this Agreement.

In Witness whereof the parties have caused this Agreement to be executed by their respective officers duly authorized and their corporate seals (if applicable) to be hereunto affixed and attested as of the date first above written. The parties below certify that the wording of this Agreement is identical to the wording specified in § 501103(b)(1), Guam Administrative Rules and Regulations, as such regulations were constituted on the date written above.

[Signature of Grantor]
[Name of the Grantor]
[Title]
Attest:
[Signature of Trustee]
[Name of the Trustee]
[Title]
[Seal]

[Signature of Witness]
[Name of the Witness]
[Title]
[Seal]

(2) The standby trust agreement, or trust agreement, must be accompanied by a formal certification of acknowledgment similar to the following:

State of ___
County of ___

On this [date], before me personally came [owner or operator] to me known, who, being by me duly sworn, did depose and say that she/he resides at [address], that she/he is [title] of [corporation], the corporation described in and which executed the above instrument; that she/he knows the seal of said corporation; that the seal affixed to such instrument is such corporate seal; that it was so affixed by order of the Board of Directors of said corporation; and that she/he signed her/his name thereto by like order.

[Signature of Notary Public]
[Name of Notary Public]

(c) The Administrator will instruct the trustee to refund the balance of the standby trust fund to the provider of financial assurance if the Administrator determines that no additional corrective action costs or
third-party liability claims will occur as a result of a release covered by the financial assurance mechanism for which the standby trust fund was established.

(d) An owner or operator may establish one trust fund as the depository mechanism for all funds assured in compliance with this rule.

§ 501104. Local Government Bond Rating Test.

(a) A general purpose local government owner or operator and/or local government serving as a guarantor may satisfy the requirements of § 50193, Guam Administrative Rules and Regulations by having a currently outstanding issue or issues of general obligation bonds of $1,000,000 or more, excluding refunded obligations, with a Moody’s rating of Aaa, Aa, A, or Baa, or a Standard & Poor’s rating of AAA, AA, A, or BBB. Where a local government has multiple outstanding issues, or where a local government’s bonds are rated by both Moody’s and Standard and Poor’s, the lowest rating must be used to determine eligibility. Bonds that are backed by credit enhancement other than municipal bond insurance may not be considered in determining the amount of applicable bonds outstanding.

(b) A local government owner or operator or local government serving as a guarantor that is not a general-purpose local government and does not have the legal authority to issue general obligation bonds may satisfy the requirements of § 50193, Guam Administrative Rules and Regulation by having a currently outstanding issue or issues of revenue bonds of $1,000,000 or more, excluding refunded issues and by also having a Moody’s rating of Aaa, Aa, A, or Baa, or a Standard & Poor’s rating of AAA, AA, A or BBB as the lowest rating for any rated revenue bond issued by the local government. Where bonds are rated by both Moody’s and Standard & Poor’s, the lower rating for each bond must be used to determine eligibility. Bonds that are backed by credit enhancement may not be considered in determining the amount of applicable bonds outstanding.

(c) The local government owner or operator and/or guarantor must maintain a copy of its bond rating published within the last twelve
months by Moody’s or Standard & Poor’s.

(d) To demonstrate that it meets the local government bond rating test, the chief financial officer of a general purpose local government owner or operator and/or guarantor must sign a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

LETTER FROM THE CHIEF FINANCIAL OFFICER

I am the chief financial officer of [insert: name and address of local government owner or operator, or guarantor]. This letter is in support of the use of the bond rating test to demonstrate financial responsibility for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage”] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an) underground storage tank(s).

Underground storage tanks at the following facilities are assured by this bond rating test: [List for each facility: the name and address of the facility where tanks are assured by the bond rating test].

The details of the issue date, maturity, outstanding amount, bond rating, and bond rating agency of all outstanding bond issues that are being used by [name of local government owner or operator, or guarantor] to demonstrate financial responsibility are as follows: [complete table]

<table>
<thead>
<tr>
<th>Issue Date</th>
<th>Maturity Date</th>
<th>Outstanding Amount</th>
<th>Bond Rating</th>
<th>Rating Agency*</th>
</tr>
</thead>
</table>

[Moody’s or Standard & Poor’s]

The total outstanding obligation of [insert amount], excluding
refunded bond issues, exceeds the minimum amount of $1,000,000. All outstanding general obligation bonds issued by this government that have been rated by Moody’s or Standard & Poor’s are rated as at least investment grade (Moody’s Baa or Standard & Poor’s BBB) based on the most recent ratings published within the last twelve months. Neither rating service has provided notification within the last twelve months of downgrading of bond ratings below investment grade or of withdrawal of bond rating other than for repayment of outstanding bond issues.

I hereby certify that the wording of this letter is identical to the wording specified in § 501104(d), Guam Administrative Rules and Regulations, as such regulations were constituted on the date shown immediately below.

[Date]
[Signature]
[Name]
[Title]

(e) To demonstrate that it meets the local government bond rating test, the chief financial officer of local government owner or operator and/or guarantor other than a general purpose government must sign a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

LETTER FROM THE CHIEF FINANCIAL OFFICER

I am the chief financial officer of [insert: name and address of local government owner or operator, or guarantor]. This letter is in support of the use of the bond rating test to demonstrate financial responsibility for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage”] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an)
underground storage tank(s). This local government is not organized to provide general governmental services and does not have the legal authority under state law or constitutional provisions to issue general obligation debt.

Underground storage tanks at the following facilities are assured by this bond rating test: [List for each facility: the name and address of the facility where tanks are assured by the bond rating test.]

The details of the issue date, maturity, outstanding amount, bond rating, and bond rating agency of all outstanding revenue bond issues that are being used by [name of local government owner or operator, or guarantor] to demonstrate financial responsibility are as follows: [complete table]

<table>
<thead>
<tr>
<th>Issue Date</th>
<th>Maturity Date</th>
<th>Outstanding Amount</th>
<th>Bond Rating</th>
<th>Rating Agency*</th>
</tr>
</thead>
</table>

* [Moody’s or Standard & Poor’s]

The total outstanding obligation of [insert amount], excluding refunded bond issues, exceeds the minimum amount of $1,000,000. All outstanding revenue bonds issued by this government that have been rated by Moody’s or Standard & Poor’s are rated as at least investment grade (Moody’s Baa or Standard & Poor’s BBB) based on the most recent ratings published within the last twelve months. The revenue bonds listed are not backed by third-party credit enhancement or insured by a municipal bond insurance company. Neither rating service has provided notification within the last twelve months of downgrading of bond ratings below investment grade or of withdrawal of bond rating other than for repayment of outstanding bond issues.

I hereby certify that the wording of this letter is identical to the wording specified in § 501104 (e), Guam Administrative Rules and Regulations, as such regulations were constituted on the date shown immediately below.
(f) The director may require reports of financial condition at any time from the local government owner or operator and/or local government guarantor. If the Administrator finds, on the basis of such reports or other information, that the local government owner or operator and/or guarantor no longer meets the local government bond rating test requirements of this section, the local government owner or operator must obtain alternative coverage within thirty days after notification of such a finding.

(g) If a local government owner or operator using the bond rating test to provide financial assurance finds that it no longer meets the bond rating test requirements, the local government owner or operator must obtain alternative coverage within one hundred fifty days of the change in status.

(h) If the local government owner or operator fails to obtain alternate assurance within one hundred fifty days of finding that it no longer meets the requirements of the bond rating test or within thirty days of notification by the Administrator that it no longer meets the requirements of the bond rating test, the owner or operator must notify the Administrator of such failure within ten days.

§ 501105. Local Government Financial Test.

(a) A local government owner or operator may satisfy the requirements of § 50193 by passing the financial test specified in this section. To be eligible to use the financial test, the local government owner or operator must have the ability and authority to assess and levy taxes or to freely establish fees and charges. To pass the local government financial test, the owner or operator must meet the criteria of subsection (b)(2) and (3) based on year-end financial statements for the latest
completed fiscal year.

(b) (1) The local government owner or operator must have the following information available, as shown in the year-end financial statements for the latest completed fiscal year:

(A) Total Revenues: Consists of the sum of general fund operating and non-operating revenues including net local taxes, licenses and permits, fines and forfeitures, revenues from use of money and property, charges for services, investment earnings, sales (property, publications, etc.), intergovernmental revenues (restricted and unrestricted), and total revenues from all other governmental funds including enterprise, debt service, capital projects, and special revenues, but excluding revenues to funds held in a trust or agency capacity. For purposes of this test, the calculation of total revenues shall exclude all transfers between funds under the direct control of the local government using the financial test (interfund transfers), liquidation of investments, and issuance of debt.

(B) Total Expenditures: Consists of the sum of general fund operating and non-operating expenditures including public safety, public utilities, transportation, public works, environmental protection, cultural and recreational, community development, revenue sharing, employee benefits and compensation, office management, planning and zoning, capital projects, interest payments on debt, payments for retirement of debt principal, and total expenditures from all other governmental funds including enterprise, debt service, capital projects, and special revenues. For purposes of this test, the calculation of total expenditures shall exclude all transfers between funds under the direct control of the local government using the financial test.
(C) Local Revenues: Consists of total revenues (as defined in subparagraph (A)) minus the sum of all transfers from other governmental entities, including all monies received from federal, state, or local government sources.

(D) Debt Service: Consists of the sum of all interest and principal payments on all long-term credit obligations and all interest-bearing short-term credit obligations. Includes interest and principal payments on general obligation bonds, revenue bonds, notes, mortgages, judgments, and interest-bearing warrants. Excludes payments on non-interest-bearing short-term obligations, interfund obligations, amounts owed in a trust or agency capacity, and advances and contingent loans from other governments.

(E) Total Funds: Consists of the sum of cash and investment securities from all funds, including general, enterprise, debt service, capital projects, and special revenue funds, but excluding employee retirement funds, at the end of the local government’s financial reporting year. Includes federal securities, federal agency securities, state and local government securities, and other securities such as bonds, notes and mortgages. For purposes of this test, the calculation of total funds shall exclude agency funds, private trust funds, accounts receivable, value of real property, and other non-security assets.

(F) Population consists of the number of people in the area served by the local government.

(2) The local government’s year-end financial statements, if independently audited, cannot include an adverse auditor’s opinion or a disclaimer of opinion. The local government cannot have outstanding issues of general obligation or revenue bonds that are rated as less than investment grade.
(3) The local government owner or operator must have a letter signed by the chief financial officer worded as specified in subsection (c).

(c) To demonstrate that it meets the financial test under subsection (b), the chief financial officer of the local government owner or operator, must sign, within one hundred twenty days of the close of each financial reporting year, as defined by the twelve-month period for which financial statements used to support the financial test are prepared, a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

LETTER FROM CHIEF FINANCIAL OFFICER

I am the chief financial officer of [insert: name and address of the owner or operator]. This letter is in support of the use of the local government financial test to demonstrate financial responsibility for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage”] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating [an] underground storage tank[s].

Underground storage tanks at the following facilities are assured by this financial test [List for each facility: the name and address of the facility where tanks assured by this financial test are located. If separate mechanisms or combinations of mechanisms are being used to assure any of the tanks at this facility, list each tank assured by this financial test by the tank identification number provided in the notification submitted pursuant to 10 GCA Chapter 76, 40 C.F.R. section 280.22, or in the permit applications submitted under §§ 501324 and 501326, Guam Administrative Rules and Regulations.

This owner or operator has not received an adverse opinion, or a disclaimer of opinion from an independent auditor on its financial statements for the latest completed fiscal year. Any outstanding issues of general obligation or revenue bonds, if rated, have a Moody’s rating of
Aaa, Aa, A, or Baa or a Standard and Poor’s rating of AAA, AA, A, or BBB; if rated by both firms, the bonds have a Moody’s rating of Aaa, Aa, A or Baa and a Standard and Poor’s rating of AAA, AA, A, or BBB.

WORKSHEET FOR MUNICIPAL FINANCIAL TEST

PART I: BASIC INFORMATION

1. Total Revenues
 a. Revenues (dollars)
 Value of revenues excludes liquidation of investments and issuance of debt. Value includes all general fund operating and non-operating revenues, as well as all revenues from all other governmental funds including enterprise, debt service, capital projects, and special revenues, but excluding revenues to funds held in a trust or agency capacity.
 b. Subtract interfund transfers (dollars)
 c. Total Revenues (dollars)

2. Total Expenditures
 a. Expenditures (dollars)
 Value consists of the sum of general fund operating and non-operating expenditures including interest payments on debt, payments for retirement of debt principal, and total expenditures from all other governmental funds including enterprise, debt service, capital projects, and special revenues.
 b. Subtract interfund transfers (dollars)
 c. Total Expenditures (dollars)

3. Local Revenues
 a. Total Revenues (from 1c) (dollars)
 b. Subtract total intergovernmental transfers (dollars)
 c. Local Revenues (dollars)

4. Debt Service
 a. Interest and fiscal charges (dollars)
b. Add debt retirement (dollars)
c. Total Debt Service (dollars)

5. Total Funds (Dollars)
(Sum of amounts held as cash and investment securities from all funds, excluding amounts held for employee retirement funds, agency funds, and trust funds)

6. Population (Persons)

PART II: APPLICATION OF TEST

7. Total Revenues to Population
 a. Total Revenues (from 1c)
 b. Population (from 6)
 c. Divide 7a by 7b
d. Subtract 417
 e. Divide by 5,212
 f. Multiply by 4.095

8. Total Expenses to Population
 a. Total Expenses (from 2c)
 b. Population (from 6)
 c. Divide 8a by 8b
d. Subtract 524
 e. Divide by 5,401
 f. Multiply by 4.095

9. Local Revenues to Total Revenues
 a. Local Revenues (from 3c)
 b. Total Revenues (from 1c)
 c. Divide 9a by 9b
d. Subtract 0.695
 e. Divide by 0.205
 f. Multiply by 2.840

10. Debt Service to Population
 a. Debt Service (from 4c)
 b. Population (from 6)
 c. Divide 10a by 10b
d. Subtract 51

11. Debt Service to Total Revenues
 a. Debt Service (from 4c)
 b. Total Revenues (from 1c)
 c. Divide 11a by 11b
 d. Subtract 0.068
 e. Divide by 0.259
 f. Multiply by -3.533

12. Total Revenues to Total Expenses
 a. Total Revenues (from 1c)
 b. Total Expenses (from 2c)
 c. Divide 12a by 12b
 d. Subtract 0.910
 e. Divide by 0.899
 f. Multiply by 3.458

13. Funds Balance to Total Revenues
 a. Total Funds (from 5)
 b. Total Revenues (from 1c)
 c. Divide 13a by 13b
 d. Subtract 0.891
 e. Divide by 9.156
 f. Multiply by 3.270

14. Funds Balance to Total Expenses
 a. Total Funds (from 5)
 b. Total Expenses (from 2c)
 c. Divide 14a by 14b
 d. Subtract 0.866
 e. Divide by 6.409
 f. Multiply by 3.270

15. Total Funds to Population
 a. Total Funds (from 5)
 b. Population (from 6)
 c. Divide 15a by 15b
d. Subtract 270
e. Divide by 4,548
f. Multiply by 1.866

16. Add $7f + 8f + 9f + 10f + 11f + 12f + 13f + 14f + 15f + 4.937$

I hereby certify that the financial index shown on line 16 of the worksheet is greater than zero and that the wording of this letter is identical to the wording specified in § 501105(c), Guam Administrative Rules and Regulations, as such regulations were constituted on the date shown immediately below.

[Date]
[Signature]
[Name]
[Title]

(d) If a local government owner or operator using the test to provide financial assurance finds that it no longer meets the requirements of the financial test based on the year-end financial statements, the owner or operator must obtain alternative coverage within one hundred fifty days of the end of the year for which financial statements have been prepared.

(e) The Administrator may require reports of financial condition at any time from the local government owner or operator. If the director finds, on the basis of such reports or other information, that the local government owner or operator no longer meets the financial test requirements of subsections (b) and (c), the owner or operator must obtain alternate coverage within thirty days after notification of such a finding.

(f) If the local government owner or operator fails to obtain alternate assurance within one hundred fifty days of finding that it no longer meets the requirements of the financial test based on the year-end financial statements or within thirty days of notification by the Administrator that it no longer meets the requirements of the financial test, the owner or operator must notify the Administrator of such failure within ten days.
§ 501106. Local Government Guarantee.

(a) A local government owner or operator may satisfy the requirements of § 50193, by obtaining a guarantee that conforms to the requirements of this section. The guarantor must be a local government having a “substantial governmental relationship” with the owner or operator and issuing the guarantee as an act incident to that relationship. A local government acting, as the guarantor must:

(1) Demonstrate that it meets the bond rating test requirement of § 501104, and deliver a copy of the chief financial officer’s letter as contained in § 591104(d) and (e), to the local government owner or operator;

(2) Demonstrate that it meets the worksheet test requirements of § 501105, and deliver a copy of the chief financial officer’s letter as contained in § 501105(c), to the local government owner or operator; or

(3) Demonstrate that it meets the local government fund requirements of § 501107(1), (2), or (3), and deliver a copy of the chief financial officer’s letter as contained in § 501107, to the local government owner or operator.

(b) If the local government guarantor is unable to demonstrate financial assurance under §§ 501104, 501105, or 501107(1), (2), or (3), at the end of the financial reporting year, the guarantor shall send by certified mail, before cancellation or non-renewal of the guarantee, notice to the owner or operator. The guarantee will terminate no less than one hundred twenty days after the date the owner or operator receives the notification, as evidenced by the return receipt. The owner or operator must obtain alternative coverage as specified in § 501114(e).

(c) The guarantee agreement must be worded as specified in subsection (d) or (e), depending on which of the following alternative guarantee arrangements is selected:

(1) If, in the default or incapacity of the owner or operator, the guarantor guarantees to fund a standby trust as directed by the Administrator, the guarantee shall be worded as
specified in subsection (d).

(2) If, in the default or incapacity of the owner or operator, the guarantor guarantees to make payments as directed by the director for taking corrective action or compensating third parties for bodily injury and property damage, the guarantee shall be worded as specified in subsection (e).

(d) The local government guarantee with standby trust must be worded exactly as follows, except that instructions in brackets are to be replaced with relevant information and the brackets deleted:

LOCAL GOVERNMENT GUARANTEE WITH STANDBY TRUST MADE BY A LOCAL GOVERNMENT

Guarantee made this [date] by [name of guaranteeing entity], a local government organized under the laws of Guam, herein referred to as guarantor, to the Guam Environmental Protection Agency and to any and all third parties, and obliges, on behalf of [local government owner or operator].

Recitals

(1) Guarantor meets or exceeds [select one: the local government bond rating test requirements of § 501104, Guam Administrative Rules and Regulations, the local government financial test requirements of § 501105, Guam Administrative Rules, or the local government fund under § 501107(1),(2) or (3), Guam Administrative Rules and Regulations.

(2) [Local government owner or operator] owns or operates the following underground storage tank(s) covered by this guarantee: [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 10 GCA Chapter 76, 40 C.F.R. section 280.22, or in the permit applications submitted under §§ 501324 and 501326, Guam Administrative Rules and Regulations, and the name and
address of the facility.] This guarantee satisfies Article 8 requirements for assuring funding for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the above-identified underground storage tank(s) in the amount of [insert dollar amount] per occurrence and [insert: dollar amount] annual aggregate.

(3) Incident to our substantial governmental relationship with [local government owner or operator], guarantor guarantees to the Guam Environmental Protection Agency and to any and all third parties that:

In the event that [local government owner or operator] fails to provide alternative coverage within sixty days after receipt of a notice of cancellation of this guarantee and the Administrator of Guam Environmental Protection Agency has determined or suspects that a release has occurred at an underground storage tank covered by this guarantee, the guarantor, upon instructions from the director shall fund a standby trust fund in accordance with the provisions of § 501112, Guam Administrative Rules and Regulations, in an amount not to exceed the coverage limits specified above.

In the event that the Administrator determines that [local government owner or operator] has failed to perform corrective action for releases arising out of the operation of the above-identified tank(s) in accordance with Article 6, the guarantor upon written instructions from the director shall fund a standby trust fund in accordance with the provisions of § 501112, Guam Administrative Rules and Regulations, in an amount not to exceed the coverage limits specified above.

If [owner or operator] fails to satisfy a judgment or award based on a determination of liability for bodily injury or property damage to third parties caused by [“sudden” and/or “nonsudden”] accidental releases arising from the operation of the above-identified tank(s), or fails to pay an amount agreed to in settlement of a claim arising from or alleged to arise from such injury or damage, the guarantor, upon written instructions from the Administrator, shall fund a standby trust in
accordance with the provisions of § 501112, Guam Administrative Rules and Regulations, to satisfy such judgment(s), award(s), or settlement agreement(s) up to the limits of coverage specified above.

(4) Guarantor agrees that, if at the end of any fiscal year before cancellation of this guarantee, the guarantor fails to meet or exceed the requirements of the financial responsibility mechanism specified in paragraph (1), guarantor shall send within one hundred twenty days of such failure, by certified mail, notice to [local government owner or operator], as evidenced by the return receipt.

(5) Guarantor agrees to notify [owner or operator] by certified mail of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code naming guarantor as debtor, within ten days after commencement of the proceeding.

(6) Guarantor agrees to remain bound under this guarantee notwithstanding any modification or alteration of any obligation of [owner or operator] pursuant to Article 1.

(7) Guarantor agrees to remain bound under this guarantee for so long as [local government owner or operator] must comply with the applicable financial responsibility requirements of Article 8, for the above identified tank(s), except that guarantor may cancel this guarantee by sending notice by certified mail to [owner or operator], such cancellation to become effective no earlier than one hundred twenty days after receipt of such notice by [owner or operator], as evidenced by the return receipt.

(8) The guarantor’s obligation does not apply to any of the following:
(a) Any obligation of [local government owner or operator] under a workers’ compensation, disability benefits, or unemployment compensation law or other similar law;
(b) Bodily injury to an employee of [insert: local government owner or operator] arising from, and in the course of, employment by [insert: local government owner or operator];
(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;
(d) Property damage to any property owned, rented, loaned to, in the
care, custody, or control of, or occupied by [insert: local government owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily damage or property damage for which [insert: owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50193, Guam Administrative Rules and Regulations.

(9) Guarantor expressly waives notice of acceptance of this guarantee by the Guam Environmental Protection Agency, by any or all third parties, or by [local government owner or operator].

I hereby certify that the wording of this guarantee is identical to the wording specified in § 501106(d), Guam Administrative Rules and Regulations, as such regulations were constituted on the effective date shown immediately below.

Effective date:
[Name of guarantor]
[Authorized signature for guarantor]
[Name of person signing]
[Title of person signing]
Signature of witness or notary:

(e) The local government guarantee without standby trust must be worded exactly as follows, except that instructions in brackets are to be replaced with relevant information and the brackets deleted:

LOCAL GOVERNMENT GUARANTEE WITHOUT STANDBY TRUST MADE BY A LOCAL GOVERNMENT

Guarantee made this [date] by [name of guaranteeing entity], a local government organized under the laws of Guam, herein referred to as guarantor, to the Guam Environmental Protection Agency and to any and all third parties, and obliges, on behalf of [local government owner or operator].
Recitals

(1) Guarantor meets or exceeds [select one: the local government bond rating test requirements of § 501104, Guam Administrative Rules and Regulations, the local government financial test requirements of § 501105, Guam Administrative Rules and Regulations, or the local government fund under § 501107(1),(2) or (3), Guam Administrative Rules and Regulations.]

(2) [Local government owner or operator] owns or operates the following underground storage tank(s) covered by this guarantee: [List the number of tanks at each facility and the name(s) and address(es) of the facility(ies) where the tanks are located. If more than one instrument is used to assure different tanks at any one facility, for each tank covered by this instrument, list the tank identification number provided in the notification submitted pursuant to 10 GCA Chapter 76, 40 C.F.R. section 280.22, or in the permit applications submitted under §§ 501324 and 501326, Guam Administrative Rules and Regulations, and the name and address of the facility.] This guarantee satisfies Article 8, requirements for assuring funding for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”; if coverage is different for different tanks or locations, indicate the type of coverage applicable to each tank or location] arising from operating the above-identified underground storage tank(s) in the amount of [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate.

(3) Incident to our substantial governmental relationship with [local government owner or operator], guarantor guarantees to the Guam Environmental Protection Agency and to any and all third parties and obliges that:

In the event that [local government owner or operator] fails to provide alternative coverage within sixty days after receipt of a notice of cancellation of this guarantee and the Administrator of Guam Environmental Protection Agency has determined or suspects that a
release has occurred at an underground storage tank covered by this guarantee, the guarantor, upon written instructions from the Administrator shall make funds available to pay for corrective actions and compensate third parties for bodily injury and property damage in an amount not to exceed the coverage limits specified above.

In the event that the Administrator determines that [local government owner or operator] has failed to perform corrective action for releases arising out of the operation of the above-identified tank(s) in accordance with Article 6, the guarantor upon written instructions from the director shall make funds available to pay for corrective actions in an amount not to exceed the coverage limits specified above.

If [owner or operator] fails to satisfy a judgment or award based on a determination of liability for bodily injury or property damage to third parties caused by [“sudden” and/or “nonsudden”] accidental releases arising from the operation of the above-identified tank(s), or fails to pay an amount agreed to in settlement of a claim arising from or alleged to arise from such injury or damage, the guarantor, upon written instructions from the director, shall make funds available to compensate third parties for bodily injury and property damage in an amount not to exceed the coverage limits specified above.

(4) Guarantor agrees that if at the end of any fiscal year before cancellation of this guarantee, the guarantor fails to meet or exceed the requirements of the financial responsibility mechanism specified in paragraph (1), guarantor shall send within one hundred twenty days of such failure, by certified mail, notice to [local government owner or operator], as evidenced by the return receipt.

(5) Guarantor agrees to notify [owner or operator] by certified mail of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code naming guarantor as debtor, within ten days after commencement of the proceeding.

(6) Guarantor agrees to remain bound under this guarantee notwithstanding any modification or alteration of any obligation of [owner or operator] pursuant to Chapter 50, Guam Administrative Rules and Regulations.

(7) Guarantor agrees to remain bound under this guarantee for
so long as [local government owner or operator] must comply with the applicable financial responsibility requirements of Article 8, for the above identified tank(s), except that guarantor may cancel this guarantee by sending notice by certified mail to [owner or operator], such cancellation to become effective no earlier than one hundred twenty days after receipt of such notice by [owner or operator], as evidenced by the return receipt. If notified of a probable release, the guarantor agrees to remain bound to the terms of this guarantee for all charges arising from the release, up to the coverage limits specified above, notwithstanding the cancellation of the guarantee with respect to future releases.

(8) The guarantor’s obligation does not apply to any of the following:

(a) Any obligation of [local government owner or operator] under a workers’ compensation disability benefits, or unemployment compensation law or other similar law;

(b) Bodily injury to an employee of [insert: local government owner or operator] arising from and in the course of, employment by [insert: local government owner or operator];

(c) Bodily injury or property damage arising from the ownership, maintenance, use, or entrustment to others of any aircraft, motor vehicle, or watercraft;

(d) Property damage to any property owned, rented, loaned to, in the care, custody, or control of, or occupied by [insert: local government owner or operator] that is not the direct result of a release from a petroleum underground storage tank;

(e) Bodily damage or property damage for which [insert: owner or operator] is obligated to pay damages by reason of the assumption of liability in a contract or agreement other than a contract or agreement entered into to meet the requirements of § 50193, Guam Administrative Rules and Regulations.

(9) Guarantor expressly waives notice of acceptance of this guarantee by the Guam Environmental Protection Agency, by any or all third parties, or by [local government owner or operator].

I hereby certify that the wording of this guarantee is identical to the wording specified in § 501106(e), Guam Administrative Rules and Regulations.
Regulations, as such regulations were constituted on the effective date shown immediately below.

Effective date:
[Name of guarantor]
[Authorized signature for guarantor]
[Name of person signing]
[Title of person signing]
Signature of witness or notary:

§ 501107. Local Government Fund.

A local government owner or operator may satisfy the requirements of § 50193, Guam Administrative Rules and Regulations by establishing a dedicated fund account that conforms to the requirements of this section. Except as specified in paragraph (2), a dedicated fund may not be commingled with other funds or otherwise used in normal operations. A dedicated fund will be considered eligible if it meets one of the following requirements:

(1) The fund is dedicated by state constitutional provision, or local government statute, charter, ordinance, or order to pay for taking corrective action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum underground storage tanks or tank systems and is funded for the full amount of coverage required under § 50193, Guam Administrative Rules and Regulations, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining coverage; or

(2) The fund is dedicated by state constitutional provision, or local government statute, charter, ordinance, or order as a contingency fund for general emergencies, including taking corrective action and compensating third parties for bodily injury and property damage caused by accidental releases.
arising from the operation of petroleum underground storage tanks or tank systems, and is funded for five times the full amount of coverage required under § 50193, Guam Administrative Rules and Regulations, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining coverage. If the fund is funded for less than five times the amount of coverage required under § 50193, Guam Administrative Rules and Regulations, the amount of financial responsibility demonstrated by the fund may not exceed one-fifth the amount in the fund; or

(3) The fund is dedicated by state constitutional provision, or local government statute, charter, ordinance or order to pay for taking corrective action and for compensating third parties for bodily injury and property damage caused by accidental releases arising from the operation of petroleum underground storage tanks or tank systems. A payment is made to the fund once every year for seven years until the fund is fully-funded. This seven-year period is hereafter referred to as the “pay-in-period”. The amount of each payment must be determined by this formula:

\[
\frac{TF - CF}{Y}
\]

Where TF is the total required financial assurance for the owner or operator, CF is the current amount in the fund, and Y is the number of years remaining in the pay-in-period, and;

(A) The local government owner or operator has available bonding authority, approved through voter referendum (if such approval is necessary prior to the issuance of bonds), for an amount equal to the difference between the required amount of coverage and the amount held in the dedicated fund. This bonding authority shall be available for taking corrective action and for compensating third parties
for bodily injury and property damage caused by accidental releases arising from the operation of petroleum underground storage tanks or tank systems, or

(B) The local government owner or operator has a letter signed by the appropriate state attorney general stating that the use of the bonding authority will not increase the local government’s debt beyond the legal debt ceilings established by the relevant state laws. The letter must also state that prior voter approval is not necessary before use of the bonding authority.

(4) To demonstrate that it meets the requirements of the local government fund, the chief financial officer of the local government owner or operator and/or guarantor must sign a letter worded exactly as follows, except that the instructions in brackets are to be replaced by the relevant information and the brackets deleted:

LETTER FROM CHIEF FINANCIAL OFFICER

I am the chief financial officer of [insert: name and address of local government owner or operator, or guarantor.] This letter is in support of the use of the local government fund mechanism to demonstrate financial responsibility for [insert: “taking corrective action” and/or “compensating third parties for bodily injury and property damage”] caused by [insert: “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”] in the amount of at least [insert: dollar amount] per occurrence and [insert: dollar amount] annual aggregate arising from operating (an) underground storage tank(s).

Underground storage tanks at the following facilities are assured by this local government fund mechanism: [List for each facility: the name and address of the facility where tanks are assured by the local government fund].

149
[Insert: “The local government fund is funded for the full amount of coverage required under section § 50193, Guam Administrative Rules and Regulations, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining coverage.” or “The local government fund is funded for five times the full amount of coverage required under § 50193, Guam Administrative Rules and Regulations, or funded for part of the required amount of coverage and used in combination with other mechanism(s) that provide the remaining coverage.” or “A payment is made to the fund once every year for seven years until the fund is fully-funded and [name of local government owner or operator] has available bonding authority, approved through voter referendum, of an amount equal to the difference between the required amount of coverage and the amount held in the dedicated fund” or “A payment is made to the fund once every year for seven years until the fund is fully-funded and I have attached a letter signed by the State Attorney General stating that (1) the use of the bonding authority will not increase the local government’s debt beyond the legal debt ceilings established by the relevant state laws and (2) that prior voter approval is not necessary before use of the bonding authority”).

The details of the local government fund are as follows:
Amount in Fund (market value of fund at close of last fiscal year):

| Amount added to fund in the most recently completed fiscal year: |
| Number of years remaining in the pay-in period: |

A copy of the state constitutional provision, or local
government statute, charter, ordinance or order dedicating the fund is attached.

I hereby certify that the wording of this letter is identical to the wording specified in § 501107(4), Guam Administrative Rules and Regulations, as such regulations were constituted on the date shown immediately below.

[Date]
[Signature]
[Name]
[Title]

§ 501108. Substitution of Financial Assurance Mechanisms by Owner or Operator.

(a) An owner or operator may substitute any alternate financial assurance mechanisms as specified in this subchapter, provided that at all times the owner or operator maintains an effective financial assurance mechanism or combination of mechanisms that satisfies the requirements of § 50193, Guam Administrative Rules and Regulations.

(b) After obtaining alternate financial assurance as specified in this Article, an owner or operator may cancel a financial assurance mechanism by providing notice to the provider of financial assurance.

§ 501109. Cancellation or Non-renewal by a Provider of Financial Assurance.

(a) Except as otherwise provided, a provider of financial assurance may cancel or fail to renew an assurance mechanism by sending a notice of termination by certified mail to the owner or operator.

(1) Termination of a local government guarantee, a guarantee, a surety bond, or a letter of credit may not occur until one hundred twenty days after the date on which the owner or operator receives the notice of termination, as evidenced by
the return receipt.

(2) Termination of insurance or risk retention coverage, except for non-payment or misrepresentation by the insured, may not occur until sixty days after the date on which the owner or operator receives the notice of termination, as evidenced by the return receipt. Termination for non-payment of premium or misrepresentation by the insured may not occur until a minimum of ten days after the date on which the owner or operator receives the notice of termination, as evidenced by the return receipt.

(b) If a provider of financial responsibility cancels or fails to renew for reasons other than incapacity of the provider as specified in § 501114, Guam Administrative Rules and Regulations, the owner or operator must obtain alternate coverage as specified in this Article within sixty days after receipt of the notice of termination. If the owner or operator fails to obtain alternate coverage within sixty days after receipt of the notice of termination, the owner or operator must notify the Administrator of such failure and submit:

(1) The name and address of the provider of financial assurance;
(2) The effective date of termination; and
(3) The evidence of the financial assurance mechanism subject to the termination maintained in accordance with § 501111(b), Guam Administrative Rules and Regulations.

§ 501110. Reporting by Owner or Operator.

(a) An owner or operator must submit the appropriate forms listed in § 501111(b), Guam Administrative Rules and Regulations documenting current evidence of financial responsibility to the director:

(1) Within thirty days after the owner or operator identifies a release from an underground storage tank or tank system required to be reported under §§ 50153 or 50161, Guam Administrative Rules and Regulations;
(2) If the owner or operator fails to obtain alternate coverage as required by this subchapter, within thirty days after the
owner or operator receives notice of:

(A) Commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a provider of financial assurance as a debtor;

(B) Suspension or revocation of the authority of a provider of financial assurance to issue a financial assurance mechanism;

(C) Failure of a guarantor to meet the requirements of the financial test; or

(D) Other incapacity of a provider of financial assurance; or

(3) As required by §§ 50195(g) and 501109(b).

(b) An owner or operator must certify compliance with the financial responsibility requirements of this subchapter as specified in the notification form submitted pursuant to 10 GCA Chapter 76, § 50134, Guam Administrative Rules and Regulations, or the permit applications under §§ 501324 and 501326, Guam Administrative Rules and Regulations.

(c) The Administrator may require an owner or operator to submit evidence of financial assurance as described in § 501111(b), Guam Administrative Rules and Regulations or other information relevant to compliance with this Article at any time.

§ 501111. Record Keeping.

(a) Owners or operators must maintain evidence of all financial assurance mechanisms used to demonstrate financial responsibility under this subchapter for an underground storage tank or tank system until released from the requirements of this Article under § 501113, Guam Administrative Rules and Regulations. An owner or operator must maintain such evidence at the underground storage tank or tank system site or the owner’s or operator’s place of work. Records maintained off-site must be made available upon request of the director.

(b) An owner or operator must maintain the following types of
evidence of financial responsibility:

(1) An owner or operator using an assurance mechanism specified in §§ 50195 to 50199 or § 501102 or §§ 501104 to 501107, Guam Administrative Rules and Regulations must maintain a copy of the instrument worded as specified.

(2) An owner or operator using a financial test or guarantee, or a local government financial test or a local government guarantee supported by the local government financial test must maintain a copy of the chief financial officer’s letter based on year-end financial statements for the most recent completed financial reporting year. Such evidence must be on file no later than one hundred twenty days after the close of the financial reporting year.

(3) An owner or operator using a guarantee, surety bond, or letter of credit must maintain a copy of the signed standby trust fund agreement and copies of any amendments to the agreement.

(4) A local government owner or operator using a local government guarantee under § 501106(d), Guam Administrative Rules and Regulations must maintain a copy of the signed standby trust fund agreement and copies of any amendments to the agreement.

(5) A local government owner or operator using the local government bond rating test under § 501104, Guam Administrative Rules and Regulations must maintain a copy of its bond rating published within the last twelve months by Moody’s or Standard & Poor’s.

(6) A local government owner or operator using the local government guarantee under § 501106, Guam Administrative Rules and Regulations, where the guarantor’s demonstration of financial responsibility relies on the bond rating test under § 501104, Guam Administrative Rules and Regulations must maintain a copy of the guarantor’s bond rating published within the last twelve months by Moody’s or Standard & Poor’s.
(7) An owner or operator using an insurance policy or risk retention group coverage must maintain a copy of the signed insurance policy or risk retention group coverage policy, with the endorsement or certificate of insurance and any amendments to the agreements.

(8) An owner or operator using a local government fund under § 501107, Guam Administrative Rules and Regulations must maintain the following documents:

(A) A copy of the state constitutional provision or local government statute, charter, ordinance, or order dedicating the fund;

(B) Year-end financial statements for the most recent completed financial reporting year showing the amount in the fund. If the fund is established under § 501107(3), Guam Administrative Rules and Regulations using incremental funding backed by bonding authority, the financial statements must show the previous year’s balance, the amount of funding during the year, and the closing balance in the fund; and

(C) If the fund is established under § 501107(3), Guam Administrative Rules and Regulations using incremental funding backed by bonding authority, the owner or operator must also maintain documentation of the required bonding authority, including either the results of a voter referendum (under § 501107(3)(A), Guam Administrative Rules and Regulations, or attestation by the state attorney general as specified under § 501107(3)(B), Guam Administrative Rules and Regulations).

(9) A local government owner or operator using the local government guarantee supported by the local government fund must maintain a copy of the guarantor’s year-end financial statements for the most recent completed financial reporting year showing the amount of the fund.
(10) (A) An owner or operator using an assurance mechanism specified in §§ 50195 to 501107, Guam Administrative Rule and Regulations must maintain an updated copy of a certification of financial responsibility worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

CERTIFICATION OF FINANCIAL RESPONSIBILITY

[Owner or operator] hereby certifies that it is in compliance with the requirements of Article 8 of Chapter 50, Guam Administrative Rules and Regulations.

The financial assurance mechanism(s) used to demonstrate financial responsibility under Article 8 of Chapter 50, Guam Administrative Rules and Regulations, is (are) as follows:

[For each mechanism, list the type of mechanism, name of issuer, mechanism number (if applicable), amount of coverage, effective period of coverage and whether the mechanism covers “taking corrective action” and/or “compensating third parties for bodily injury and property damage caused by” either “sudden accidental releases” or “nonsudden accidental releases” or “accidental releases”.

[Signature of owner or operator]
[Name of owner or operator]
[Title]
[Date]
[Signature of witness or notary]
[Name of witness or notary]
[Date]
(B) The owner or operator must update this certification whenever the financial assurance mechanism(s) used to demonstrate financial responsibility change(s).

(a) Except as specified in subsection (d), the Administrator shall require the guarantor, surety, or institution issuing a letter of credit to place the amount of funds stipulated by the Administrator, up to the limit of funds provided by the financial assurance mechanism, into the standby trust if:

(1) (A) The owner or operator fails to establish alternate financial assurance within sixty days after receiving notice of cancellation of the guarantee, surety bond, letter of credit, or, as applicable, other financial assurance mechanism; and

(B) The Administrator determines or suspects that a release from an underground storage tank or tank system covered by the mechanism has occurred and so notifies the owner or operator or the owner or operator has notified the Administrator pursuant to Articles 5 or 6 of a release from an underground storage tank or tank system covered by the mechanism; or

(2) The conditions of subsection (b)(1), (b)(2)(A), or (b)(2)(B) are satisfied.

(b) The Administrator may draw on a standby trust fund when:

(1) The Administrator makes a final determination that a release has occurred and immediate or long-term corrective action for the release is needed, and the owner or operator, after appropriate notice and opportunity to comply, has not conducted release response action as required under Article 6; or

(2) The Administrator has received either:

(A) Certification from the owner or operator and the
third-party liability claimant(s) and from attorneys representing the owner or operator and the third-party liability claimant(s) that a third-party liability claim should be paid. The certification must be worded as follows, except that instructions in brackets are to be replaced with the relevant information and the brackets deleted:

CERTIFICATION OF A VALID CLAIM

The undersigned, as principals and as legal representatives of [insert: owner or operator] and [insert: name and address of third-party claimant], hereby certify that the claim of bodily injury [and/or] property damage caused by an accidental release arising from operating [owner’s or operator’s] underground storage tank should be paid in the amount of $[___].

[Signatures]
Owner or Operator
Attorney for Owner or Operator
(Notary)
Date
[Signatures]
Claimant(s)
Attorney(s) for Claimant(s)
(Notary)
Date

or;

(B) A valid final court order establishing a judgment against the owner or operator for bodily injury or property damage caused by an accidental release from an underground storage tank or tank system
covered by financial assurance under this subchapter and the director determines that the owner or operator has not satisfied the judgment.

(c) If the Administrator determines that the amount of corrective action costs and third-party liability claims eligible for payment under subsection (b) may exceed the balance of the standby trust fund and the obligation of the provider of financial assurance, the first priority for payment shall be corrective action costs necessary to protect human health and the environment. The Administrator shall pay third-party liability claims in the order in which the director receives certifications under subsection (b)(2)(A), and valid court orders under subsection (b)(2)(B).

(d) A governmental entity acting as guarantor under § 501106(e), Guam Administrative Rules and Regulations, the local government guarantee without standby trust, shall make payments as directed by the Administrator under the circumstances described in subsections (a), (b), and (c).

§ 501113. Release from the Requirements.

An owner or operator is no longer required to maintain financial responsibility under this subchapter for an underground storage tank or tank system after the tank or tank system has been permanently closed or undergoes a change-in-service or, if release response action is required, after release response action has been completed and the tank or tank system has been permanently closed or undergoes a change-in-service as required by Article 7.

§ 501114. Bankruptcy or Other Incapacity of Owner or Operator or Provider of Financial Assurance.

(a) Within ten days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming an owner or operator as debtor, the owner or operator must notify the director by certified mail of such commencement and submit the
appropriate forms listed in § 501111(b), Guam Administrative Rules and Regulations documenting current financial responsibility.

(b) Within ten days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a guarantor providing financial assurance as debtor, such guarantor must notify the owner or operator by certified mail of such commencement as required under the terms of the guarantee specified in § 50196, Guam Administrative Rules and Regulations.

(c) Within ten days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a local government owner or operator as debtor, the local government owner or operator must notify the director by certified mail of such commencement and submit the appropriate forms listed in § 501111(b), Guam Administrative Rules and Regulations documenting current financial responsibility.

(d) Within ten days after commencement of a voluntary or involuntary proceeding under Title 11 (Bankruptcy), U.S. Code, naming a guarantor providing a local government financial assurance as debtor, such guarantor must notify the local government owner or operator by certified mail of such commencement as required under the terms of the guarantee specified in § 501106, Guam Administrative Rules and Regulations.

(e) An owner or operator who obtains financial assurance by a mechanism other than the financial test of self-insurance will be deemed to be without the required financial assurance in the event of a bankruptcy or incapacity of its provider of financial assurance, or a suspension or revocation of the authority of the provider of financial assurance to issue a guarantee, insurance policy, risk retention group coverage policy, surety bond, or letter of credit. The owner or operator must obtain alternate financial assurance as specified in this Article within thirty days after receiving notice of such an event. If the owner or operator does not obtain alternate coverage within thirty days after such notification, the owner or operator must notify the Administrator.

§ 501115. Replenishment of Guarantee, Letters of Credit, or Surety
Bond.

(a) If at any time after a standby trust is funded upon the instruction of the Administrator with funds drawn from a guarantee, local government guarantee with standby trust, letter of credit, or surety bond, and the amount in the standby trust is reduced below the full amount of coverage required, the owner or operator shall by the anniversary date of the financial mechanism from which the funds were drawn:

1. Replenish the value of financial assurance to equal the full amount of coverage required; or
2. Acquire another financial assurance mechanism for the amount by which funds in the standby trust have been reduced.

(b) For purposes of this section, the full amount of coverage required is the amount of coverage to be provided by § 50193, Guam Administrative Rule and Regulations. If a combination of mechanisms was used to provide the assurance funds, which were drawn upon, replenishment shall occur by the earliest anniversary date among the mechanisms.

§ 501116 to § 501199. [Reserved.]

ARTICLE 9
LENDER LIABILITY

§ 501200. Definitions
§ 501201 to § 501209. [Reserved.]
§ 501210. Participation in Management
§ 501211 to § 501219. [Reserved.]
§ 501220. Ownership of an Underground Storage Tank or Underground Storage Tank System or Facility or Property on which an Underground Storage Tank or Underground Storage Tank System is Located
§ 501221 to § 501229. [Reserved.]
§ 501230. Operating an Underground Storage Tank or Underground Storage Tank System

§ 501231 to § 501239. [Reserved.]

§ 501200. Definitions.

(a) UST technical standards, as used in this Article, refers to the UST preventative and operating requirements under Articles 2, 3, 4, 7, and 10 and § 50150, Guam Administrative Rules and Regulations.

(b) Petroleum production, refining, and marketing.

(a) (1) “Petroleum production” means the production of crude oil or other forms of petroleum (as defined in § 50112, Guam Administrative Rules and Regulations) as well as the production of petroleum products from purchased materials.

(2) “Petroleum refining” means the cracking, distillation, separation, conversion, upgrading, and finishing of refined petroleum or petroleum products.

(3) “Petroleum marketing” means the distribution, transfer, or sale of petroleum or petroleum products for wholesale or retail purposes.

(c) “Indicia of ownership” means evidence of a secured interest, evidence of an interest in a security interest, or evidence of an interest in real or personal property securing a loan or other obligation, including any legal or equitable title or deed to real or personal property acquired through or incident to foreclosure. Evidence of such interests include, but are not limited to, mortgages, deeds of trust, liens, surety bonds and guarantees of obligations, title held pursuant to a lease financing transaction in which the lessor does not select initially the leased property (hereinafter “lease financing transaction”), and legal or equitable title obtained pursuant to foreclosure. Evidence of such interests also includes assignments, pledges, or other rights to or other forms of encumbrance against property that are held primarily to protect a security interest. A person is not required to hold title or a security interest in order to maintain indicia of ownership.

(d) A “holder” is a person who, upon October 13, 2015, or in the
future, maintains indicia of ownership (as defined in subsection (c)) primarily to protect a security interest (as defined in subsection (f)(1)) in a petroleum UST or UST system or facility or property on which a petroleum UST or UST system is located. A holder includes the initial holder (such as a loan originator); any subsequent holder (such as a successor-in-interest or subsequent purchaser of the security interest on the secondary market); a guarantor of an obligation, surety, or any other person who holds ownership indicia primarily to protect a security interest; or a receiver or other person who acts on behalf or for the benefit of a holder.

(e) A “borrower, debtor, or obligor” is a person whose UST or UST system or facility or property on which the UST or UST system is located is encumbered by a security interest. These terms may be used interchangeably.

(f) “Primarily to protect a security interest” means that the holder’s indicia of ownership are held primarily for the purpose of securing payment or performance of an obligation.

(1) “Security interest” means an interest in a petroleum UST or UST system or in the facility or property on which a petroleum UST or UST system is located, created or established for the purpose of securing a loan or other obligation. Security interests include but are not limited to mortgages, deeds of trusts, liens, and title pursuant to lease financing transactions. Security interests may also arise from transactions such as sale and leasebacks, conditional sales, installment sales, trust receipt transactions, certain assignments, factoring agreements, accounts receivable financing arrangements, and consignments, if the transaction creates or establishes an interest in an UST or UST system or in the facility or property on which the UST or UST system is located, for the purpose of securing a loan or other obligation.

(2) “Primarily to protect a security interest”, as used in this subchapter, does not include indicia of ownership held primarily for investment purposes, nor ownership indicia
held primarily for purposes other than as protection for a security interest. A holder may have other, secondary reasons for maintaining indicia of ownership, but the primary reason why any ownership indicia are held must be as protection for a security interest.

(g) “Operation” means, for purposes of this Article, the use, storage, filling, or dispensing of petroleum contained in an UST or UST system.

§ 501201 to § 501209. [Reserved.]

§ 501210. Participation in Management.

(a) The term “participating in the management of an UST or UST system” means that the holder is engaging in decision making control of, or activities related to, operation of the UST or UST system, as defined in this section. Actions that are participation in management:

(1) Participation in the management of an UST or UST system means, for purposes of this subchapter, actual participation by the holder in the management or control of decision making related to the operation of an UST or UST system. Participation in management does not include the mere capacity or ability to influence or the unexercised right to control UST or UST system operations. A holder is participating in the management of the UST or UST system only if the holder either:

(A) Exercises decision making control over the operational (as opposed to financial or administrative) aspects of the UST or UST system, such that the holder has undertaken responsibility for all or substantially all of the management of the UST or UST system; or

(B) Exercises control at a level comparable to that of a manager of the borrower’s enterprise, such that the holder has assumed or manifested responsibility for
the overall management of the enterprise encompassing the day-to-day decision making of the enterprise with respect to all, or substantially all, of the operational (as opposed to financial or administrative) aspects of the enterprise.

(2) Operational aspects of the enterprise relate to the use, storage, filling, or dispensing of petroleum contained in an UST or UST system, and include functions such as that of a facility or plant manager, operations manager, chief operating officer, or chief executive officer. Financial or administrative aspects include functions such as that of a credit manager, accounts payable/receivable manager, personnel manager, controller, chief financial officer, or similar functions. Operational aspects of the enterprise do not include the financial or administrative aspects of the enterprise, or actions associated with environmental compliance, or actions undertaken voluntarily to protect the environment in accordance with applicable requirements in this Article.

(b) Actions that are not participation in management pre-foreclosure:

(1) Actions at the inception of the loan or other transaction. No act or omission prior to the time that indicia of ownership are held primarily to protect a security interest constitutes evidence of participation in management within the meaning of this Article. A prospective holder who undertakes or requires an environmental investigation (which could include a site assessment, inspection, and/or audit) of the UST or UST system or facility or property on which the UST or UST system is located (in which indicia of ownership are to be held), or requires a prospective borrower to clean up contamination from the UST or UST system or to comply or come into compliance (whether prior or subsequent to the time that indicia of ownership are held primarily to protect a security interest) with any applicable law or regulation, is not by such action considered to be participating in the management of the UST or UST system or facility or property on which the UST or UST system is located.
Loan policing and work out. Actions that are consistent with holding ownership indicia primarily to protect a security interest do not constitute participation in management for purposes of this subchapter. The authority for the holder to take such actions may, but need not, be contained in contractual or other documents specifying requirements for financial, environmental, and other warranties, covenants, conditions, representations or promises from the borrower. Loan policing and work out activities cover and include all such activities up to foreclosure, exclusive of any activities that constitute participation in management.

(A) Policing the security interest or loan.
 (i) A holder who engages in policing activities prior to foreclosure will remain within the exemption provided that the holder does not together with other actions participate in the management of the UST or UST system as provided in § 501210(a), Guam Administrative Rules and Regulations. Such policing actions include, but are not limited to, requiring the borrower to clean up contamination from the UST or UST system during the term of the security interest; requiring the borrower to comply or come into compliance with applicable federal, state, and local environmental and other laws, rules, and regulations during the term of the security interest; securing or exercising authority to monitor or inspect the UST or UST system or facility or property on which the UST or UST system is located (including on-site inspections) in which indicia of ownership are maintained, or the borrower’s business or financial condition during the term of the security interest; or taking other actions to adequately police the loan or security interest.
(such as requiring a borrower to comply with any warranties, covenants, conditions, representations, or promises from the borrower).

(ii) Policing activities also include undertaking by the holder of UST environmental compliance actions and voluntary environmental actions taken in compliance with this chapter, provided that the holder does not otherwise participate in the management or daily operation of the UST or UST system as provided in §§ 501210(a) and 50130, Guam Administrative Rules and Regulations sections 11-280.1-210(a) and 11-280.1-230. Such allowable actions include, but are not limited to, release detection and release reporting, release response and corrective action, temporary or permanent closure of an UST or UST system, UST upgrading or replacement, and maintenance of corrosion protection. A holder who undertakes these actions must do so in compliance with the applicable requirements in this chapter. A holder may directly oversee these environmental compliance actions and voluntary environmental actions, and directly hire contractors to perform the work, and is not by such action considered to be participating in the management of the UST or UST system.

(B) Loan work out. A holder who engages in work out activities prior to foreclosure will remain within the exemption provided that the holder does not together with other actions participate in the management of the UST or UST system as provided in § 501210(a) Guam Administrative Rules and Regulations.
For purposes of this rule, “work out” refers to those actions by which a holder, at any time prior to foreclosure, seeks to prevent, cure, or mitigate a default by the borrower or obligor; or to preserve, or prevent the diminution of, the value of the security. Work out activities include, but are not limited to, restructuring or renegotiating the terms of the security interest; requiring payment of additional rent or interest; exercising forbearance; requiring or exercising rights pursuant to an assignment of accounts or other amounts owing to an obligor; requiring or exercising rights pursuant to an escrow agreement pertaining to amounts owing to an obligor; providing specific or general financial or other advice, suggestions, counseling, or guidance; and exercising any right or remedy the holder is entitled to by law or under any warranties, covenants, conditions, representations, or promises from the borrower.

(c) Foreclosure on an UST or UST system or facility or property on which an UST or UST system is located, and participation in management activities post-foreclosure.

(1) Foreclosure.

(A) Indicia of ownership that are held primarily to protect a security interest include legal or equitable title or deed to real or personal property acquired through or incident to foreclosure. For purposes of this Article, the term “foreclosure” means that legal, marketable or equitable title or deed has been issued, approved, and recorded, and that the holder has obtained access to the UST, UST system, UST facility, and property on which the UST or UST system is located, provided that the holder acted diligently to acquire marketable title or deed and to gain access to the UST, UST system, UST facility, and property on which the UST or UST system is located. The indicia
of ownership held after foreclosure continue to be maintained primarily as protection for a security interest provided that the holder undertakes to sell, re-lease an UST or UST system or facility or property on which the UST or UST system is located, held pursuant to a lease financing transaction (whether by a new lease financing transaction or substitution of the lessee), or otherwise divest itself of the UST or UST system or facility or property on which the UST or UST system is located, in a reasonably expeditious manner, using whatever commercially reasonable means are relevant or appropriate with respect to the UST or UST system or facility or property on which the UST or UST system is located, taking all facts and circumstances into consideration, and provided that the holder does not participate in management (as defined in § 501210(a), Guam Administrative Rules and Regulations prior to or after foreclosure.

(B) For purposes of establishing that a holder is seeking to sell, re-lease pursuant to a lease financing transaction (whether by a new lease financing transaction or substitution of the lessee), or divest in a reasonably expeditious manner an UST or UST system or facility or property on which the UST or UST system is located, the holder may use whatever commercially reasonable means as are relevant or appropriate with respect to the UST or UST system or facility or property on which the UST or UST system is located, or may employ the means specified in § 501210(c)(2), Guam Administrative Rules and Regulations). A holder that outbids, rejects, or fails to act upon a written, bona fide, firm offer of fair consideration for the UST or UST system or facility or property on which the UST or UST system is located, as provided in § 501210(c)(2), Guam Administrative
Rules and Regulations, is not considered to hold indicia of ownership primarily to protect a security interest.

(2) Holding foreclosed property for disposition and liquidation. A holder, who does not participate in management prior to or after foreclosure, may sell, re-lease, pursuant to a lease financing transaction (whether by a new lease financing transaction or substitution of the lessee), an UST or UST system or facility or property on which the UST or UST system is located, liquidate, wind up operations, and take measures, prior to sale or other disposition, to preserve, protect, or prepare the secured UST or UST system or facility or property on which the UST or UST system is located. A holder may also arrange for an existing or new operator to continue or initiate operation of the UST or UST system. The holder may conduct these activities without voiding the security interest exemption, subject to the requirements of this Article.

(A) A holder establishes that the ownership indicia maintained after foreclosure continue to be held primarily to protect a security interest by, within twelve months following foreclosure, listing the UST or UST system or the facility or property on which the UST or UST system is located, with a broker, dealer, or agent who deals with the type of property in question, or by advertising the UST or UST system or facility or property on which the UST or UST system is located, as being for sale or disposition on at least a monthly basis in either a real estate publication or a trade or other publication suitable for the UST or UST system or facility or property on which the UST or UST system is located, or a newspaper of general circulation (defined as one with a circulation over 10,000, or one suitable under any applicable federal, state, or local rules of court for publication required
by court order or rules of civil procedure) covering the location of the UST or UST system or facility or property on which the UST or UST system is located. For purposes of this provision, the twelve-month period begins to run from the date that the marketable title or deed has been issued, approved and recorded, and the holder has obtained access to the UST, UST system, UST facility and property on which the UST or UST system is located, provided that the holder acted diligently to acquire marketable title or deed and to obtain access to the UST, UST system, UST facility and property on which the UST or UST system is located. If the holder fails to act diligently to acquire marketable title or deed or to gain access to the UST or UST system, the twelve-month period begins to run from the date on which the holder first acquires either title to or possession of the secured UST or UST system, or facility or property on which the UST or UST system is located, whichever is later.

(B) A holder that outbids, rejects, or fails to act upon an offer of fair consideration for the UST or UST system or the facility or property on which the UST or UST system is located, establishes by such outbidding, rejection, or failure to act, that the ownership indicia in the secured UST or UST system or facility or property on which the UST or UST system is located are not held primarily to protect the security interest, unless the holder is required, in order to avoid liability under federal or state law, to make a higher bid, to obtain a higher offer, or to seek or obtain an offer in a different manner.

(i) Fair consideration, in the case of a holder maintaining indicia of ownership primarily to protect a senior security interest in the UST or
UST system or facility or property on which the UST or UST system is located, is the value of the security interest as defined in this section. The value of the security interest includes all debt and costs incurred by the security interest holder, and is calculated as an amount equal to or in excess of the sum of the outstanding principal (or comparable amount in the case of a lease that constitutes a security interest) owed to the holder immediately preceding the acquisition of full title (or possession in the case of a lease financing transaction) pursuant to foreclosure, plus any unpaid interest, rent, or penalties (whether arising before or after foreclosure). The value of the security interest also includes all reasonable and necessary costs, fees, or other charges incurred by the holder incident to work out, foreclosure, retention, preserving, protecting, and preparing, prior to sale, the UST or UST system or facility or property on which the UST or UST system is located, release, pursuant to a lease financing transaction (whether by a new lease financing transaction or substitution of the lessee), of an UST or UST system or facility or property on which the UST or UST system is located, or other disposition. The value of the security interest also includes environmental investigation costs (which could include a site assessment, inspection, and/or audit of the UST or UST system or facility or property on which the UST or UST system is located), and release response and corrective action costs incurred under §§ 50151 to 50167, Guam Administrative
Rules and Regulations or any other costs incurred as a result of reasonable efforts to comply with any other applicable federal, state or local law or regulation; less any amounts received by the holder in connection with any partial disposition of the property and any amounts paid by the borrower (if not already applied to the borrower’s obligations) subsequent to the acquisition of full title (or possession in the case of a lease financing transaction) pursuant to foreclosure. In the case of a holder maintaining indicia of ownership primarily to protect a junior security interest, fair consideration is the value of all outstanding higher priority security interests plus the value of the security interest held by the junior holder, each calculated as set forth in this subsection.

(ii) Outbids, rejects, or fails to act upon an offer of fair consideration means that the holder outbids, rejects, or fails to act upon within ninety days of receipt, a written, bona fide, firm offer of fair consideration for the UST or UST system or facility or property on which the UST or UST system is located received at any time after six months following foreclosure, as defined in § 501210(c), Guam Administrative Rules and Regulations. A “written, bona fide, firm offer” means a legally enforceable, commercially reasonable, cash offer solely for the foreclosed UST or UST system or facility or property on which the UST or UST system is located, including all material terms of the transaction, from a ready, willing, and able purchaser who demonstrates
to the holder’s satisfaction the ability to perform. For purposes of this provision, the six-month period begins to run from the date that marketable title or deed has been issued, approved and recorded to the holder, and the holder has obtained access to the UST, UST system, UST facility and property on which the UST or UST system is located, provided that the holder was acting diligently to acquire marketable title or deed and to obtain access to the UST or UST system, UST facility and property on which the UST or UST system is located. If the holder fails to act diligently to acquire marketable title or deed or to gain access to the UST or UST system, the six-month period begins to run from the date on which the holder first acquires either title to or possession of the secured UST or UST system, or facility or property on which the UST or UST system is located, whichever is later.

(3) Actions that are not participation in management post-foreclosure. A holder is not considered to be participating in the management of an UST or UST system or facility or property on which the UST or UST system is located when undertaking actions under this chapter, provided that the holder does not otherwise participate in the management or daily operation of the UST or UST system as provided in §§ 501210(a) and 501230, Guam Administrative Rules and Regulations. Such allowable actions include, but are not limited to, release detection and release reporting, release response and corrective action, temporary or permanent closure of an UST or UST system, UST upgrading or replacement, and maintenance of corrosion protection. A holder who undertakes these actions must do so in compliance with the applicable requirements in this Article.
A holder may directly oversee these environmental compliance actions and voluntary environmental actions, and directly hire contractors to perform the work, and is not by such action considered to be participating in the management of the UST or UST system.

§ 501211 to § 501219. [Reserved.]

§ 501220. Ownership of an Underground Storage Tank or Underground Storage Tank System or Facility or Property on which an Underground Storage Tank or Underground Storage Tank System is Located.

Ownership of an UST or UST system or facility or property on which an UST or UST system is located. A holder is not an “owner” of a petroleum UST or UST system or facility or property on which a petroleum UST or UST system is located for purposes of compliance with the UST technical standards as defined in § 501200(a), Guam Administrative Rules and Regulations, the UST release response and corrective action requirements under §§ 50151 to 50167, Guam Administrative Rules and Regulations, and the UST financial responsibility requirements under §§ 50190 to 501111, Guam Administrative Rules and Regulations, provided the person:

(1) Does not participate in the management of the UST or UST system as defined in § 501210, Guam Administrative Rules and Regulations; and

(2) Does not engage in petroleum production, refining, and marketing as defined in § 501200(b), Guam Administrative Rules and Regulations.

§§ 501221 to 501229. [Reserved.]

§ 501230. Operating an Underground Storage Tank or Underground Storage Tank System.

(a) Operating an UST or UST system prior to foreclosure. A
holder, prior to foreclosure, as defined in § 501210(c), Guam Administrative Rules and Regulations, is not an “operator” of a petroleum UST or UST system for purposes of compliance with the UST technical standards as defined in § 501200(a), Guam Administrative Rules and Regulations, the UST corrective action requirements under §§ 50151 to 50167, Guam Administrative Rules and Regulations, and the UST financial responsibility requirements under §§ 50190 to 501111, Guam Administrative Rules and Regulations, provided that the holder is not in control of or does not have responsibility for the daily operation of the UST or UST system.

(b) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through foreclosure, as defined in § 501210(c), Guam Administrative Rules and Regulations, acquires a petroleum UST or UST system or facility or property on which a petroleum UST or UST system is located.

(1) A holder is not an “operator” of a petroleum UST or UST system for purposes of compliance with this chapter if there is an operator, other than the holder, who is in control of or has responsibility for the daily operation of the UST or UST system, and who can be held responsible for compliance with applicable requirements of this chapter.

(2) If another operator does not exist, as provided for under paragraph (1), a holder is not an “operator” of the UST or UST system, for purposes of compliance with the UST technical standards as defined in § 501200(a), Guam Administrative Rules and Regulations, the UST corrective action requirements under §§ 50151 to 50167, Guam Administrative Rules and Regulations, and the UST financial responsibility requirements under §§ 50190 to 501111, Guam Administrative Rules and Regulations, provided that the holder:

(A) Empties all of its known USTs and UST systems within sixty calendar days after foreclosure, or another reasonable time period specified by the agency, so that no more than 2.5 centimeters (one
inch) of residue, or 0.3 percent by weight of the total capacity of the UST system, remains in the system; leaves vent lines open and functioning; and caps and secures all other lines, pumps, manways, and ancillary equipment; and

(B) Empties those USTs and UST systems that are discovered after foreclosure within sixty calendar days after discovery, or another reasonable time period specified by the agency, so that no more than 2.5 centimeters (one inch) of residue, or 0.3 percent by weight of the total capacity of the UST system, remains in the system; leaves vent lines open and functioning; and caps and secures all other lines, pumps, manways, and ancillary equipment.

(3) If another operator does not exist, as provided for under paragraph (1), in addition to satisfying the conditions under paragraph (2), the holder must either:

(A) Permanently close the UST or UST system in accordance with §§ 50171 to 50174, Guam Administrative Rules and Regulations, except § 50172(b), Guam Administrative Rules and Regulations; or

(B) Temporarily close the UST or UST system in accordance with the following applicable provisions of § 50170, Guam Administrative Rules and Regulations:

(i) Continue operation and maintenance of corrosion protection in accordance with § 50131, Guam Administrative Rules and Regulations;

(ii) Report suspected releases to the agency; and

(iii) Conduct a site assessment in accordance with § 50172(a), Guam Administrative Rules and Regulations if the UST system is temporarily
closed for more than twelve months and the UST system does not meet the applicable system design, construction, and installation requirements in Article 2, except that the spill and overfill equipment requirements do not have to be met. The holder must report any suspected releases to the agency.

For purposes of this provision, the twelve-month period begins to run from the date on which the UST system is emptied and secured under paragraph (2).

(4) The UST system can remain in temporary closure until a subsequent purchaser has acquired marketable title to the UST or UST system or facility or property on which the UST or UST system is located. Once a subsequent purchaser acquires marketable title to the UST or UST system or facility or property on which the UST or UST system is located, the purchaser must decide whether to operate or close the UST or UST system in accordance with applicable requirements in this chapter.

§§ 501231 to 501239. [Reserved.]

ARTICLE 10
OPERATOR TRAINING

§ 501240. General Requirement for All UST Systems
§ 501241. Designation of Class A, B, and C Operators
§ 501242. Requirements for Operator Training
§ 501243. Timing of Operator Training
§ 501244. Retraining
§ 501245. Documentation
§ 501246 to § 501249. [Reserved.]
All owners and operators of UST systems must ensure they have designated Class A, Class B, and Class C operators who meet the requirements of this subchapter.

§ 501241. Designation of Class A, B, and C Operators.

(a) UST system owners and operators must designate:
 (1) At least one Class A and one Class B operator for each UST or group of USTs at a facility; and
 (2) Each individual who meets the definition of Class C operator at the UST facility as a Class C operator.

(b) Separate individuals may be designated for each class of operator or an individual may be designated for more than one of the operator classes.

(c) Owners and operators shall submit written notice to the agency identifying the Class A and Class B operators for each UST or tank system in use or temporarily out of use no later than thirty (30) calendar days after an operator assumes the operator’s responsibilities as a Class A or Class B operator. The notification must include the name of each operator, the date training was completed, the name and address of each facility where the USTs or tank systems for which the operator has been designated is located, and written verification from a training program approved or administered by the agency that the Class A and Class B operator for each UST or tank system has successfully completed operator training in the operator’s class.

§ 501242. Requirements for Operator Training.

UST system owners and operators must ensure Class A, Class B, and Class C operators meet the requirements of this section. Any individual designated for more than one operator class must successfully complete the required training program or comparable examination according to the operator classes in which the individual is designated.

(1) Class A operators. Each designated Class A operator must
either be trained in accordance with subparagraphs (A) and (B) or pass a comparable examination in accordance with paragraph (5).

(A) At a minimum, the training must teach the Class A operators about the purpose, methods, and function of:

(i) Spill and overfill prevention;
(ii) Release detection;
(iii) Corrosion protection;
(iv) Emergency response;
(v) Product and equipment compatibility and demonstration;
(vi) Financial responsibility;
(vii) Notification and permitting;
(viii) Temporary and permanent closure;
(ix) Reporting, recordkeeping, testing, and inspections;
(x) Environmental and regulatory consequences of releases; and
(xi) Training requirements for Class B and Class C operators.

(B) At a minimum, the training program must evaluate Class A operators to determine these individuals have the knowledge and skills to make informed decisions regarding compliance and determine whether appropriate individuals are fulfilling the operation, maintenance, and recordkeeping requirements for UST systems in accordance with subparagraph (A).

(2) Class B operators. Each designated Class B operator must either receive training in accordance with subparagraphs (A) and (B) or pass a comparable examination, in accordance with paragraph (5).

(A) At a minimum, the training program for Class B operators must teach the Class B operator about the purpose, methods, and function of:
(i) Operation and maintenance, including components of UST systems, materials of UST system components, and methods of release detection and release prevention applied to UST components;

(ii) Spill and overfill prevention;

(iii) Release detection and related reporting;

(iv) Corrosion protection;

(v) Emergency response;

(vi) Product and equipment compatibility and demonstration;

(vii) Reporting, recordkeeping, testing, and inspections;

(ix) Environmental and regulatory consequences of releases; and

(x) Training requirements for Class C operators.

(B) At a minimum, the training program must evaluate Class B operators to determine these individuals have the knowledge and skills to implement applicable UST regulatory requirements in the field on the components of typical UST systems in accordance with subparagraph (A).

(3) Class C operators. Each designated Class C operator must either: be trained by a Class A or Class B operator in accordance with subparagraphs (A) and (B); complete a training program in accordance with subparagraphs (A) and (B); or pass a comparable examination, in accordance with paragraph (5).

(A) At a minimum, the training program for the Class C operator must teach the Class C operators to take appropriate actions (including notifying appropriate authorities) in response to emergencies or alarms caused by spills or releases resulting from the operation of the UST system.

(B) At a minimum, the training program must evaluate
Class C operators to determine these individuals have the knowledge and skills to take appropriate action (including notifying appropriate authorities) in response to emergencies or alarms caused by spills or releases from an underground storage tank system.

(4) Training program requirements. Any training program must meet the minimum requirements of this section, must incorporate an evaluation of operator knowledge through written examination, a practical demonstration, or other reasonable testing methods acceptable to the agency, and must be approved or administered by the agency. An operator training program may consist of in-class or on-line instruction and may include practical exercises.

(5) Comparable examination. A comparable examination must, at a minimum, test the knowledge of the Class A, Class B, or Class C operators in accordance with the requirements of paragraph (1), (2), or (3), as applicable. The acceptability of a comparable examination to meet the requirements of this section is determined by the agency. The agency may accept operator training verification from other states if the operator training is deemed by the agency to be equivalent to the requirements of this section.

(a) An owner and operator must ensure that designated Class A, Class B, and Class C operators meet the requirements in §501242 not later than October 13, 2015.

(b) Class A and Class B operators designated on or after October 13, 2015, must meet requirements in § 501242 within thirty (30) calendar days of assuming duties.

(c) Class C operators designated after October 13, 2015, must be trained before assuming duties of a Class C operator.
§ 501244. Retraining.

(a) Class A and class B operators shall be retrained every two (2) years. Class C operators shall be retrained every three hundred sixty-five (365) calendar days.

(b) Class A and Class B operators of UST systems determined by the agency to be out of compliance must complete a training program or comparable examination in accordance with requirements in § 501242. The training program or comparable examination must be developed or administered by the agency or an independent organization. An UST or tank system is out of compliance if the system:
 (1) Meets any of the delivery prohibition criteria outlined in § 501429; or
 (2) Is in significant violation of other requirements, such as temporary or permanent closure, tank registration, or financial responsibility, as determined by the director.

(c) UST system owners and operators must ensure Class A and Class B operators are retrained as required in subsection (b) no later than thirty (30) calendar days from the date the agency determines the facility is out of compliance except in one of the following situations:
 (1) Class A and Class B operators take annual refresher training. Refresher training for Class A and Class B operators must cover all applicable requirements in § 501242;
 (2) The agency, at its discretion, waives this retraining requirement for either the Class A or Class B operator or both.

§ 501245. Documentation.

Owners and operators of underground storage tank systems must maintain a list of designated Class A, Class B, and Class C operators and maintain records verifying that training and retraining, as applicable, have been completed, in accordance with § 50134 as follows:
 (1) The list must:
 (A) Identify all Class A, Class B, and Class C operators
currently designated for the facility; and

(B) Include names, class of operator trained, date assumed duties, date each completed initial training, and any retraining.

(2) Records verifying completion of training or retraining must be a paper or electronic record for Class A, Class B, and Class C operators. The records, at a minimum, must identify name of trainee, date trained, operator training class completed, and list the name of the trainer or examiner and the training company name, address, and telephone number. Owners and operators must maintain these records for as long as Class A, Class B, and Class C operators are designated. The following requirements also apply to the following types of training:

(A) Records from classroom or field training programs (including Class C operator training provided by the Class A or Class B operator) or a comparable examination must, at a minimum, be signed by the trainer or examiner;

(B) Records from computer based training must, at a minimum, indicate the name of the training program and web address, if Internet based; and

(C) Records of retraining must include those areas on which the Class A or Class B operator has been retrained.

§ 501246 to § 501249. [Reserved.]
§ 501300 to § 501322. [Reserved]

§ 501323. Permit Required

(a) No person shall install, operate, modify, or close an UST or tank system without first obtaining a permit from the Administrator.

(b) The Administrator shall approve an application for a permit only if the applicant has submitted sufficient information to the satisfaction of the Administrator that the technical, financial, and other requirements of this chapter are or can be met and the installation and operation of the UST or
tank system will be done in a manner that is protective of human health and the environment.

(c) A permit shall be issued only in accordance with 10 GCA Chapter 76, and this Article, and it shall be the duty of the permittee to ensure compliance with the law in the installation, operation, and closure of the UST or tank system.

(d) Issuance of a permit shall not relieve any person of the responsibility to comply fully with all applicable laws

§ 501324. Application for Permit.

(a) Every application for a permit shall be submitted to the agency on the “Application for an Underground Storage Tank Permit” form prescribed by the agency.

(b) A permit fee in accordance with § 501335 shall accompany each application for a permit.

(c) The applicant shall submit sufficient information to enable the Administrator to make a decision on the application. Information submitted shall include but not be limited to the following:

1. General information on involved parties, including the landowner, UST owner, and UST operator; location of the property; and basic description of the UST or tank system;

2. Age, size, precise location within the property, and use of each UST;

3. Other information required in the form prescribed by the Administrator; and

4. Other information as the agency may require.

(d) Every application shall be signed by the owner and the operator and shall constitute an acknowledgment that the applicants assume responsibility for the installation and operation of the UST or tank system in accordance with this Article and the conditions of the permit, if issued. Each signatory shall be:

1. In the case of a corporation, a principal executive officer of at least the level of vice president, or a duly authorized
representative if that representative is responsible for the overall operation of the UST or tank system;

(2) In the case of a partnership, a general partner;

(3) In the case of a sole proprietorship, the proprietor; or

(4) In the case of a county, state, or federal entity, either a principal executive officer, ranking elected official, or other duly authorized employee.

§ 501325. Permit.

(a) Upon approval of an application for a permit to install and operate an UST or tank system, the Administrator shall issue a permit for a term of one (1) year except as noted in subsection (b).

(b) The owner or operator shall have one (1) year from the issuance of the permit to install an UST or tank system. If the installation is not completed within one (1) year, the permit expires and the owner or operator must apply for a new permit.

(c) The owner or operator must inform the agency at least seven (7) calendar days prior to performing the actual installation. The information shall include the permit number, name and address of the UST or tank system, the contact person, the contact person’s phone number, and date and time of actual installation.

(d) The owner or operator must notify the agency within thirty (30) calendar days after the installation of the UST or tank system. The notification shall be submitted on the “Notification for Underground Storage Tanks Permits” form prescribed by the Administrator. If information submitted on the form has changed since the original application. The form must certify compliance with the following requirements:

(1) Installation of tanks and piping under § 50120(f);

(2) Cathodic protection of steel tanks and piping under § 50120(b) and (c);

(3) Financial responsibility under Article 8; and

(4) Release detection under §§ 50141 and 50142.

(e) The agency, where practicable and appropriate, may issue one (1)
permit to the owner or operator of an UST system for the purpose of combining all USTs, piping, and any ancillary equipment constituting that UST system under one permit, irrespective of the number of individual USTs, so long as that UST system is part of one reasonably contiguous physical location.

§ 501326. Permit Renewal.

(a) On application, a permit may be renewed for a term of one (1) year.
(b) A renewal fee in accordance with § 501335 shall accompany each application for renewal of a permit.
(c) An application for a renewal shall be received by the agency at least one hundred eighty (180) calendar days prior to the expiration of the existing permit and shall be submitted on the “Notification for Underground Storage Tanks Permits” form prescribed by the Administrator.

§ 501327. Action On and Timely Approval of Application for Permit.

(a) The Administrator need not act upon nor consider any incomplete application for a permit. An application shall be deemed complete only when:
 (1) All required and requested information, including the application form, plans, specifications, and other information required by this Article have been submitted in a timely fashion;
 (2) All fees have been paid as prescribed in § 501335; and
 (3) The Administrator determines that the application is complete.
(b) The Administrator shall approve, approve with conditions, or deny a complete application for a permit to install or operate an UST or tank system or a permit renewal, modification, or transfer, required under this chapter. The Administrator shall notify the applicant of the agency’s decision within one hundred eighty (180) calendar days of receipt of a complete application, as defined in subsection (a). Otherwise, a complete
application is deemed approved one hundred eighty (180) calendar days after it is received by the agency.

§ 501328. Permit Conditions.

The Administrator may impose conditions on a permit that the Administrator deems reasonably necessary to ensure compliance with this Article and any other relevant state requirement, including conditions relating to equipment, work practice, or operation. Conditions may include, but shall not be limited to, the requirement that devices for measurement or monitoring of regulated substances be installed and maintained and the results reported to the Administrator, all costs and expenses to be borne by the applicant.

§ 501329. Modification of Permit.

(a) The Administrator may modify a permit if there is a change that requires a modification to an existing permit. Changes requiring a permit modification shall include but not be limited to:

 (1) The addition or removal of an UST from an UST system; and

 (2) Any change to or modification of an UST or UST system which would otherwise place the existing UST or UST system out of compliance with this Article or an existing permit.

(b) An application for modification of a permit shall be made in writing to the agency and shall be accompanied by sufficient information on the planned renovation or modification to the UST or tank system to assist the agency in making a determination as to whether the application for modification should be denied or granted.

(c) Applications for a permit modification shall be received by the agency no later than sixty (60) calendar days prior to the occurrence of the event that prompted the application except that applications for change-in-service must be received by the agency at least thirty (30) calendar days before the owner or operator begins the change-in-service. Applications shall be submitted on the “Notification for Underground Storage Tanks
Permits” form prescribed by the Administrator.
(d) Owners and operators shall submit a permit application to add USTs or tank systems to an existing permit. If the Administrator approves the addition, the existing permit shall be terminated, and a new permit shall be issued which covers the additional USTs as well as the already-permitted USTs. The term of the new permit shall be for the remaining term of the original permit.

§ 501330. Revocation or Suspension of Permit.

The Administrator may revoke or suspend a permit if the Administrator finds any one of the following:

1. There is a release or threatened release of regulated substances that the agency deems to pose an imminent and substantial risk to human health or the environment;
2. The permittee violated a condition of the permit; or
3. The permit was obtained by misrepresentation, or failure to disclose fully all relevant facts.

§ 501331. Change in Owner or Operator for a Permit.

(a) No permit to install, own, or operate an UST or tank system shall be transferable unless approved by the agency. Request for approval to transfer a permit from one owner to another owner must be made by the new owner. Request for approval to transfer a permit from one operator to another operator must be made by the owner.
(b) The transferred permit will be effective for the remaining life of the original permit.
(c) An application for the transfer shall be received by the agency at least thirty (30) calendar days prior to the proposed effective date of the transfer and shall be submitted on the “Notification for Underground Storage Tanks Permits” form prescribed by the Administrator.

§ 501332. Variance Allowed.
Provisions pursuant to this Article relating to USTs or tank systems which are more stringent than Title 40, Part 280 of the Code of Federal Regulations, published by the Office of the Federal Register, as amended as of July 1, 2017, may be varied by the Administrator in accordance with this Article. No variance may be less stringent than the federal requirements.

§ 501333. Variance Application.

(a) An application for a variance shall be submitted to the agency on the “Notification for Underground Storage Tanks Permits” form prescribed by the Administrator.
(b) A variance fee in accordance with § 501335 shall accompany each application for a variance.
(c) Every application shall be signed by the owner and operator, and the signature shall be by one of the following:
 (1) In the case of a corporation, by a principal executive officer of at least the level of vice president, or a duly authorized representative if that representative is responsible for the overall operation of the UST or tank system;
 (2) In the case of a partnership, by a general partner;
 (3) In the case of a sole proprietorship, by the proprietor; or
 (4) In the case of a county, state, or federal entity, by a principal executive officer, ranking elected official or other duly authorized employee.

(d) The Administrator shall approve, approve with conditions, or deny a complete application as required under this Article. The Administrator shall notify the applicant of the agency’s decision, within one hundred eighty (180) calendar days of receipt of a complete application. Otherwise, a complete application is deemed approved one hundred eighty (180) calendar days after it is received by the agency.

§ 501334. Maintenance of Permit or Variance.

(a) Permits and variances, including application records, shall be
maintained at the location of the UST or tank system for which the permit was issued and shall be made available for inspection upon request of any duly authorized representative of the agency.

(b) No person shall willfully deface, alter, forge, counterfeit, or falsify any permit or variance.

§ 501335. Fees.

(a) Every applicant for a permit or a variance, or applicant for modification or renewal of a permit or variance, or applicant for a transfer of a permit, shall pay the applicable fees as set forth below:

<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Permit</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Application Fee per Tank (New Installation)</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Operate Fee per Tank (Annual)</td>
<td>$250.00</td>
<td></td>
</tr>
<tr>
<td>Permit to Transfer</td>
<td>$250.00</td>
<td></td>
</tr>
<tr>
<td>Permit to Modify</td>
<td>$150.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Permit to Close</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Install OWS</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Close OWS</td>
<td>$500.00</td>
<td></td>
</tr>
<tr>
<td>Request for Proposal (Copy)</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>Installer’s Certification (2 years)</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>Operator’s Certification A & B (2 years)</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>Operator’s Re-Certification (2 years)</td>
<td>$100.00</td>
<td></td>
</tr>
</tbody>
</table>

(b) Fees shall be submitted with the application and are nonrefundable.
(c) Fees shall be made payable to Guam Environmental Protection Agency UST-LUST Fund.
(d) If more than one type of application is combined, the highest
applicable fee will be assessed. However, a permit application and a variance application shall not be combined under one fee.

§ 501336 to § 501399. [Reserved.]

ARTICLE 13
ENFORCEMENT

§ 501400 to § 501420. [Reserved.]
§ 501421. Purpose.
§ 501422. Field Citation
§ 501423 to § 501428. [Reserved.]
§ 501429. Delivery, Deposit, and Acceptance Prohibition

§ 501400 to § 501420. [Reserved.]
§ 501421. Purpose.

The purpose of this Article is to create an enforcement program that facilitates the effective and expeditious resolution of violations of 10 GCA Chapter 76 and this Chapter.

§ 501422. Field Citations.

(a) Field citations may be issued for violations of 10 GCA Chapter 76 and this Chapter, that the agency deems appropriate for resolution through the issuance of a field citation. Nothing in this section requires the agency to elect one enforcement mechanism over another and the decision to proceed with one course of action over, or in conjunction with, another is within the discretion of the Administrator.

(b) The field citation is an offer to settle an allegation of noncompliance with this Chapter. If the owner or operator declines to accept the agency’s offer to settle within the time period set forth in the field citation, the agency may bring administrative or civil enforcement action under 10 GCA Chapter 76.
(c) The field citation shall set forth sufficient facts to notify the recipient of the alleged violations, the applicable law, the proposed settlement amount, and the time period during which to respond.
(d) By returning the signed settlement agreement attached to the field citation and payment of the proposed settlement amount to the agency, the owner or operator will be deemed to have accepted the terms and conditions of the settlement offer.
(e) By signing the settlement agreement, the owner or operator waives his or her right to a contested case hearing pursuant to 10 GCA Chapter 76 and 5 GCA Chapter 9.

§ 501423 to § 501428. [Reserved.]

§ 501429. Delivery, Deposit, and Acceptance Prohibition.

(a) No person shall deliver to, deposit into, or accept a regulated substance into an UST or tank system that has been identified by the agency as ineligible for delivery, deposit, or acceptance.
(b) An UST or tank system shall be identified by the agency as ineligible for delivery, deposit, or acceptance by placement of a tag or other notice of ineligibility onto the fill pipe of the ineligible UST or tank system. If an owner or operator is not present at the facility at the time the underground storage tank is identified as ineligible, the agency may notify an employee at the facility at the time of identification in lieu of the owner or operator.
(c) No person shall remove, tamper with, destroy, or damage a tag or other notice of ineligibility affixed to any UST or tank system unless authorized to do so by the agency. Removal of a tag or other notice of ineligibility by the agency or person authorized by the agency shall occur only after the agency confirms that the conditions giving rise to the delivery prohibition have been corrected to the agency’s satisfaction. The agency shall make this determination either at a hearing, if one is requested in accordance with this section, or as soon as practicable.
(d) Pursuant to this section, a tag or other notice of ineligibility may immediately be affixed to the fill pipe of an UST or tank system upon
finding by the agency of any of the following:

(1) Operating without a permit issued by the agency;

(2) Operating inconsistently with one or more conditions of a permit issued by the agency;

(3) Required spill prevention equipment is not installed or properly functioning or maintained;

(4) Required overfill protection equipment is not installed or properly functioning or maintained;

(5) Required release detection equipment is not installed or properly functioning or maintained;

(6) Required corrosion protection equipment is not installed or properly functioning or maintained;

(7) Failure to maintain financial responsibility; or

(8) Failure to protect a buried metal flexible connector from corrosion.

(e) An owner or operator of an UST or tank system designated by the agency to be ineligible shall be provided a hearing to contest the agency’s determination of ineligibility within forty-eight (48) hours of the agency’s receipt of a written request for a hearing by the owner or operator of the ineligible UST or tank system. The hearing shall modify or affirm the agency’s determination of ineligibility and shall be conducted in accordance with 10 GCA Chapter 76 and 5 GCA Chapter 9, and the agency’s rules of practice and procedure.
Appendix A

Configuration and Cost Assumptions for Airport Hydrant Fuel Distribution Systems (AHFDSs) and UST Systems with Field-Constructed Tanks (FCTs)
This appendix provides detailed descriptions of the costs of the proposed rule as they pertain to UST systems with field-constructed tanks (FCTs) and airport hydrant fuel distribution systems (AHFDSs). The appendix begins with a broad overview of these two tank types and the costs they will incur as a result of the proposed rule, and then provides a detailed breakdown of cost calculations.

A.1 Description of FCTs and AHFDSs

In addition to conventional underground storage tank (UST) systems, regulatory revisions of the proposed rule would affect two additional classes of tanks:

- Underground storage tank systems and ancillary equipment that are a part of an airport hydrant fuel distribution system used to fuel aircraft (AHFDSs). These systems do not have a dispenser at the end of the piping run, but instead have a pressurized hydrant (fill stand).

- UST systems with field-constructed tanks (FCTs) that have a capacity greater than 50,000 gallons and are constructed onsite.

EPA believes that large commercial and military airports employ AHFDSs, but most commercial systems typically use aboveground storage tanks for these systems. Similarly, existing underground FCTs appear to be used only by federal facilities (primarily Department of Defense); commercial facilities requiring bulk storage appear to use above-ground systems.

A review of existing state regulations suggests that 57 percent of FCTs and 40 percent of AHFDSs are currently located in states that regulate these systems in a manner consistent with the regulatory revisions of the proposed rule (i.e., these state programs already require compliance with state regulations that are roughly consistent with the proposed rule).¹ We therefore assume that 43 percent of FCTs and 60 percent of AHFDSs will incur additional costs due to the removal of deferrals associated with the proposed rule. For simplicity, however, detailed cost discussions in this appendix adjust for baseline regulatory compliance only after calculation of all costs.

A.2 Key Cost Components of the Removal of Deferrals – Preferred Option

Both AHFDSs and FCTs are currently deferred from most of the requirements in 40 CFR Part 280. However, the Spill Prevention, Control, and Countermeasure (SPCC) requirements of 40 CFR Part 112 (as well as some existing state regulations) require these systems and tanks to be subject to structural standards relatively consistent with the regulatory revisions of the proposed rule, and will therefore not require substantial capital upgrades. In addition, the majority of costs associated with the removal of deferrals from both these types of tank systems are associated with meeting the proposed release detection requirements.

Release Detection Requirements

Our analysis assumes that 50 percent of FCTs do not use an automatic tank gauge (ATG) for release detection, and would be required to conduct annual precision testing under the proposed rule. We also assume that those FCTs that do use ATGs do not currently conduct monthly release detection monitoring nor conduct annual operability tests of their ATGs. Therefore, we assume that the proposed rule will impose costs associated with these activities on owners of FCTs. In addition, those FCTs with ATGs currently operating at a leak rate between 0.3 and 1.0 gallon per hour and between 1.0 and 2.0 gallons per hour will be required to conduct tri-annual and bi-annual precision testing, respectively, to achieve the proposed release detection requirements.

Our analysis assumes that no release detection methods are currently installed in the piping associated with FCTs. We assume that all piping associated with FCTs will need to undergo semiannual precision testing to achieve the proposed release detection requirements.

For the tanks associated with AHFDSs, our analysis assumes that 50 percent do not currently have ATGs installed and will need to install them to achieve the proposed release detection requirements. In addition, we assume that those tanks with ATGs installed do not currently conduct monthly release detection monitoring or annual operability tests of their ATGs. The proposed rule will impose costs associated with these activities on all owners and operators of AHFDSs.

Finally, we assume that no release-detection method is currently installed in the piping of AHFDSs. We therefore assume that all AHFDS piping must undergo semiannual precision testing to achieve the proposed release detection requirements.

Other Requirements

Removing deferrals for AHFDSs and FCTs will also require these systems to comply with Subparts B, C, E, G, and H of 40 CFR Part 280. Furthermore, AHFDSs and FCTs will incur costs associated with other requirements of the proposed rule that will apply to all UST systems. These include: walkthrough inspections; overfill prevention equipment tests; spill prevention equipment tests; testing after repairs; notification of ownership change; recordkeeping associated with compatibility; and operator training. Lastly, these systems will have to incur costs with a one-time notification of existence to the implementing agency.

2 Subpart H requires owners and operators of regulated USTs to demonstrate financial responsibility (FR). EPA assumes that the two commercial airport facilities with AHFDSs will be able to demonstrate FR through the use of the financial test, and would therefore incur no cost to obtain financial assurance. The two commercial facilities would incur reporting and recordkeeping costs associated with filing proof of financial responsibility. EPA estimates this cost to consist of 0.25 technical labor hour (at $73.80/hr) and 0.1 clerical labor hour (at $39.11/hr) per year per facility, for a total of $45 across the two facilities. EPA assumes that the other AHFDSs and FCTs are owned or operated by federal entities, which would exempt them from the requirements of Subpart H.

3 While EPA plans on requiring secondary containment on new tanks and piping, based on EPA’s discussion with various parties, EPA is assuming no new installations of underground FCTs and tanks being installed at AHFDSs are aboveground storage tanks (ASTs). As a result, we assume that there are no costs associated with requiring secondary containment for new tanks (since no new underground tanks are assumed to be
Exhibit A-1 presents a breakdown of costs incurred by AHFDSs and FCTs as a result of the proposed rule.

Exhibit A-1 – Cost Summary, Preferred Option

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>COSTS ASSOCIATED WITH AHFDS ($ MILLIONS)</th>
<th>COSTS ASSOCIATED WITH FCTS ($ MILLIONS)</th>
<th>TOTAL COSTS ($ MILLIONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release detection (including management costs)</td>
<td>$22.0</td>
<td>$5.3</td>
<td>$27.2</td>
</tr>
<tr>
<td>All other requirements associated with the removal of deferrals (Subparts B, C, E, and G)</td>
<td>$0.1</td>
<td>$0.04</td>
<td>$0.1</td>
</tr>
<tr>
<td>Other requirements of the proposed rule (Walkthrough inspections; overfill prevention equipment tests; spill prevention equipment tests; testing after repairs to spill and overfill prevention equipment, and interstices; operator training; one-time notification of existence)</td>
<td>$0.5</td>
<td>$0.4</td>
<td>$0.8</td>
</tr>
<tr>
<td>Total</td>
<td>$22.5</td>
<td>$5.7</td>
<td>$28.2</td>
</tr>
</tbody>
</table>

Note: These figures are adjusted for baseline regulatory compliance (i.e., only 43 percent of FCTs and 60 percent of AHFDSs incur costs associated with the removal of deferrals). However, these figures are not discounted to reflect the proposed three-year phase-in period associated with the removal of deferrals. With discounting, the total costs associated with regulating AHFDSs and FCTs under the preferred option are $22.6 million ($18 million for AHFDSs and $4.6 million for FCTs).

Columns and/or rows may not sum exactly due to rounding.

A.3 Key Cost Components of the Removal of Deferrals – Alternative Option 1

Alternative Option 1 imposes more extensive release detection requirements on both FCTs and AHFDSs than the Preferred Option. For FCTs, those tanks utilizing an ATG operating at a leak rate greater than 0.2 gallon per hour, or without an existing ATG, will be required to undergo a

Installed for these systems). For AHFDS piping, EPA does not believe secondary containment with interstitial monitoring is appropriate due to the extreme length of AHFDS piping runs, which complicates the need to slope piping back to a containment sump, and the need for steel piping given the high pressures (since corrosion due to water in the interstitial space is hard to prevent or control). As a result, EPA is not requiring secondary containment for piping associated with these systems; therefore, we also assume that there are no costs associated with requirement secondary containment for new piping.

EPA assumes that FCTs and AHFDSs would meet the current release detection requirements by using 40 CFR 280.43(h) Other methods. Specifically, EPA assumes that tanks would be required to monthly detect a leak rate of 0.2 gallon per hour, and piping would be required to monthly detect a leak rate of 3 gallon per hour (in lieu of an automatic line leak detector) with an annual test of 0.1 gallon per hour. Furthermore, in estimating costs for these systems, EPA assumes that DoD will have third-party vendors come on-site to conduct the periodic tests.
monthly precision test at 0.2 gallon per hour. In addition, monthly release detection monitoring and annual operability tests of existing ATGs operating at 0.2 gallon per hour. Testing requirements for piping associated with FCTs will also be required, and are assumed to be identical to those required for AHFDSs described below.

For AHFDSs, Alternative Option 1 requires that all piping undergo both a monthly precision test at 3.0 gallons per hour, as well as an annual precision test at 0.1 gallon per hour. Requirements concerning the installation of ATGs, monthly release detection monitoring, and annual operability tests are identical to the Preferred Option. Costs incurred under the other subparts are also identical to the Preferred Option. **Exhibit A-2** presents a breakdown of costs incurred by AHFDSs and FCTs because of the proposed regulatory requirements under Alternative Option 1.

Exhibit A-2 – Cost Summary, Alternative 1

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>COSTS ASSOCIATED WITH AHFDS ($ MILLIONS)</th>
<th>COSTS ASSOCIATED WITH FCTS ($ MILLIONS)</th>
<th>TOTAL COSTS ($ MILLIONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release detection (including management costs)</td>
<td>$141.8</td>
<td>$40.4</td>
<td>$182.1</td>
</tr>
<tr>
<td>All other requirements associated with the removal of deferrals (Subparts B, C, E, and G)</td>
<td>$0.1</td>
<td>$0.04</td>
<td>$0.1</td>
</tr>
<tr>
<td>Other requirements of the proposed rule (Walkthrough inspections; overfill prevention equipment tests; spill prevention equipment tests; testing after repairs to spill and overfill prevention equipment, and interstices; operator training; and one-time notification of existence)</td>
<td>$0.6</td>
<td>$0.6</td>
<td>$1.2</td>
</tr>
<tr>
<td>Total</td>
<td>$142.5</td>
<td>$41.0</td>
<td>$183.5</td>
</tr>
</tbody>
</table>

Note: These figures are adjusted for baseline regulatory compliance (i.e., only 43 percent of FCTs and 60 percent of AHFDSs incur costs associated with the removal of deferrals). However, these figures are not discounted to reflect the proposed three-year phase-in period associated with the removal of deferrals. With discounting, the total cost of this requirement under Alternative 1 is $153 million ($120 million for AHFDSs and $33 million for FCTs).

Columns and/or rows may not sum exactly due to rounding.
A.4 Detailed Cost Analysis – Release Detection

Release detection requirements represent a majority of all costs pertaining to FCTs and AHFDSs. It is also the most complex part of the cost calculations, with numerous inputs and parameters. **Exhibit A-3** displays these values as well as the assumptions or basis behind them.

Exhibit A-3

<table>
<thead>
<tr>
<th>INPUT/PARAMETER</th>
<th>VALUE</th>
<th>SOURCE/BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of FCTs</td>
<td>239</td>
<td>See Chapter 2</td>
</tr>
<tr>
<td>Percent of FCTs without existing ATGs</td>
<td>50%</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Percent of FCTs with existing ATGs</td>
<td>50%</td>
<td>100% less 50% of FCTs without existing ATGs</td>
</tr>
<tr>
<td>Percent of FCTs with existing ATGs operating at 0.2 gallon per hour</td>
<td>25%</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Monthly release detection monitoring cost for ATGs</td>
<td>$5.24</td>
<td>ATG monthly costs, ICR Cost Inputs, Tab 11</td>
</tr>
<tr>
<td>Annual operability test cost for ATGs</td>
<td>$72.89</td>
<td>Annualized cost for ATG operability tests, Cost Model Inputs 3-22-10 “Revised Costs” for Operability tests for release detection methods</td>
</tr>
<tr>
<td>Percent of FCTs with existing ATGs operating at more than 0.2 gallon per hour</td>
<td>75%</td>
<td>100% less 25% of FCTs with existing ATGs operating at 0.2 gallon per hour</td>
</tr>
<tr>
<td>Percent of FCTs with existing ATGs operating at more than 0.2 gallon per hour operating at 0.3 - 1.0 gallon per hour</td>
<td>50%</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Percent of FCTs with existing ATGs operating at more than 0.2 gallon/ hour operating at 1.0 - 2.0 gallons/hour</td>
<td>50%</td>
<td>100% less 50% of FCTs with existing ATGs operating at more than 0.2 gallon per hour operating at 0.3 - 1.0 gallon per hour</td>
</tr>
<tr>
<td>Average FCT size</td>
<td>250,000 gallons</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Percent of FCTs with “long” associated piping of one mile</td>
<td>100%</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Percent of FCTs with “short” associated piping of 300 feet</td>
<td>0%</td>
<td>100% less 100% of FCTs with “long” associated piping of one mile</td>
</tr>
<tr>
<td>Percent of FCTs with “short” associated piping using electronic line leak detectors</td>
<td>50%</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Percent of FCTs with “short” associated piping using mechanical line leak detectors</td>
<td>50%</td>
<td>100% less 50% of FCTs with “short” associated piping installing electronic line leak detectors</td>
</tr>
<tr>
<td>Electronic line leak detector installation cost</td>
<td>$77</td>
<td>TO 3003 TDD#9, page 8, annualized over 20 years with a 7 percent discount rate</td>
</tr>
<tr>
<td>Mechanical line leak detector installation cost</td>
<td>$23</td>
<td>TO 3003 TDD#9, page 8, annualized over 20 years with a 7 percent discount rate</td>
</tr>
</tbody>
</table>

5 Due to major data limitations, except otherwise indicated, the assumptions used to model these systems are based on EPA’s best professional judgment.
<table>
<thead>
<tr>
<th>INPUT/PARAMETER</th>
<th>VALUE</th>
<th>SOURCE/BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual line leak detector line tightness cost</td>
<td>$114</td>
<td>ICR page 63, Exhibit 1</td>
</tr>
<tr>
<td>Line leak detector annual operability test cost</td>
<td>$75</td>
<td>Annualized cost for LLD operability tests, Cost Model Inputs 3-22-10 “Revised Costs” for Operability tests for release detection methods</td>
</tr>
<tr>
<td>Number of AHFDSs</td>
<td>162</td>
<td>See Chapter 2</td>
</tr>
<tr>
<td>Number of tanks per AHFDS</td>
<td>8</td>
<td>See Chapter 2</td>
</tr>
<tr>
<td>Percent of tanks associated with AHFDSs with existing ATGs</td>
<td>50%</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Percent of tanks associated with AHFDSs without existing ATGs</td>
<td>50%</td>
<td>100% less 50% of tanks associated with AHFDSs with existing ATGs</td>
</tr>
<tr>
<td>Installation cost for an ATG with eight probes (suitable for an AHFDS with eight associated tanks)</td>
<td>$1,276</td>
<td>Conversation with OUST, May 5, 2010: Annualized cost of: $4,051, cost of ATG with one probe (from TO 3003 TDD#9, page 8); plus eight hours of labor at $75/hour for installation; plus $1,352 per probe for seven additional probes</td>
</tr>
<tr>
<td>Percent of AHFDSs using precision testing of piping as their release detection mechanism</td>
<td>100%</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Number of miles per AHFDS (piping run)</td>
<td>5</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Number of “sections” per mile of piping in an AHFDS</td>
<td>2</td>
<td>EPA assumption</td>
</tr>
<tr>
<td>Percent of AHFDSs using an automatic line leak detector at 3.0 gallons per hour as their release detection mechanism</td>
<td>0%</td>
<td>100% less 100% of AHFDSs using precision test of piping as their release detection mechanism</td>
</tr>
<tr>
<td>Average precision test cost - tanks</td>
<td>$8,566</td>
<td>Average of the estimated precision testing costs for a 250,000 gallon tank as provided via three methods: Vista, Mass. Tech., and Varec. Vista costs $6,500 per tank, Mass. Tech. costs $2,000 - $25,000 depending on the size of the tank ($6,839 for a 250,000 gallon tank), and Varec costs $8,200 - $28,000 depending on the size of the tank ($12,358 for a 250,000 gallon tank).</td>
</tr>
<tr>
<td>Average precision test cost - piping run</td>
<td>$96,600</td>
<td>Average of the estimated precision testing costs for a piping run of five miles, with two sections per mile, provided via three methods: HCNA, Vista, and Varec. HCNA costs $5,500 per section, Vista costs $5,000 per section, and Varec costs $7 per foot.</td>
</tr>
</tbody>
</table>

*The proposed rule differentiates release detection requirements by requiring precision testing and ATGs to monitor tanks and piping systems at a certain gallon per hour standard. Although it takes longer to complete a precision test at a lower leak rate, we do not cost out the downtime associated with these precision tests. We do not cost out this downtime because, as virtually all FCTs and AHFDSs are located at Department of Defense (DoD) facilities, it is likely that these facilities both have a plan in place to prevent the loss of essential functions during routine maintenance such as a precision test and that these facilities do not have perpetual operations that would incur costs when forced to stop for a precision test. In addition, we believe that it is...
reasonable to assume that these DoD facilities will have backup systems in place such that routine maintenance would not impede operations. Similarly, for the few commercial airport facilities with AHFDs, we assume that the precision testing can be scheduled during facility downtime, so that no additional costs associated with a longer precision test are incurred.

Release Detection for FCTs – Preferred Option

Release detection costs for FCTs can be broken down into costs related to tanks and costs related to the piping associated with FCTs. Under the proposed release detection requirements for FCTs, FCTs are required to utilize an acceptable release detection method, which entails any of the following:

- an ATG operating at a leak rate of 0.2 gallon per hour;
- annual precision testing at a leak rate of 0.5 gallon per hour;
- an ATG operating at a leak rate of 0.3 to 1.0 gallon per hour, and precision testing at 0.1 gallon per hour every three years; or
- an ATG operating at a leak rate of 1.0 to 2.0 gallons per hour, and precision testing at 0.1 gallon per hour every two years.6

We use the assumptions described in Exhibit A-3 to calculate the release detection costs associated with FCTs.

Given the assumptions that 50 percent of all FCTs have existing ATGs, and of these, 25 percent operate at a leak rate of 0.2 gallon per hour, we calculate monthly release detection monitoring costs of $1,879 (239*0.5*0.25*$5.24*12) and annual operability test costs of $2,178 (239*0.5*0.25*$72.89). Thus, FCTs with ATGs currently operating at a leak rate of 0.2 gallon per hour incur a cost of $4,056 annually.

We assume that remaining FCTs with existing ATGs operate at leak rates of either 0.3 to 1.0 gallon per hour or 1.0 to 2.0 gallons per hour, and must therefore also include a tri-annual or bi-annual precision test, respectively. We also assume that the remaining universe of FCTs with existing ATGs is divided evenly between the two groups. For those with existing ATGs operating at a leak rate of 0.3 to 1.0 gallon per hour, we calculate monthly release detection monitoring costs of $2,818 (239*0.5*0.75*0.5*$5.24*12), annual operability test costs of $3,266 (239*0.5*0.75*0.5*$72.89) and bi-annual precision testing costs of $191,927 (239*0.5*0.75*0.5*$8,566/2). Thus, FCTs with ATGs currently operating at a leak rate of 0.3 to 1.0 gallon per hour incur a cost of $198,011 annually.

6 Under the proposed rule, FCTs can also use any other monitoring method approved by the implementing agency as a method of release detection. For modeling purposes, however, we assume, that owners or operators will only use the methods listed above.
For FCTs with existing ATGs operating at a leak rate of 1.0 to 2.0 gallons per hour, we calculate similar monthly release detection monitoring and annual operability test costs, and tri-annual precision testing costs of $127,951 \((239*0.5*0.75*0.5*8,566/3)\). Thus, FCTs with ATGs currently operating at a leak rate of 1.0 to 2.0 gallons per hour incur a cost of $134,036 \((127,951+2,818+3,266)\) annually.

For the 50 percent of existing FCTs without ATGs currently installed, we assume that an annual precision test is conducted. The total cost incurred by these FCTs annually is $1,023,612 \((239*0.5*8,566)\).

We assume that all FCTs have one mile of associated piping, which is subject to the release detection requirements applicable to AHFDSs (see below). The total costs incurred by the piping associated with FCTs is $9,234,960, or 239*$96,600/5 (standard testing costs apply to a five-mile-long piping run)*2 (testing is performed semiannually).

Total FCT release detection costs are $10,594,675, of which over 87 percent are related to the piping associated with these systems.

Release Detection for FCTs – Alternative Option 1

Under Alternative Option 1, for modeling purposes, we assume that FCTs will be able to meet release detection requirements by either using an ATG operating at a leak rate of 0.2 gallon per hour, or by conducting a monthly precision test.

Those FCTs with existing ATGs operating at a leak rate of 0.2 gallon per hour will incur costs similar to those incurred under the Preferred Option: $4,056. However, FCTs with existing ATGs operating at a greater leak rate must undergo monthly precision testing. The total annual costs are $9,212,507 \((239*0.5*0.75*8,566*12)\). In addition, those FCTs without existing ATGs must also undergo monthly precision testing, which total $12,283,343 annually \((239*0.5*8,566*12)\). Finally, piping associated with FCTs must undergo the same testing requirements as AHFDSs under Alternative Option 1 \((239*96,600/5)\) (standard testing costs apply to a five-mile-long piping run)*13 (monthly testing plus an annual test, or $60,027,240).

Under Alternative Option 1, total costs for release detection associated with FCTs are approximately $81,527,000, with over 70 percent of this related to the associated piping.

Release Detection for AHFDSs – Preferred Option

Release detection costs for AHFDSs can be divided into tank costs and associated piping costs.

We assume that all tanks associated with AHFDSs will utilize an ATG operating at a leak rate of 0.2 gallon per hour as the release detection method (i.e., none will use a precision test). Furthermore, we assume that 50 percent of the systems have ATGs already installed on them, while ATGs would have to be installed on the remainder. For those systems with existing ATGs, we calculate monthly release detection monitoring costs to be $40,746 \((162*8*0.5*5.24*12)\) and annual operability test costs for the ATGs to be $47,233 \((162*8*0.5*72.89)\). Total annual costs for these tanks are thus $87,979.
For the other 50 percent of existing tanks associated with AHFDSs that lack ATGs, we calculate annualized ATG installation costs to be $103,333 (162*0.5*$1,276). Monthly release detection monitoring and annual operability test costs for the ATGs are identical to those stated above. Total annual costs for these tanks are thus $191,312 ($87,979+$103,333). Overall, total annual costs for all tanks associated with AHFDSs are $279,291 ($87,979+$191,312).

The Preferred Option would require that the piping of AHFDSs undergo semiannual precision testing. Total annual costs for the precision testing of piping associated with AHFDSs are $31,298,400, or 162*2*$96,600.

We calculate total annual release detection costs incurred by AHFDSs to be $31,577,691, of which over 99 percent are related to the piping associated with AHFDSs.

Release Detection for AHFDSs – Alternative Option 1

Under Alternative Option 1, release detection for AHFDSs consists of a monthly precision test at 3.0 gallons per hour as well as an annual precision test at 0.1 gallon per hour. Because we do not differentiate costs for precision tests by their leak rate (see Note 1 in Exhibit A-3), this is the equivalent of 13 precision tests annually. Total costs for tanks associated with AHFDSs do not change between the Preferred Option and Alternative Option 1: they remain $279,291. The cost of 13 precision tests annually for AHFDS piping is $203,439,600, or 162*13*$96,600.

Under Alternative Option 1, total annual costs for release detection associated with AHFDSs are $203,718,891, of which over 99 percent are related to the piping associated with AHFDSs.

Management Costs Associated with Release Detection – Preferred Option

In addition to the direct costs of the proposed release detection requirements, we also estimate management costs associated with the regulation. These management costs consist of five percent overhead costs associated with government/contractor program management, ten percent government contracting costs, and one percent base support costs. Altogether, we estimate a sixteen percent management cost associated with release detection.

Sixteen percent of total FCT release detection costs is $1,695,948. Sixteen percent of total AHFDS release detection costs is $5,052,431. Total annual management costs associated with release detection are thus $6,747,579. In sum, under the Preferred Option, release detection costs for FCTs and AHFDSs, including management costs, are $48,919,945.

7 The proposed rule also allows owners and operators of AHFDSs to use alternate release detection methods: automatic line leak detector capable of detecting a leak at 3.0 gallons per hour at 10 psi line pressure within 1 hour or equivalent plus quarterly interstitial monitoring; continuous interstitial monitoring; or another method approved by the implementing agency. For modeling purposes, however, we assume that owners or operators will only use the methods listed above.

8 Bulk Field Construct UST Testing Summary and Pipeline Testing Cost Summary provided by DESC March 8, 2010, in “EPA Cost Summary.xlsx.”
Management Costs Associated with Release Detection – Alternative Option 1

Sixteen percent of total FCT release detection costs under Alternative Option 1 is $13,043,678. Sixteen percent of total AHFDS release detection costs under Alternative Option 1 is $32,595,023. Total management costs associated with release detection under Alternative Option 1 are thus $45,638,701. In sum, under Alternative Option 1, release detection costs for FCTs and AHFDSs, including management costs, are $330,885,403.

A.5 Detailed Cost Analysis – Subparts B, C, E, G

Subpart B

Subpart B concerns the design, construction, installation, and notification of new FCTs and AHFDSs. We assume, however, that no new FCTs or AHFDSs will be installed. Thus, the requirements associated with Subpart B incur no costs.9

Subpart C

EPA assumes that both FCTs and AHFDSs are already equipped with corrosion protection (i.e., constructed of: non-corrodible material, coated and cathodically protected steel according to a code of practice developed by a nationally recognized association or independent testing laboratory, fiberglass reinforced plastic (FRP), or steel tank clad with FRP).10 EPA assumes continual monthly and annual inspections for corrosion protection. As a result, EPA assumes no incremental costs will occur associated with the cathodic protection inspection of Subpart C. However, we do assume that AHFDSs and FCTs will incur a recordkeeping cost associated with these inspections.

To estimate recordkeeping costs, we assume that each owner/operator will incur approximately $3.91 in labor cost (0.1 clerical hours) and approximately $0.10 in operation and maintenance costs. As each FCT is required to comply with this requirement, the annual cost for FCTs is $958.66 (approximately $4.01*239 FCTs). AHFDSs incur similar costs for maintaining records, which total $649.80 per year ($4.01*162 AHFDSs) (note that minor rounding affects these calculations).

Subpart C also requires owners and operators to maintain repair records. This consists of: (1) gathering information on each repair; (2) conducting a tightness test 30 days after repair; and (3) maintaining records. EPA assumes three percent of FCTs and AHFDSs require repair annually.11 Gathering information on repair requires one technical hour of labor ($73.80), while maintaining records requires 0.1 clerical hour of labor ($3.91) and $0.10 in operation and maintenance costs.

9 EPA assumes that existing systems already meet spill, overfill, and corrosion protection requirements (based on meeting with DESC on February 18, 2010).

10 Based on a meeting between EPA/OUST and Defense Energy Support Center (DESC) on February 18, 2010.

11 OUST 2007 ICR.
For FCTs, we assume that tightness testing performed after a repair costs $1,750. The total costs for FCTs to test and maintain records are $13,105.39 ($73.80+$1,750+$4.01*7.17, which is three percent of 239 existing FCTs). Total FCT costs for Subpart C are then $14,064.05.

For AHFDSs, tightness testing following a repair must occur for every tank within the system. Given our assumption of an average of eight tanks associated with each AHFDS, we calculate costs associated with this portion of subpart C for AHFDSs to be $68,418.15 ($73.80+$1,750*8+$4.01*4.86, which is three percent of 162 existing AHFDSs). Total AHFDS costs for Subpart C are then $69,067.95.

Subpart E

Subpart E requires owners and operators to report to the implementing agency suspected or actual releases of regulated substances, release investigation and confirmation, and reporting and cleanup of spills and overfills. Gathering information occurs on two levels – the facility level and the contractor level. Facilities are assumed to use one managerial hour and four technical hours on gathering information ($385.94 total), as well as $2,653 in operation and maintenance costs. We assume contractors use five managerial hours, 31 technical hours, and 15 clerical hours ($3,328.13 total) with no operation and maintenance costs. We assume five percent of all FCTs suspect a release each year. In addition, we assume 60 percent of facilities with suspected releases report them, which requires 0.25 managerial hours ($22.69) and $0.43 in operation and maintenance costs. Three percent of all FCTs are assumed to report a fill or overfill, and three percent are also assumed to notify the agency in the event that they are unable to clean up a spill. These notification costs are identical: 0.5 managerial hours ($45.37 and $3.00 in operation and maintenance costs). Total FCT costs for Subpart E are then $76,945.84, or the sum of ($385.94+$2,653+$3,328.13*11.95, or five percent of 239), and ($22.69+$0.43+$45.37+$45.37+$3.00+$3.00*7.17, or three percent of 239).

AHFDSs incur identical costs to FCTs for compliance with Subpart E, with the only difference that there are 162 existing AHFDSs as compared to 239 existing FCTs. Total AHFDS costs for Subpart E are $52,155,76, or the sum of ($385.94+$2,653+$3,328.13*8.1, or five percent of 162), and ($22.69+$0.43+$45.37+$45.37+$3.00+$3.00*4.86, or three percent of 162).

Subpart G

Subpart G requires that owners and operators conduct a site assessment of the excavation zone, as well as provide notification of the closure or change-in-service. In addition, owners and operators must maintain records after permanent closure or change-in-service for at least three years, and mail records to the implementing agency if they are unable to maintain them on site. We assume that one FCT will close every five years. Notification of closure or change-in-service}

12 Email from George Thuemling at Varec, October 23, 2009.

14 Information provided by OUST, March 17, 2010.
service requires 0.25 managerial hours ($22.69) and $3.00 for operation and maintenance costs. Site assessment of the excavation zone takes place on two levels—the facility level and the contractor level. The facility level requires 2.75 managerial hours ($249.56) and $2,333 for operation and maintenance costs. The contractor level requires 6 managerial hours, 40 technical hours, and 18 clerical hours ($5,113.86). Maintaining records requires 0.1 hours of clerical time ($3.91) and $0.10 for operation and maintenance costs. We assume that records for all FCTs will be maintained on site, and will not be mailed to an implementing agency. Total FCT costs for Subpart G are calculated as $1,545.22. (($22.69+$3.00+$2,333+$249.56+$5,113.86+$4.01)*0.0008368). Note that this calculation multiplies the costs enumerated above by 0.0008368, or the number of FCTs closing every five years (1/(239*5)).

Subpart G for AHFDSs is similar to that for FCTs. We assume that one AHFDS will close every five years. In addition, unlike FCTs, we assume that closing AHFDSs cannot maintain records on site, and will have to mail them to them implementing agency at a cost of 0.5 clerical hours ($19.56) and $3.00 in operation and maintenance costs. Thus, total AHFDS costs for Subpart G are $1,549.73 (($22.69+$3.00+$2,333+$249.56+$5,113.86+$4.01+$19.56+$3.00)*0.0012346). Note that this calculation multiplies the costs enumerated above by 0.0012346, or the number of AHFDSs closing every five years (1/(162*5)).

A.6 Detailed Cost Analysis – Other New Regulatory Requirements

If deferrals are removed from AHFDS and FCT systems, additional requirements under the proposed regulations also become mandatory for these systems. This section summarizes the methodology for valuing those requirements. Note that the estimates in this section are generally consistent with the timing and costs required for other types of tanks (see Chapter 3), but reflect a different labor rate more consistent with work performed at DoD facilities.

Walkthrough Inspections

The proposed regulation requires monthly walkthrough inspections for all tanks, including FCTs and AHFDSs. For FCTs, the walkthrough inspection, which includes the cost of repairs, if necessary, requires 50 minutes of technical labor ($63.47) plus $0.13 in time value of money costs. In addition, recordkeeping for this requirement costs $4.01 in total (0.1 hour of clerical labor at $3.91 and $0.10 in operation and maintenance costs). As walkthrough inspections are required monthly under both the Preferred Option and Alternative Option 1, the annual cost of this requirement for FCTs is $188,258.71 (($63.47+$0.13+$4.01)*239*12).

For AHFDSs, the walkthrough inspection requires 85 minutes of technical labor ($124.20) as well as $1.32 in time value of money costs. In addition, recordkeeping for walkthrough

15 Information provided by OUST, March 17, 2010.
16 Information provided by OUST, December 11, 2009.
17 This is an annual cost stemming from costs incurred due to finding problems earlier under the regulatory requirements as compared with the baseline. See Appendix D for discussion on the time value of money.
18 Information provided by OUST, March 22, 2010.
inspections for AHFDSs are identical to those for FCTs. The annual cost of this requirement for AHFDSs is $213,605.82 (($124.20+$1.32+$4.01)*162*12).

Overfill Prevention Equipment Tests

Under the Preferred Option, the proposed regulation requires overfill prevention equipment tests for all tanks, including FCTs and AHFDSs, every three years. The testing component costs $214 annually per tank. In addition, there is a time value of money cost of $11.00.\(^{20}\) Recordkeeping for this requirement costs $4.01 ($3.91 for 0.1 hours of clerical labor and $0.10 in operation and maintenance costs). We calculate total annual costs for FCTs for the requirement to be $18,244.81 (($214+$11.99+$4.01)*239/3).

Costs for overfill prevention equipment tests are similar for AHFDSs, except that overfill prevention equipment tests take place on a by-tank basis. Since we assume eight tanks per AHFDS, the total testing cost at one AHFDS is approximately $1,800 (($214+$11.00)*8). Correspondingly, total annual costs for AHFDSs for this requirement are $97,418.00 (($1,800+$4.01)*162/3).

Under Alternative Option 1, overfill prevention equipment tests would be required every year. The time value of money cost in this case is $3.92.\(^{21}\) Total annual costs for overfill prevention equipment tests for FCTs and AHFDSs would be $336,113.37 (((($214+$3.92+$4.01)*239) + ($1,743+$4.01)*162)).

Spill Prevention Equipment Tests

Under the Preferred Option, the proposed regulation requires annual spill prevention equipment tests for all tanks, including FCTs and AHFDSs. The testing component, which does not include the cost of repair, costs $125 per spill prevention equipment unit, as well as $3.34 in time value of money costs.\(^{22}\) As with the other requirements, there is a $4.01 recordkeeping component ($3.91 for 0.1 hours of clerical labor and $0.10 in operation and maintenance costs). For FCTs, the total annual cost of this requirement is $31,631.67 ($125+$3.34+$4.01*239). We assume that the tanks associated with AHFDSs do not have spill prevention equipment, and therefore do not require any spill prevention equipment tests.\(^{23}\)

\(^{19}\) This is an annual cost stemming from costs incurred due to finding problems earlier under the regulatory requirements as compared with the baseline. See Appendix D for discussion on the time value of money.

\(^{20}\) This is an annual cost associated with the cost of finding issues requiring repair three years earlier as a result of requiring operability tests every year. See Appendix D for discussion on the time value of money.

\(^{21}\) The time value of money cost falls since tests are required each year. For more information on how the time value of money is calculated, see Chapter 3 and Appendix D.

\(^{22}\) This is an annual cost associated with the cost of finding issues requiring repair three years earlier as a result of requiring the tightness test every year. See Appendix D for discussion on the time value of money.

\(^{23}\) The underground storage tanks associated with AHFDSs are typically intermediate tanks that are fed by larger tanks through permanently connected piping.
Under Alternative Option 1, spill prevention equipment would have to be replaced every three years, rather than being tested annually. The cost of replacing a spill bucket is $2,000 and the recordkeeping component applies for each replacement, so the total annual cost is calculated by annualizing the cost of a $2,000 replacement plus $4.01 in recordkeeping every three years. This cost is $182,508, or $763.63 ($2,004.01 annualized over three years with a seven percent discount rate) times 239.

Testing after Repairs to Spill and Overfill Prevention Equipment

The proposed regulation requires spill prevention equipment testing, overfill prevention equipment testing, and the recordkeeping associated with both of these activities for all tanks that have undergone repairs, including FCTs and AHFDSs. We assume that 15.6 percent of all spill prevention equipment requires repairs every year, as the average spill prevention equipment test pass rate is 84.4 percent.\(^{24}\) We also assume that 21.4 percent of all overfills require repairs every year, as the average overfill equipment test pass rate is 78.6 percent.\(^{25}\) The testing costs associated with these tests are the same as those stated in earlier sections. For FCTs, the total annual cost for testing spill prevention equipment after repairs is $4,810.05 (($125+$4.01)*37.28, or 15.6 percent of 239 FCTs), and the total annual cost for testing overfill prevention equipment after repairs is $11,150.40 (($214+$4.01)*51.15, or 21.4 percent of 239 FCTs). The total cost for this requirement for FCTs comes out to $15,960.45.

The tanks associated with AHFDSs do not have spill prevention equipment. However, since the overfill prevention equipment tests is performed on a per-tank basis, each AHFDS requiring a repair incurs the testing cost for each of its tanks. We assume an average of eight tanks associated with each AHFDS. Thus, for AHFDSs, the total annual cost for testing overfill prevention equipment after repairs is $59,490.67 (($214*8+$4.01)*34.67, or 21.4 percent of 162 AHFDSs).

Ownership Change Notification

The proposed regulation requires notification of ownership changes from all facilities changing ownership. Each of these notifications requires 0.25 managerial hours, or $22.69. We assume that one percent of all FCTs (2.39 FCTs) will change ownership every year. Thus, the total annual cost for FCTs pertaining to this requirement is $54.22 ($22.69*2.39).

The costs incurred under this requirement are identical for AHFDSs. The total annual cost for AHFDSs is $36.75, or $22.69*1.62 (one percent of existing AHFDSs).

Recordkeeping Associated with Compatibility

EPA assumes that existing AHFDSs and FCTs are not storing regulated substances blended with more than ten percent alcohol, and therefore, owners and operators of these systems would not

\(^{24}\) Based on information on test pass rates for spill bucket sumps.

\(^{25}\) Based on information on test pass rates for overfill alarms, flow restrictors, and automatic shutoff devices.
choose to demonstrate compatibility with those fuel blends. However, the proposed regulation would require that owners and operators retain equipment records for all new and replaced equipment. EPA assumes that all owners and operators of these systems will incur this cost annually as part of annual maintenance and replacement of UST system components. This recordkeeping cost is $1.88 per record, plus $0.01 to permanently store the record. Total annual recordkeeping costs associated with compatibility are $2,895 ($1.89 * 239 FCTs + $1.89 * 162 AHFDSs * 8 UST systems per AHFDS).

Operator Training

The operator training requirement includes both the costs of testing and training operators, as well as associated recordkeeping. Testing and training costs include both yearly and first-year costs. First-year costs are initial training costs incurred by all facilities. Yearly costs are costs of training new staff necessary to serve as operators. These costs are calculated according to the methodology below.

For modeling purposes, we assume that each facility will require one Class A (managerial labor, facilities), one Class B (technical labor, facilities), and three Class C (military pay grade of E-6) operators. \(^\text{26}\) For Class A and B operators, we assume 20 percent “test out” and do not require training. \(^\text{27}\) For those testing out, the facility incurs the cost of a test (assumed to be $60), as well as the 1.5 hours necessary to take the test. \(^\text{28,29}\) Because only 20 percent of operators “test out,” the test costs are, on average, $39.22 for Class A operators and $34.14 for Class B operators, or $60 plus (1.5* the labor rate)*0.2. For the 80 percent that cannot “test out,” each operator must take a no-cost online training that culminates in a final exam. The final exam costs $169, and the training process requires ten hours of time. \(^\text{30}\) Thus, the cost for operator training for those not testing out is $861.18 for Class A operators and $725.58 for Class B operators, or $169 plus (10* the labor rate)*0.8.

Class C operators are assumed to be trained by Class B operators. This training is assumed to take one hour of time for the Class B operator, as well as one hour each for the Class C operators being trained. Thus, the costs per facility for training Class C operators are $144.83, or $73.80 (Class B operator hourly rate) plus $66.56 (the hourly rate for three Class C operators). The total one-year cost for a facility then, incurred in the first year that the Operator Training requirement

\(^{26}\) Assumption provided by OUST, September 8, 2009.

\(^{27}\) Assumption provided by OUST, September 10, 2009.

\(^{29}\) See http://www.iccsafe.org/certification/ust-ast/2009UST-AST.pdf, 1.5 hours is the length of California’s test.

\(^{30}\) See http://www.petroleumtrainingsolutions.com/resources/ColoradoAB.pdf, the Colorado “webinar.” The exam requires approximately two hours, and the training consists of two four-hour sessions, for a total of ten hours.
goes into effect, is $1,804.49, which, in its annualized form and including recordkeeping costs, is $170.33.

Yearly costs stem from turnover among operators, and the need to train new operators. Assuming a turnover rate of 22 percent per year for all operators, and that 20 percent of new Class A and Class B operators continue to “test” out while all new Class C operators must receive initial training, we obtain yearly costs of $332.84: \((0.2 \times 0.8 \times \$861.18 \text{ plus } 0.2 \times \text{Class A labor rate}) \text{ plus } (0.2 \times 0.8 \times \$725.58 \text{ plus } 0.2 \times \text{Class B labor rate}) \text{ plus } ($140.35/3 \times 0.66)\). \(^{31}\)

For FCTs, operator training incurs a total annual cost of $119,299.92, or $170.33 plus $328.83 * 239. For AHFDSs, operator training incurs a total annual cost of $80,864.38, or $170.33 plus $328.83 * 162.

One-Time Notification of Existence

The proposed rule requires owners and operators of AHFDSs and FCTs to provide a one-time notification to appropriate implementing agencies that their systems exist. EPA assumes that it will take 15 minutes of managerial labor to prepare and submit the notification. For AHFDSs, total annual costs is $3,675 \((162 \times 0.25 \times \$90.75)\). Annualized over a 20-year regulatory horizon, these costs are $347 per year. For FCTs, total annual costs is $5,422 \((239 \times 0.25 \times \$90.75)\). Annualized over a 20-year regulatory horizon, these costs are $512 per year.

\(^{31}\) We assume turnover rates for all classes to be between 20 and 24 percent per year; 22 percent is the average turnover rate. For Class C operators, this means that there is an annual turnover of 66 percent since we assume three Class C operators per FCT/AHFDS.
The Guam Environmental Protection Agency (Guam EPA) seeks to propose rules and regulations for the underground storage of regulated substances by way of underground storage tanks (USTs). In accordance with 10 GCA §76104(d), and as enacted by passage of Guam Public Law 30-36 on June 19, 2009, the Guam EPA administrator shall “enact, modify, update, repeal, and enforce rules and regulations governing UST design, construction, installation, release detection and inventory control, compatibility, record maintenance, reporting, corrective action, closure, and financial responsibility in order to enforce this Chapter;”

The promulgation of these proposed rules and regulations seeks to administratively satisfy the following:

• Compliance with the United States Environmental Protection Agency’s (USEPA) for governing local USTs in a manner that is consistent or more stringent with federal regulations under Resource Conservation and Recovery Act (RCRA), Subtitle I, and in accordance with 40 CFR 280;
• A requirement to achieve State Program Approval (SPA) for local primacy and funding to have sole authority over USTs on Guam, pursuant to 40 CFR 281;
• Adherence to the $250 annual fee associated with permitting a UST, in accordance with 10 GCA §76117(a); and
• Administer nominal fees that will allow Guam EPA to comply with RCRA I requirements such as regular release detection equipment testing and walkthrough inspections that seek to ensure proper operation and maintenance as keys for preventing and quickly identifying regulated substance releases.

At this present time, Guam does not have a SPA UST state program. Guam EPA administers a UST Program utilizing the federal regulations, rendering the regulated community to bear cost burdens to comply with both federal mandates and local statutes. These proposed regulations will incorporate current RCRA I requirements for USTs, and provide Guam with the proper administrative mechanism to move towards a single UST SPA program that will be aligned with federal regulations.

This proposed rulemaking action requires Guam EPA to implement regulations that mirror current RCRA I mandates without discretion to consider less restrictive alternatives. Guam EPA finds that imposing additional nominal fees along with the $250 annual permit fee is crucial to bolster environmental protection by increasing emphasis on properly operating and maintaining equipment. The lack of proper operation and maintenance of UST systems has been found to be one of the main causes of the release of regulated substances to the environment, which could have significant and adverse impacts on the environment, with substantial cleanup and remediation costs.
In the spirit of the Agency’s compliance with transparency and open governance, Guam EPA hereby provides the following statements for consideration under requirements of 5 GCA §9301(f)(1-6). In addition, Guam EPA will also be including EPA’s national Environmental Impact Statement that included Guam in its survey.

(1) The purpose and the need for the rule or regulation; an assessment of the risk and the cost of the imposed rules or regulation. In addition, government agencies proposing a new rule or regulation must include with the assessment, the justification for the new rule or regulation.

Guam EPA has determined that these proposed rules and regulations for USTs is unlikely to create a serious inconsistency or interference with any other actions planned or undertaken by other instrumentalities of the Government of Guam.

Considerations for this determination are as follows:

a) In 1988, USEPA promulgated a regulation for state approved UST programs (40 CFR Part 281). Since states are the primary implementers of the UST program, USEPA wanted to set up a process where state programs could operate in lieu of the federal program if certain requirements were met. 40 CFR Part 281 sets forth minimum requirements that Guam must meet to allow our regulations to operate in lieu of the federal regulations.

b) UST regulation is important in protecting our natural and fragile island environment from releases of petroleum products. Since December 1988, USEPA mandated states and US territories to develop and implement a UST program that would require facilities to upgrade their underground tanks to prevent spills, overfilling, and corrosion. This mandate led to the enactment of Guam Public Law 30-36 on June 19, 2009. Guam P.L. 30-36 provided for Guam EPA with the statutory authority to develop the island’s UST Program.

c) Statutory authority to propose rules and regulations is codified in 10 GCA §76104(d). Furthermore, 10 GCA §76104(f) states the Guam EPA Administrator shall “enact and enforce other rules and regulations as necessary to establish a UST program, which meets the requirements of Section 9004 of Subtitle I of RCRA.” These regulations are in accordance with 40 CFR Part 280 and 40 CFR 281.

d) These proposed UST rules and regulations will also seek to establish the following:
 a. Alignment with federal requirements that is similar to certain key provisions of the 2005 Energy Policy Act. The UST provisions of the Energy Policy Act focus on preventing releases. These provisions expand eligible uses of the Leaking Underground Storage Tank (LUST) Trust Fund and includes other provisions that govern inspections, operator training, delivery prohibition, secondary containment and financial responsibility, and cleanup of releases that contain oxygenated fuel additives;
 b. Assurance that owners and operators perform proper operation and maintenance;
 c. Address UST systems deferred in the 1988 UST regulations;
 d. An update to the requirements on current technology and practices; and
 e. Technical and editorial corrections in operation and maintenance of USTs as needed.
(2) The financial impact of the proposed rule or regulation upon those persons or corporation entities directly affected by the proposed rule or regulation, and upon the people and the economy of Guam.

There are approximately 150 facilities on island that collectively own 331 regulated USTs. Of these facilities, about 100 non-governmental entities own regulated USTs. The remaining USTs are owned by the state or federal government.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Interim Permit Fee</th>
<th>Number of Tanks</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>$250.00</td>
<td>282</td>
<td>$70,500.00</td>
</tr>
<tr>
<td>2018</td>
<td>$250.00</td>
<td>282</td>
<td>$70,500.00</td>
</tr>
<tr>
<td>2017</td>
<td>$250.00</td>
<td>282</td>
<td>$70,500.00</td>
</tr>
<tr>
<td>2016</td>
<td>$250.00</td>
<td>282</td>
<td>$70,500.00</td>
</tr>
</tbody>
</table>

1A $250.00 annual fee associated with permitting a UST is already codified in statute, and is assessed in accordance with 10 GCA §76117(a).

Guam EPA reiterates that these proposed rules and regulations are administrative in nature, and will have little to no adverse financial impacts on public and private entities since all UST owners and operators have been subjected to fees that are associated with federal regulations under 40 CFR Part 280 and Guam P.L. 30-36. The promulgation of these rules and regulations is the final step for Guam to achieve SPA. With SPA, the regulated community will be subjected to fees and fines from a single local regulation, as opposed to both local and federal regulations at this current time.

<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Permits</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Application Fee per Tank (New Installation)</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Operate Fee per Tank (Annual)</td>
<td>$250.00</td>
<td>Interim Fee</td>
</tr>
<tr>
<td>Permit to Transfer</td>
<td>$250.00</td>
<td></td>
</tr>
<tr>
<td>Permit to Modify</td>
<td>$150.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Permit to Close</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Install OWS</td>
<td>$500.00</td>
<td>$550.00</td>
</tr>
<tr>
<td>Permit to Close OWS</td>
<td>$500.00</td>
<td></td>
</tr>
<tr>
<td>Request for Proposal (Copy)</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>Installer’s Certification (2 years)</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>Operator’s Certification A & B (2 years)</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>Operator’s Re-Certification (2 years)</td>
<td>$100.00</td>
<td></td>
</tr>
</tbody>
</table>

For Guam to achieve SPA, it is critical to ensure administrative compliance with 40 CFR Part 281. These proposed rules and regulations also seek to safeguard the island from potential environmental calamities, with economic benefits in mind, especially after considering the impacts of impending military buildup, and other future development on our island. Nominal fees outlined above will enhance the Agency’s ability to ensure adherence to 40 CFR Part 280 in the best interest in protecting our island’s fragile environment:
(3) Any potential increase or decrease in the price or availability of any good or service on Guam directly or indirectly attributable to the proposed rule or regulation.

The Agency does not anticipate any increase or decrease in the cost of living, nor does it anticipate any specific increase or decrease in the price or availability of any goods or services on Guam, as a result of these proposed rules and regulations.

(4) Any direct or indirect impact upon employment on Guam or any increase or decrease in the availability of a particular job or jobs in general, attributable to the proposed rule or regulation.

There are no monetary costs or benefits to the Agency or other regulatory agencies associated with the proposed rules and regulations. Guam EPA’s UST program personnel receive regulatory documentation requiring review for closure reports, site assessments, permit applications, installation notification forms, release notifications, and release response reports in compliance with the October 13, 2015 federal UST requirements.

In a market setting where producer cannot reliably pass through cost, the most significant economic impacts are related to reduce facility profits. In some cases, managers can cut supply or employment costs (this could result in smaller worker paychecks). In cases where costs exceed facility profits, it is likely that in the long term a facility would exit the market. A critical factor, therefore, is an estimated of average firm or facility profit.

A more likely response by affected firms will be to adapt by increasing prices on higher margin products and services. While overall employment impacts are unclear, it is possible that there may be an increase in labor demand due to the additional requirements placed on owners and operator, and additional demand for third-party testing services.

(5) Any increase or decrease in the cost of doing business as an enterprise or industry on Guam, or any increase or decrease in doing business in general, attributable to the proposed rule or regulation.

The average cost of removal/closure and replacement of tank systems varies widely and depends on a number of factors, including the number and size of tanks in a tank system, the amount of piping, and location variables such as the depth to the water table.

According to local contractors who perform this type of work, removal of three 10,000-gallon single-walled tanks and installation of three 10,000-gallon tanks with secondary containment could cost anywhere from $350,000 to $750,000, depending on site conditions. This is equivalent to approximately to $4,000 to $8,000 per tank per year over the 30-year life of the tanks. The cost of replacing piping for an average gas station site is estimated to be $25,000 to $42,000. These estimates include the cost of a site assessment, but do not include remediation costs.

The most common tank configuration at small businesses with singled-walled USTs is one to three tanks ranging in size from 8,000 to 10,000 gallons, so these cost estimates are on the high side. About one third of the affected small businesses will incur much lower costs to replace significantly smaller tanks or only one 10,000-gallon tank.

During the course of replacing old UST systems, tank owners may also incur cost for remediation. UST system owners and operators are already required to have financial assurance (insurance, surety bond, letter of credit, etc.) covering a minimum of $500,000 in remediation costs. The Agency is aware of cases where cleanups have cost more than one million dollars, but
costs around $100,000 are typical. These cost are not associated with the proposed rules; however, the requirement to provide tanks and piping installed or prior to August 9, 2013, with secondary containment may result in UST system owners incurring remediation costs sooner than would otherwise be the case.

(6) Any adverse or beneficial economic impact which is attributable to the proposed rule or regulation.

The economic impacts associated with the costs of these proposed rules and regulations could include changes in facility operation and closure of facilities due to cost increases under the regulation.

In addition, the UST regulations may create negative and positive employment impacts, including both reductions in employment to reduce costs and increases in employment to ensure implementation of regulatory provisions. Finally, the regulation may affect public spending related to cleanup of contaminated sites.
Assessment of the Potential Costs, Benefits, and Other Impacts of the Proposed Revisions to EPA's Underground Storage Tank Regulations

Prepared for:
Policy and Standards Division, Office of Underground Storage Tanks, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave NW, Washington, DC 20460

Prepared by:
Industrial Economics, Incorporated
2067 Massachusetts Avenue
Cambridge, MA 02140
617/354-0074

August 2011
[This page intentionally left blank.]
Acronyms And Terms

AHFDS – Airport Hydrant Fuel Distribution System

ASTSWMO – Association of State and Territorial Solid Waste Management Officials

ATG – Automatic Tank Gauge / Gauging – an automated process that monitors product level and provides inventory control

BLS – United States Bureau of Labor Statistics

BTEX – Benzene, Toluene, Ethylbenzene, and Xylenes

CFR – Code of Federal Regulations

CITLD – Continuous In-Tank Leak Detection

EGT – Emergency Generator Tank

EPA – United States Environmental Protection Agency

FCT – Field-Constructed Tank

Fill pipe – The access by which the tank is filled

IRS – United States Internal Revenue Service

LLD – Line Leak Detector / Detection – a device that alerts the tank operator to the presence of a leak in underground piping by restricting or shutting off the flow of product through the piping, or by triggering an audible or visible alarm

LUST – Leaking Underground Storage Tank

MIDAS - Modeling of Infection Diseases Agents Study

NACS – National Association of Convenience Stores

NAICS – North American Industry Classification System

NRDA – Natural Resource Damage Assessment

OMB – United States Office of Management and Budget

OUST – Office of Underground Storage Tanks, United States Environmental Protection Agency

PAHs – Polycyclic Aromatic Hydrocarbons
Pd – Probability of detection
Pfa – Probability of false alarm
RFA – Regulatory Flexibility Act
SBA – United States Small Business Administration
SBREFA – Small Business Regulatory Enforcement Fairness Act of 1996
SDWA – Safe Drinking Water Act
SIR – Statistical Inventory Reconciliation – a leak detection method where inventory, delivery, and dispensing data is statistically analyzed
SISNOSE – Significant Impact on a Substantial Number of Small Entities
SPA – State Program Approval
SPCC – Spill Prevention, Control, and Countermeasure
Spill bucket – A contained sump installed at the fill and/or vapor recovery connection points to contain drips and spills that can occur during delivery
Sump – A subsurface area pit designed to provide access to equipment located below ground, and, when contained, to prevent liquids from releasing into the environment
TPH – Total Petroleum Hydrocarbons
Turbine sump – A sump designed to provide access to the turbine area above the tank
TVM – Time value of money
UDC – Under-Dispenser Containment – a device for collecting fluids spilled beneath a dispenser (pump) (e.g. dispenser pan)
UMRA – Unfunded Mandates Reform Act
UST – Underground Storage Tank
VSL – Value of a Statistical Life
WA – Work Assignment
WTP – Willingness to Pay
Table Of Contents

Executive Summary

Chapter 1. Introduction

1.1 Background .. 1-1
1.2 Need for Regulatory Action .. 1-2
1.3 Summary of the Proposed Rule .. 1-3
1.4 Alternative Regulatory Options .. 1-5
1.5 Scope of Analysis ... 1-8
1.6 Report Organization ... 1-8

Chapter 2. Universe of UST Systems Affected by the Proposed Rule

2.1 Types of Entities Affected by the Proposed Rule .. 2-1
2.2 Configuration of Average Conventional UST System ... 2-2
2.3 UST Universe Size and Distribution Across Sectors ... 2-4
2.4 Universe of Facilities and Systems Potentially Affected by Proposed Rule 2-7
2.5 Facilities and Systems Affected by Proposed Rule ... 2-10

Chapter 3. Assessment of Compliance Costs

3.1 Introduction .. 3-1
3.2 Compliance Cost Methodology .. 3-1

3.2.1 Categories of Compliance Costs Analyzed ... 3-3
3.2.2 Estimation of System-Level Compliance Costs for UST Systems 3-5

3.3 Calculation of Incremental Compliance Costs .. 3-8

3.3.1 Calculation of Incremental Compliance Costs Using an Alternative Baseline3-10

3.4 Results of Assessment of Compliance Costs .. 3-11

3.4.1 Assessment of Compliance Costs under the Alternative Baseline Scenario 3-17

3.5 Sensitivity Analysis ... 3-17

3.5.1 Compliance Costs of the Proposed Rule Using Alternative Estimates of Labor Rates Overhead Costs, and Fringe Benefits ..3-18
3.5.2 Sensitivity Analysis of Distribution of Technologies Tested for Overfill Operability, Spill Prevention Equipment Tightness, and Interstitial Integrity3-21
3.5.3 Sensitivity Analysis of Compliance Costs for Interstitial Integrity Testing 3-22
3.5.4 Summary of Sensitivity Findings ... 3-22

3.6 Administrative Compliance Costs ... 3-23

3.6.1 State Government Administrative Compliance Costs .. 3-23
3.6.2 Costs to Regulated Universe to Review Regulations ... 3-24

3.7 Summary – Total Annual Compliance Costs .. 3-24

3.7.1 Summary – Total Annual Compliance Costs under the Alternative Baseline Scenario ... 3-26

Chapter 4. Assessment of Benefits and Cost Savings

4.1 Introduction .. 4-1
4.2 Investigation of Empirical Methods for Measuring Benefits and Cost Savings 4-1

4.2.1 Engineering Estimates and Literature .. 4-1
4.2.2 Statistical Analysis of State Release Data ... 4-3

4.3 Final Methodology for Assessment of Positive Impacts: Expert Consultation 4-6

4.3.1 Avoided Remediation Costs .. 4-7
4.3.2 Calculating Avoided Remediation Costs ... 4-8

4.4 Establishing Avoided Releases ... 4-10

4.4.1 Avoided Releases Using an Alternative Baseline ... 4-13

4.5 Benefits from Avoided Releases and Reduced Release Severity 4-15

4.5.1 Avoided Release Remediation .. 4-16
4.5.2 Reduction in Release Severity .. 4-16
4.5.3 Total Avoided Remediation Costs from Avoided Releases and Reduced Release Severity .. 4-18
4.5.4 Benefits from Avoided Releases and Reduced Release Severity under the Alternative Baseline Scenario ... 4-18
4.5.5 Avoided Costs by Proposed Requirement .. 4-20

4.6 Avoided Vapor Intrusion Damages .. 4-25
4.7 Product Loss .. 4-25
4.8 Human Health Benefits ... 4-27

4.8.1 Avoided Benzene Cancer Risk ... 4-27
4.8.2 Other Human Health Benefits ... 4-29
4.9 Avoided Acute Exposure Events and Large-Scale Releases 4-30
4.10 Ecological Benefits .. 4-31
4.11 Conclusions ... 4-34
4.11.1 Summary of Positive Impacts under the Alternative Baseline Scenario 4-35

Chapter 5. Distributional Impacts and Considerations

5.1 Introduction ... 5-1
5.2 Economic Impacts ... 5-1
5.2.1 Distribution of UST Systems by Industry Sector ... 5-3
5.2.2 Market Dynamics in the Retail Motor Fuels Sector ... 5-4
5.2.3 Assessment of Market Exits and Employment Impacts 5-8
5.2.4 Assessment of Public Sector Cost Savings Related to Avoided Releases 5-14
5.2.5 Economic Impact Summary ... 5-17
5.3 Energy Impact Analysis ... 5-17
5.4 Regulatory Flexibility Analysis .. 5-19
5.4.1 Small Business Screening Analysis .. 5-20
5.4.2 Small Business Supplemental Analysis ... 5-21
5.4.3 Impacts to Small Governments .. 5-22
5.5 Screening Analysis to Inform Impacts on Minority and Low-Income Populations 5-24
5.5.1 Risk Assessment Population Analysis ... 5-25
5.5.2 Demographic Analysis ... 5-26
5.5.3 Summary and Limitations of the Analysis ... 5-30
5.6 Children’s Health Protection Analysis .. 5-30

Chapter 6. Other Statutory and Executive Order Analyses

6.1 Regulatory Planning and Review .. 6-1
6.2 Unfunded Mandates Analysis ... 6-2
6.3 Federalism Analysis .. 6-3
6.4 Tribal Government Analysis ... 6-4
6.5 Joint Impacts of Rules ... 6-5

Chapter 7. Comparison of Costs, Benefits, and Other Impacts
7.1 Cost Benefit Comparison .. 7-2

7.1.1 Cost-Benefit Comparison under the Alternative Baseline Scenario 7-4

7.2 Cost-Effectiveness Analysis ... 7-5
7.3 Costs and Beneficial Effects Under Alternative Discount Rates 7-5

Appendices:

Appendix A: Configuration and Cost Assumptions for Airport Hydrant Fuel Distribution Systems and Field-Constructed Tanks.
Appendix B: Estimation of Affected UST Universe and Baseline State Regulations.
Appendix C: Analysis of Piping Replacement Thresholds
Appendix D: Methodology for Calculating Compliance Costs
Appendix E: Access Model Structure and Specifications
Appendix F: Analysis of Statistical Relationship between State Regulatory Programs and Confirmed Release Data
Appendix G: Expert Consultation: Selection and Data Collection Methodology
Appendix H: Expert Consultation: Responses
Appendix I: Methodology for Calculating Avoided Cleanup Costs
Appendix J: Estimation of Future UST System and Release Universes for the Alternative Baseline Scenario
Appendix K: Methodology for Estimating Upper Bound Market Exit Scenario
Appendix L: Screening Analysis of Impacts on Small Entities
Appendix M: Screening Analysis to Inform Impacts on Minority and Low-Income Populations
Appendix N: Cost Savings to State Financial Assurance Funds
Appendix O: UMRA Written Statement
Executive Summary

Overview

In 1984, Congress responded to the increasing threat to groundwater from leaking underground storage tank (UST) systems by adding Subtitle I to the Solid Waste Disposal Act (SWDA). SWDA required the U.S. Environmental Protection Agency (EPA) to protect the environment and human health from UST releases by developing a comprehensive regulatory program for UST systems storing petroleum or certain hazardous substances. In 1986, Congress amended Subtitle I of SWDA and created the Leaking Underground Storage Tank Trust Fund (LUST Trust Fund) to oversee and pay for cleanups at sites where the owner or operator is unknown, unwilling to pay, or unable to pay.

EPA promulgated the UST regulation in 1988 (40 CFR Part 280). This regulation set minimum standards for new tanks and required owners and operators of existing tanks to upgrade, replace, or close them. The 1988 regulation set deadlines for owners and operators to meet the new requirements. In 1988, EPA also promulgated a regulation for state program approval (40 CFR Part 281). EPA has not significantly changed these regulations since 1988. In 2005, the Energy Policy Act (EPAct) further amended Subtitle I of SWDA. EPAct requires states that receive federal Subtitle I money from EPA to meet certain requirements. EPA developed grant guidelines for states regarding operator training, inspections, delivery prohibition, secondary containment, financial responsibility for manufacturers and installers, public record, and state compliance reports on government UST systems.

After Congress passed EPAct, EPA decided to revise the 1988 UST regulation (at 40 CFR Part 280), primarily to ensure parity in Indian country. Key EPAct provisions (such as secondary containment and operator training) apply to all states receiving federal Subtitle I money, regardless of their state program approval status; but these key provisions do not apply in Indian country (or in states and U.S. territories that do not meet EPA’s operator training or secondary containment grant guidelines). In order to establish federal UST requirements similar to the UST secondary containment and operator training requirements of EPAct, EPA decided to revise the 1988 UST regulation. Without these changes, EPAct provisions will not apply in Indian country. These proposed revisions will also fulfill the objectives of the EPA-Tribal UST Strategy (August 2006) in which both EPA and tribes recognized it is important to ensure parity in implementing UST program requirements in states and territories, as well as in Indian country.1

EPA decided now is also an appropriate time to change the 1988 UST regulation. While EPA has issued many guidance documents and used various implementation approaches and techniques over the last twenty years, we have not made significant changes to the original 1988 regulation. Indeed, most states have passed requirements that go far beyond the original federal regulation. These regulations fully implement provisions of the EPAct and improve important aspects of the existing (outdated) regulations. Furthermore, while information on sources and causes of releases show that releases from tanks are less common than they once were, releases

1 See http://www.epa.gov/oust/fedlaws/Tribal%20Strategy_08076r.pdf
from piping and spills and overfills associated with deliveries have emerged as more common problems. Releases at the dispenser have also emerged as one of the leading sources of releases. The lack of proper operation and maintenance of UST systems is a main cause of release from these areas. The proposed revisions focus on ensuring equipment is properly maintained and working, and highlight the importance of operating and maintaining UST equipment so releases are prevented and detected early in order to avoid or minimize potential soil and groundwater contamination.

EPA worked diligently to ensure our proposed regulation development process was open and transparent. Over a two year period, we provided all stakeholders – state and tribal regulators; federal facilities; petroleum industry members, including representatives of owners and operators; equipment manufacturers; small businesses; local governments; and environmental and community groups – an opportunity to share their ideas and concerns through a variety of meetings, conference calls, and email exchanges. EPA thoroughly considered all input as we developed the proposed UST regulation changes.

Proposed Regulatory Changes

EPA is proposing to revise the 1988 UST regulation in order to: establish federal requirements similar to certain key provisions of the EPAct; ensure owners and operators perform proper operation and maintenance; address deferrals; update the regulation to current technology and practices; and make technical and editorial corrections. Specifically, EPA is proposing these revisions (hereafter the Preferred Option):

- Establish federal requirements for secondary containment and operator training similar to those established by the EPAct for states that receive federal Subtitle I money

- Add operation and maintenance requirements
 - Walkthrough inspections
 - Spill prevention equipment tests
 - Overfill prevention equipment tests
 - Interstitial integrity tests
 - Operability tests for release detection methods

- Address existing 40 CFR 280 deferrals
 - Require release detection for emergency generator UST systems
 - Remove deferrals and regulate airport hydrant fuel distribution systems (AHFDSs) and UST systems with field-constructed tanks (FCTs) with alternate release detection requirements
 - Remove deferrals for wastewater treatment tanks

• Provide for other changes to improve release prevention and detection and program implementation
 o Require testing after repairs to spill and overfill prevention equipment, and interstices
 o Eliminate flow restrictors in vent lines as an overfill prevention option for all new tanks and when overfill devices are replaced
 o Require closure of lined tanks that cannot be repaired according to a code of practice
 o Address responses to interstitial monitoring alarms
 o Notification requirement of ownership change
 o Eliminate groundwater and vapor monitoring as release detection methods
 o Establish requirements for determining compatibility

• Make general updates to the regulation
 o Reference newer technologies, including explicitly adding statistical inventory reconciliation (SIR) and continuous in-tank leak detection (CITLD) as release detection methods
 o Update codes of practice listed in the regulation
 o Remove old upgrade and implementation deadlines
 o Make editorial and technical corrections

• Revise state program approval (40 CFR Part 281) to be consistent with the above revisions

In addition to the Preferred Option, EPA considered two other regulatory alternatives, described as Alternative 1 and Alternative 2. Alternative 1 is overall more stringent than the Preferred Option. Alternative 2 is overall less stringent than the Preferred Option. Exhibit ES-1 summarizes the requirements under each alternative.

EPA designed this assessment to satisfy the Office of Management and Budget’s (OMB) requirements for regulatory review under Executive Order 12866 (as amended by Executive Order 13258), which applies to any significant regulatory action. This document also fulfills these requirements:

• Regulatory Flexibility Act, as amended by Small Business Regulatory Enforcement Fairness Act of 1996
• Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations
• Executive Order 13045, Protection of Children From Environmental Health Risks and Safety Risks
• Unfunded Mandates Reform Act of 1995
• Executive Order 13175, Consultation and Coordination With Indian Tribal Governments
• Executive Order 13132, Federalism
Executive Order 13211, *Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use*

Exhibit ES-1

Options Considered For The Proposed Rule

<table>
<thead>
<tr>
<th>Requirement Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preferred</td>
</tr>
<tr>
<td>Release Prevention</td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>Monthly</td>
</tr>
<tr>
<td>Overfill prevention equipment tests</td>
<td>3 year</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>1 year</td>
</tr>
<tr>
<td>Interstitial integrity tests</td>
<td>3 year</td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and interstices</td>
<td>Required</td>
</tr>
<tr>
<td>Elimination of flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>Required</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
<td>1 year</td>
</tr>
<tr>
<td>Change leak rate probabilities from 95/5 to 99/1 (Pd/Pfa)</td>
<td>Not required</td>
</tr>
<tr>
<td>Add SIR and CITLD to regulation with performance criteria</td>
<td>Required</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>Required</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>Eliminate in 5 years</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>Required</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>Required</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>Required</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>Required</td>
</tr>
<tr>
<td>Remove deferrals for airport hydrant fuel distribution systems and UST systems with field-constructed tanks</td>
<td>Regulate under alternative release detection requirements</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>Required</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>Required</td>
</tr>
</tbody>
</table>

Summary of Findings

Within the constraints of data availability, EPA in this analysis identified all quantifiable and qualitative impacts for this proposed rule. EPA obtained sufficient data to identify, by state, the number of units likely to be affected by each proposed change in the proposed rule. In our analysis, we used these data to assess the compliance costs imposed upon units and relevant state governments. In conducting these analyses, EPA also assessed the sensitivity of outcomes to key assumptions. Separately, the analysis monetizes a number of impacts of the proposed rule including: avoided costs generated by avoided releases; reduction in severity of releases; avoided product loss; avoided vapor intrusion damages; and a subset of human health benefits.
This analysis quantifies, but does not value, groundwater impacts. Finally, due to data and resource limitations, EPA in this analysis was unable to quantify or value a subset of human health benefits and ecological impacts, but addressed these qualitatively.

In addition to identifying costs and positive impacts, EPA in this analysis also examined the economic and distributional impacts of the proposed rule. The economic impact analysis includes the proposed rule’s effect on facility closures, employment, and energy output and cost. In the analysis of the proposed rule’s distributional impacts, we examined small business impacts, effects on minority and low-income populations, impacts on children’s health, and potential impacts on state financial assurance funds. Finally, EPA’s analysis considered the proposed rule’s impacts related to certain executive orders and statutes, including Unfunded Mandates Reform Act, tribal governments, and federalism.

The main conclusions of this analysis are:

- **Compliance costs** – EPA estimated $210 million in annual compliance costs for the proposed rule. Costs range from approximately $130 million under Alternative 2 to $520 million under Alternative 1.

- **State and local government costs** – Annual state and local government costs, including compliance costs to UST systems owned or operated by state and local governments, state program approval costs, and state costs for processing ownership changes, and one-time notifications for previously deferred systems are approximately $9 million. These range from approximately $7 million under Alternative 2 to $19 million under Alternative 1.4

- **Avoided costs** – Avoided remediation costs form the majority of positive impacts from the proposed rule. EPA estimated the proposed rule will avoid total costs of $300 million per year to $740 million per year under the Preferred Option. This includes: $300 million to $700 million in avoided remediation costs from avoided releases and avoided groundwater contamination incidents; $0.4 million to $26 million in avoided vapor intrusion remediation costs; and approximately $2 million to $7 million in avoided product loss. Total avoided costs range from $310 million to $770 million under Alternative 1 and from $110 million to $590 million under Alternative 2.

3 Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.

4 If all applicable state and local government costs were incurred in the first year, rather than annualized and discounted, state and local governments would incur approximately $7 million in costs under the Preferred Option. This includes $0.9 million for states to apply for state program approval and to read the regulations, $0.6 million for states to process one-time notifications of EGTS, AHFDS, and FCTs, and ownership changes that occur in the first year, and $5.6 million for state and local government owners and operators of UST systems to comply with requirements that come into effect in the first year (approximately 47% of which would be for state and local government owners and operators to read the proposed regulation).
• Benefits – Due to data and resource constraints, EPA only quantified human health benefits from avoided benzene-related cancer and was unable to quantify or monetize many of the proposed rule’s benefits. The benefits from avoided benzene-related cancer total less than $5,000 per year. In addition, EPA estimated the proposed rule could potentially protect 110 billion to 350 billion gallons of groundwater each year. Categories of nonmonetizable or nonquantifiable benefits that are qualitatively discussed in this analysis include: avoidance of nonbenzene health risks, mitigation of acute exposure events and large-scale releases (e.g., releases from airport hydrant fuel distribution systems and UST systems with field-constructed tanks), and protection of ecological biota.

• Compliance costs and avoided costs under the alternative baseline – Under the alternative baseline scenario that assumes declines in the universes of both UST systems and releases over time, EPA estimated $200 million in annual compliance costs for the proposed rule. Annual compliance costs in the alternative baseline scenario range from $120 million under Alternative 2 to $510 million under Alternative 1. EPA also estimated total avoided costs of $180 million to $440 million under the Preferred Option in the alternative baseline scenario. These avoided costs range from $64 million to $360 million under Alternative 2 to $180 million to $460 million under Alternative 1.

• Average economic impacts – Motor fuel retailers, which account for roughly 80 percent of UST systems, are expected to bear approximately 70 percent of the total costs under the Preferred Option. To establish how the proposed rule may impact the market, EPA examined whether it imposes a cost greater than the average after-tax profit margin of 1.5 percent for motor fuel retailers. Using this benchmark, we estimate approximately 560 firms may exit the market if they cannot pass costs through to customers. This number represents less than one percent of the total universe of facilities.

• State financial assurance funds – Decreases in release frequency and severity may decrease payments required of state financial assurance funds by $150 million per year or more under the Preferred Option. To the extent that these funds are

5 See chapter 4.10 for details on how this estimate was derived.

6 For example, an estimated 300,000 to 500,000 gallons of fuel was released from a 2.1 million gallon underground field-constructed tank at a fuel depot in Portsmouth, VA. Free product was found within 20 feet of a nearby creek in 1987. The release was attributed to tank and/or piping failures. Another example is Pease Air Force Base, where jet fuel was delivered to the runway apron via an underground fueling system. Historical leakage from the system contaminated soil and groundwater, forming groundwater plumes at many sites along the system. A site release study identified 60 to 70 release points with varying degrees of severity along the refueling system line with free product found under the apron at closure.

7 When costs exceed facility profits, it is likely that in the long-term, the facility would exit the market.

8 In comparison, between 2005 and 2008, the number of gas station facilities decreased an average of 1.4 percent per year (or 2,400 stations per year).
maintained by taxes other than those assessed on UST operators, decreases in these payments effectively represent a reallocation of costs from public entities to the private entities responsible for releases.

Assessment of Compliance Costs

For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs for the following reasons:

- The regulatory requirements generally focus on additional testing and inspection of existing equipment and do not reflect large-scale investments in equipment or significant changes to operations at the facility level. In addition, the facilities affected by the proposed rule are distributed with relative geographic uniformity for consumers and producers.

- Given the relatively small facility costs of less than $900 per year for the average facility, closures or changes in market structure represent an unlikely response to the proposed rule. According to the 2002 Economic Census, average revenues in the retail motor fuel sales sector were approximately $2.1 million; the corresponding cost-to-sales ratio for the average facility is less than one-tenth of one percent. Therefore, it is unlikely significant changes to production or consumer behavior will affect social costs.

- The short- and long-run impacts of the proposed rule are not likely to differ significantly. Testing and inspection requirements may offer some opportunities for owners and operators to reduce costs by learning over time, but they are not likely to reduce costs enough to facilitate large-scale equipment upgrades.

EPA’s calculation of total incremental compliance costs for UST facilities reflects two key components: identifying specific measures necessary for compliance at individual facilities and calculating costs associated with each of these measures. To estimate these costs, EPA developed a compliance cost model that identifies incremental equipment and labor requirements for an individual system. Based on the baseline equipment use profile, existing state regulations, and anticipated responses to the proposed regulation, the model then generates system-specific estimates of compliance costs. Compliance costs include labor and capital costs associated with new equipment and installation, inspection, testing, and recordkeeping. The model also includes other compliance costs, such as those associated with more frequent detection of equipment failure and repair of equipment. Some component costs are specific to individual UST system configurations – for example, airport hydrant fuel distribution systems or UST systems with field-constructed tanks – while others are consistent across all system types. Exhibit ES-2 summarizes the findings of our analysis of compliance costs.
Exhibit ES-2

<table>
<thead>
<tr>
<th>Category</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems<sup>a</sup></td>
<td>$180</td>
<td>$360</td>
<td>$120</td>
</tr>
<tr>
<td>Emergency generator tanks (EGTs)</td>
<td>$2.2</td>
<td>$2.2</td>
<td>$2.1</td>
</tr>
<tr>
<td>Airport hydrant fuel distribution systems (AHFDSs)</td>
<td>$18</td>
<td>$120</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with field-constructed tanks (FCTs)</td>
<td>$4.6</td>
<td>$33</td>
<td>$0.0</td>
</tr>
<tr>
<td>Cost to owners and operators to read regulations</td>
<td>$5.1</td>
<td>$5.1</td>
<td>$5.1</td>
</tr>
<tr>
<td>State government administrative costs<sup>b</sup></td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Total Annual Compliance Costs<sup>c,e</sup></td>
<td>$210</td>
<td>$520</td>
<td>$130</td>
</tr>
</tbody>
</table>

^a Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

^b The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories (see Exhibit ES-6). Costs shown here reflect the administrative costs for state governments to read the regulations, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.

^c Totals may not add up due to rounding.

^d Cost estimates were derived using a seven percent discount rate.

^e Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.

Assessment of Benefits and Cost Savings

Avoided remediation costs provide the basis for a substantial portion of the beneficial impacts associated with the proposed rule. Avoided remediation costs of the proposed rule represent cost savings that accrue to owners, operators, and public entities charged with remediating releases at regulated facilities. EPA obtained remediation costs from a survey of state leaking UST programs and estimates of the distribution of releases by UST system area from internal research. EPA identified five UST technical experts who provided professional judgment regarding the proposed rule’s effects on reduction in release frequency (number of releases per year) and release severity (as measured by groundwater incidents averted). This body of knowledge allowed EPA to estimate total avoided costs, as well as avoided costs per requirement. EPA also estimated avoided costs associated with vapor intrusion and product loss, though these avoided costs are not allocated across requirements.

In addition to avoided costs, the analysis monetized avoided benzene cancer risks from avoided contaminated groundwater and quantified volume of groundwater protected. These benefits assume that exposure risk is eliminated at the time of discovery and cleanup, and are

¹⁰ These costs were not allocated because we did not ask the experts to estimate quantitatively how different regulatory requirements would specifically affect vapor intrusion or product loss. Vapor intrusion frequency and cost data rely on general information we received from several states, and are typically recorded as additional remedial activities at some groundwater sites. The likelihood of vapor intrusion, however, is driven by proximity of receptors and by geology, and is not predictably related to the size or age of a plume. Product loss estimates rely on data from Florida and other sources for typical release sizes and are mapped to the estimates of avoided releases.
therefore additive to avoided cleanup costs. Finally, the analysis provided a qualitative discussion of avoided acute events and exposure (including large-scale releases, such as those from airport hydrant fuel distribution systems and UST systems with field-constructed tanks), ecological benefits, and avoided nonbenzene human health risks. These findings are summarized in Exhibit ES-3 below.

<table>
<thead>
<tr>
<th>Exhibit ES-3</th>
<th>Summary Of Annual Positive Impacts(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Of Impact</td>
<td>Preferred Option (2008$ millions)</td>
</tr>
<tr>
<td>Monetized Benefits</td>
<td></td>
</tr>
<tr>
<td>Avoided cancer risks(^a,c)</td>
<td>$0.001 - $0.005</td>
</tr>
<tr>
<td>Monetized Avoided Costs</td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents(^b)</td>
<td>$300 - $700</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$0.4 - $26</td>
</tr>
<tr>
<td>Product loss</td>
<td>$2.0 - $7.2</td>
</tr>
<tr>
<td>Total(^c)</td>
<td>$300 - $740</td>
</tr>
<tr>
<td>Nonmonetized Impact(^d)</td>
<td></td>
</tr>
<tr>
<td>Groundwater protected (billion gallons)</td>
<td>110 - 350</td>
</tr>
<tr>
<td>Acute events and large-scale releases (e.g., AHFDS and FCT releases)</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Ecological benefits</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Nonbenzene human health risks</td>
<td>Not estimated</td>
</tr>
</tbody>
</table>

\(^a\) The pathway assessed to evaluate avoided cancer risk is benzene exposure through contaminated groundwater.

\(^b\) Monetized avoided costs are substantially lower in Alternative 2 relative to the Preferred Option due to differing requirements between these options, particularly walkthrough inspections. Alternative 2, overall, is less stringent than the Preferred Option, and therefore prevents fewer releases because systems do not require the same frequency of inspection and repair. For additional information, see Chapter 4.

\(^c\) Avoided cancer risks and avoided costs are separate and additive (i.e., these estimates do not overlap). Avoided cancer risks are the benefits associated with reducing cancer cases prior to discovery of the release. Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.

\(^d\) Due to data and resource constraints, EPA was unable to monetize some of the positive impacts of the proposed rule. Chapter 4 provides a qualitative discussion of these benefits.

\(^e\) Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

Comparison of Compliance Costs and Positive Impacts

Exhibit ES-4 summarizes the compliance costs and positive impacts of the proposed rule. The majority of measurable positive effects occur as avoided remediation costs. Monetized social benefits occur only in the form of avoided cancer cases from groundwater contamination and constitute only a very small part of overall effects. Nevertheless, as discussed in Chapter 4, avoided costs provide a reasonable measure of the positive effects of the proposed rule.
Exhibit ES-4

Comparison Of Annual Compliance Costs, Cost Savings And Monetized Benefits\(^a,b\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoided cancer risks(^a,c)</td>
<td>$0.001 - $0.005</td>
<td>$0.002 - $0.005</td>
<td>$0.001 - $0.003</td>
</tr>
<tr>
<td>Annual Avoided Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents</td>
<td>$300 - $700</td>
<td>$300 - $740</td>
<td>$110 - $570</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$0.4 - $26</td>
<td>$0.5 - $28</td>
<td>$0.2 - $19</td>
</tr>
<tr>
<td>Product loss</td>
<td>$2.0 - $7.2</td>
<td>$2.6 - $7.6</td>
<td>$0.4 - $5.3</td>
</tr>
<tr>
<td>Annual Compliance Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional UST systems(^b)</td>
<td>$180</td>
<td>$360</td>
<td>$120</td>
</tr>
<tr>
<td>Emergency generator tanks (EGTs)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
</tr>
<tr>
<td>Airport hydrant fuels distribution systems (AHFDSs)(^c)</td>
<td>$18</td>
<td>$120</td>
<td>N/A</td>
</tr>
<tr>
<td>UST systems with field-constructed tanks (FCTs)(^c)</td>
<td>$5</td>
<td>$33</td>
<td>N/A</td>
</tr>
<tr>
<td>Cost to owners and operators to read regulations</td>
<td>$5</td>
<td>$5</td>
<td>$5</td>
</tr>
<tr>
<td>State government administrative costs(^d)</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Total Annual Benefits and Avoided costs</td>
<td>$300 - $740</td>
<td>$310 - $770</td>
<td>$110 - $590</td>
</tr>
<tr>
<td>Total Annual Compliance Costs(^b)</td>
<td>$210</td>
<td>$520</td>
<td>$130</td>
</tr>
<tr>
<td>Net Cost (Savings) To Society ([Total Compliance Costs less Total Benefits and Avoided Costs])</td>
<td>($530) - ($90)</td>
<td>($250) - $210</td>
<td>($460) - $20</td>
</tr>
</tbody>
</table>

Nonmonetized Benefits\(^f\)

<table>
<thead>
<tr>
<th>Groundwater protected (billion gallons)</th>
<th>110 - 350</th>
<th>120 - 370</th>
<th>41 - 250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute events and large-scale releases (e.g., AHFDS and FCT releases)</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Ecological benefits</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Nonbenzene human health risks</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
</tbody>
</table>

\(^a\) The pathway for avoided cancer risk is contaminated groundwater.

\(^b\) Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

\(^c\) We estimate there are 239 UST systems with FCTs and 162 AHFDSs that could be affected by the proposed regulation. For additional information regarding the assumptions and costs used in this analysis for these systems, see Appendix A.

\(^d\) The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.

\(^e\) Avoided cancer risks and avoided costs are separate and additive (i.e., these estimates do not overlap). Avoided cancer risks are the benefits associated with reducing cancer cases prior to discovery of the release. Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.

\(^f\) Due to data and resource constraints, EPA was unable to monetize some of the positive impacts of the proposed rule. Chapter 4 provides a qualitative discussion of these benefits.

\(^g\) Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

\(^h\) Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.
Exhibit ES-5 summarizes the compliance costs and positive impacts of the proposed rule under an alternative baseline where universes of UST systems and releases are assumed to decrease at a declining rate over time. Compliance costs decline slightly under the alternative baseline relative to the primary analysis due to a small decrease in affected systems. Avoided costs decline by approximately 40 percent, as the universe of releases contracts substantially under the alternative baseline.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Annual Benefits and Avoided Costs</td>
<td>$180 - $440</td>
<td>$180 - $460</td>
<td>$64 - $360</td>
</tr>
<tr>
<td>Total Annual Compliance Costs</td>
<td>$200</td>
<td>$510</td>
<td>$120</td>
</tr>
<tr>
<td>Net Cost (Savings) to Society</td>
<td>($240) - $20</td>
<td>$50 - $330</td>
<td>($240) - $56</td>
</tr>
</tbody>
</table>

Note: Cost estimates were derived using a seven percent discount rate.

Economic Impacts

EPA’s assessment of the economic impacts associated with this proposed rule focused on the retail motor fuels sector, which accounts for approximately 80 percent of UST owners or operators. In this analysis, EPA described supply and demand dynamics within the retail motor fuels market and the likely economic responses to increased compliance costs. Our screening assessment found that average estimated facility-level costs of $890 may result in the market exit of approximately 560 facilities, if these facilities cannot pass any regulatory costs through to customers. This represents less than half of one percent of existing retail motor fuel facilities, and an even smaller fraction of all facilities affected by the proposed rule.

To address uncertainty related to the distribution of costs among UST facilities, we also presented a worst case sensitivity analysis, which identified the maximum number of facilities that could face significant economic impacts due to regulatory costs. We defined the worst case as the scenario where the highest possible cost occurred for the smallest facilities. We found that up to 6,100 facilities (roughly four percent of existing retail motor fuel facilities) may exit the market in this unlikely worst-case scenario. The limited magnitude of impacts even in the worst case scenario suggest that the proposed rule will not affect existing consolidation trends in the retail motor fuels industry, or retail motor fuel prices or consumption.

In addition, EPA’s analysis suggests that the proposed rule could result in a reallocation of costs from the public to private parties responsible for releases.11 The prevention of releases under this rule would increase compliance costs to facility owners, but the avoided releases

11 For additional information regarding this issue, see Chapter 5.
would in many cases reduce remediation demand for taxpayer-funded state funds. This is likely to improve behavioral incentives, as the parties most likely to cause releases will also be responsible for preventing them. As discussed in Chapter 5, this reallocation could result in savings to state financial assurance funds in excess of $150 million per year.

Other Regulatory and Distributional Issues

As part of our analysis, we also assessed the proposed rule’s potential impacts related to:

- Energy impacts – The proposed rule will not have significant adverse effects on energy supply, distribution, or use, including impacts on price and foreign supplies. It is, therefore, not a significant energy action under Executive Order 13211, *Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use* (May 18, 2001).

- Regulatory flexibility – EPA’s analysis determined that approximately 1,350 small entities (roughly one percent of the universe of affected small entities) may experience economic impacts that exceed one percent of revenues. For various reasons, and especially due to different system configurations for smaller facilities, the actual number of affected entities is likely to be even fewer than the number estimated by the analysis. In comparison, this number is smaller than the recent industry consolidation rate of approximately 2,400 facilities per year in the retail motor fuels sector. The proposed rule is unlikely to have a significant economic impact on a substantial number of small businesses or small governments.

- Small government impacts – The proposed rule is not expected to have significant small government impacts. EPA’s assessment of costs to state and local governments indicated that no government-owned UST facilities will experience costs that exceed one percent of revenues.

- Impacts on minority and low-income populations – Because the proposed rule would increase regulatory stringency and reduce the number and size of releases, the proposed rule is not expected to have any disproportionately high and adverse human health or environmental effects on minority or low income populations, or on any community.

- Children’s health protection – While the risk assessment did not specifically measure exposure to children, adults are the more sensitive receptor for cancer effects of contaminated groundwater due to the longer potential exposure from showering (inhalation of vapors) compared to children (ingestion of water while bathing), particularly those under five who are assumed to take more baths and fewer showers. Therefore, EPA has no reason to believe that the proposed rule would have a disproportionate environmental health risk effect on children, as defined in Executive Order 13045, *Protection of Children From Environmental Health Risks and Safety Risks* (62 FR 19885, April 23, 1997). Moreover, because the proposed rule is expected to reduce exposure to contaminated groundwater by reducing the number and size of releases, EPA does not expect the proposed rule to have any adverse impact on children.
- Regulatory planning and review – Pursuant to the terms of Executive Order 12866 [58 FR 51735 (October 4, 1993)], EPA determined the proposed rule is an economically significant regulatory action because it may have an annual effect on the economy of $100 million or more, as defined in section 3(f)(1) of the order. Findings of the regulatory cost analysis in Chapter 3 indicate the rule, as proposed, is projected to result in aggregate annual compliance costs of approximately $210 million under the Preferred Option, $520 million under Alternative 1, and $130 million under Alternative 2.

- Unfunded mandates analysis – The proposed rule is subject to the requirements of sections 202 and 205 of the Unfunded Mandates Reform Act (UMRA) because it contains federal mandates that may result in the expenditure by state, local, and tribal governments or by the private sector of $100 million or more in any one year. Exhibit ES-6 provides references for EPA’s analyses responding to UMRA requirements under which this proposed rule is subject.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Location In This Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of federal law provision under which the proposed rule is being promulgated</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Assessment of costs and benefits to state, local, and tribal governments and the private sector of the proposed rule</td>
<td>Chapters 3 and 4</td>
</tr>
<tr>
<td>Assessment of the effect of the proposed rule on health, safety, and the natural environment</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Assessment of the extent to which such costs of the proposed rule may be paid with federal financial assistance</td>
<td>Chapter 3; no federal assistance is anticipated</td>
</tr>
<tr>
<td>Assessment of the extent to which there are available federal resources to carry out this mandate</td>
<td>Chapter 3; no federal resources are anticipated</td>
</tr>
<tr>
<td>Estimates of future compliance costs of the proposed rule</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Estimates of disproportionate budgetary effects of the proposed rule on any type of government or private sector segment</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Estimates of the effect of the proposed rule on the national economy</td>
<td>Chapters 3 and 5</td>
</tr>
</tbody>
</table>

- Federalism – Executive Order 13132, *Federalism* (64 FR 43255, August 10, 1999), defines policies that have federalism implications to include regulations with substantial direct effects on states, on the relationship between the national government and states, or on the distribution of power and responsibilities among the various levels of government. EPA typically considers a policy to have federalism implications if it results in aggregate expenditures by state and/or local governments of $25 million or more in any one year. As Exhibit ES-7 below indicates, EPA does not expect any of the proposed options to have significant federalism implications.
Exhibit ES-7

Summary Of Annual Governmental Costs By Element

<table>
<thead>
<tr>
<th>Element</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local compliance costs<sup>a</sup></td>
<td>$7.3</td>
<td>$15.0</td>
<td>$5.0</td>
</tr>
<tr>
<td>State compliance costs<sup>a</sup></td>
<td>$1.8</td>
<td>$3.7</td>
<td>$1.3</td>
</tr>
<tr>
<td>State government administrative costs</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Total Costs To State And Local Governments</td>
<td>$9.3</td>
<td>$19.0</td>
<td>$6.5</td>
</tr>
</tbody>
</table>

^a State and local government compliance costs are included in the total compliance costs presented in Exhibit ES-2.

^b Cost estimates were derived using a seven percent discount rate.

- **Tribal governments analysis** – Executive Order 13175, *Consultation and Coordination With Indian Governments* (65 FR 67249, November 9, 2000), requires EPA to develop a process to ensure meaningful and timely input by tribal officials in the development of regulatory policies that have tribal implications. EPA consulted with tribal officials early in the process of developing this proposed regulation to welcome meaningful and timely input into its development. EPA began its consultation with tribes on possible changes to the UST regulation shortly after the passage of the Energy Policy Act of 2005. In addition to our early consultation with tribes, EPA also reached out again to tribes as we started the official rulemaking process and throughout the development of this proposed rule. EPA sent letters to leaders of over 500 tribes as well as to tribal regulatory staff to invite their participation in the development of the regulation. EPA heard from both tribal officials who work as regulators as well as representatives of owners and operators of UST systems in Indian country. The tribal regulators raised concerns about ensuring parity of environmental protection between states and Indian country. Today’s proposed changes to the UST regulation are needed to ensure parity between UST systems in states and in Indian country. This regulation will ensure installed equipment is working properly to protect the environment from potential releases.

As part of this analysis, EPA concluded the proposed rule will have tribal implications to the extent that tribally-owned entities with UST systems on Indian country would be affected. However, it will neither impose substantial direct compliance costs on tribal governments, nor preempt tribal law. Total costs to owners and operators of tribally-owned UST systems are approximately $0.7 million.

- **Joint impacts of rules** – Facilities in the UST system universe are affected by a number of existing regulations, including state regulations and Spill Prevention, Control, and Countermeasure (SPCC) rules. At the time of the 1988 UST regulation, completely buried tanks greater than 42,000 gallons and located near navigable waters of the U.S. or adjoining shorelines were subject to both UST rules and SPCC rules. Since then, SPCC rules have been amended and the rule exempts completely buried storage tanks, as well as connected underground piping, underground ancillary equipment, and containment systems, when subject to the technical requirements of 40 CFR part 280. In today's proposal, EPA proposes to continue to defer the aboveground components associated with airport hydrant systems and USTs with field-constructed tanks. These aboveground
components will be subject to SPCC requirements. EPA is proposing to regulate the underground components associated with airport hydrant systems and USTs with field-constructed tanks. Once the proposal becomes final, these underground components will no longer be subject to SPCC requirements. In addition, previously deferred wastewater treatment tank systems and UST systems that store fuel solely for use by emergency power generators will now be regulated under the UST regulation and will no longer be subject to SPCC. EPA does not believe the proposed rule creates a serious inconsistency or interferes with any other actions planned or undertaken by other agencies.
Chapter 1. Introduction

This document presents an analysis by the U.S. Environmental Protection Agency (EPA) Office of Underground Storage Tanks (OUST) of the costs, benefits, and economic impacts of the proposed targeted changes to the Underground Storage Tank (UST) regulations. The proposed rule serves the purpose of strengthening the existing underground storage tank regulations by increasing the emphasis on proper operation and maintenance of UST systems and improved maintenance of release detection equipment. The proposed changes also acknowledge improvements in technology over the last twenty years, including the ability to perform release detection for many tank systems that were previously deferred.

1.1 Background

In 1984, Congress responded to the increasing threat to groundwater from leaking underground storage tank (UST) systems by adding Subtitle I to the Solid Waste Disposal Act (SWDA). SWDA required EPA to protect the environment and human health from UST releases by developing a comprehensive regulatory program for UST systems storing petroleum or certain hazardous substances. In 1986, Congress amended Subtitle I of SWDA and created the Leaking Underground Storage Tank Trust Fund (LUST Trust Fund) to oversee and pay for cleanups at sites where the owner or operator is unknown, unwilling to pay, or unable to pay.

EPA promulgated the UST regulation in 1988 (40 CFR Part 280). This regulation set minimum standards for new tanks and required owners and operators of existing tanks to upgrade, replace, or close them. The 1988 regulation set deadlines for owners and operators to meet the new requirements. By 1998, owners and operators had to meet new UST system requirements, upgrade their existing UST systems, or close them. Owners and operators who chose to upgrade had to ensure that every UST system had spill prevention equipment (e.g., spill buckets), overfill prevention equipment, and was protected from corrosion. In addition, owners and operators were required to monitor their UST systems for releases using release detection (phased in in the 1990s depending on the year of installation of each UST system). Finally, owners and operators were required to have financial responsibility (phased in through 1998) to ensure that they are financially able to pay for any releases that occur. No significant changes have been made to these requirements since 1988.

In 1988, EPA also promulgated a regulation for state program approval (40 CFR Part 281). Since states are the primary implementers of the UST program, EPA wanted to set up a process where state programs could operate in lieu of the federal program if certain requirements were met. This regulation describes the minimum requirements states must meet to have their regulations operate in lieu of the federal regulation.

In 2005, the Energy Policy Act (EPAct) further amended Subtitle I of SWDA. The EPAct requires states that receive federal Subtitle I money from EPA to meet certain requirements. EPA developed grant guidelines for states regarding operator training, inspections, delivery prohibition, secondary containment, financial responsibility for
manufacturers and installers, public record and state compliance reports on government UST systems.

1.2 Need for Regulatory Action

After Congress passed EPAct, EPA decided to revise the 1988 UST regulation (at 40 CFR Part 280), primarily to ensure parity in Indian country. Key EPAct provisions (such as secondary containment and operator training) apply to all states receiving federal Subtitle I money, regardless of their state program approval status; but these key provisions do not apply in Indian country (or in states and U.S. territories that do not meet EPA’s operator training or secondary containment grant guidelines). In order to establish federal UST requirements similar to the UST secondary containment and operator training requirements of EPAct, EPA decided to revise the 1988 UST regulation. Without these changes, EPAct provisions will not apply in Indian country. These proposed revisions will also fulfill the objectives of the EPA-Tribal UST Strategy (August 2006) in which both EPA and tribes recognized it is important to ensure parity in implementing UST program requirements in states and territories, as well as in Indian country.1

EPA decided now is also an appropriate time to change the 1988 UST regulation. While EPA has issued many guidance documents and used various implementation approaches and techniques over the last twenty years, we have not made significant changes to the original 1988 regulation. Indeed, most states have passed requirements that go far beyond the original federal regulation.

Furthermore, while information on sources and causes of releases show that releases from tanks are less common than they once were, releases from piping and spills and overfills associated with deliveries have emerged as more common problems.2 In addition, releases at the dispenser have emerged as one of the leading sources of releases. The lack of proper operation and maintenance of UST systems is a main cause of release from these areas. Data also indicate that release detection only detects about one quarter of all releases.3 While some of those releases occur in areas not required to have release detection, other releases that should be detected are not because of problems with the operation and maintenance of the release detection equipment.

1 See http://www.epa.gov./oust/fedlaws/Tribal%20Strategy_08076r.pdf

3 About 50 percent of all releases go undetected because they occur in areas where release detection is not required (and therefore is not designed to detect a release). Of the 50 percent that should be detected, 25 percent still go undetected partly because of issues with operation and maintenance of the release detection equipment. (Office of Underground Storage Tanks, U.S. EPA, “Petroleum Releases at Underground Storage Tank Facilities in Florida,” U.S. EPA, draft, March 2005, p. 26.)
Since the beginning of the UST program, preventing petroleum releases into the environment has been one of the primary goals of the program. EPA and our partners have made major progress in reducing the number of new releases, but over 7,000 releases are still discovered each year. Because existing publicly-funded mechanisms and institutions frequently cover at least part of the costs of release remediation, owners and operators of UST systems do not bear the full costs of their actions. Petrome releases thus represent a negative externality caused by UST system operators, as the individuals and firms that cause releases do not bear their full costs. This represents a failure of the market to fully internalize the cost to society of operating an UST system: private costs do not equal social costs. A combination of revised technical standards and inspection and testing requirements represents the most appropriate method for reducing the number of future releases and mitigating the impact of existing negative externalities.

EPA wanted to make sure the rule development process was open and transparent and that all stakeholders had an opportunity to share their ideas as well as their concerns. From the beginning of this process, EPA recognized the concerns about costs on owners and operators and was committed to limiting the requirements for retrofits. We reached out to all stakeholders, including state and tribal regulators, federal facilities, members of the petroleum industry including representatives of owners and operators as well as equipment manufacturers, small businesses, local governments, and environmental and community groups. Over a two-year period, we held conference calls, solicited comments and gave stakeholders multiple opportunities to share their ideas as well as kept them informed of where we were in the process.

From this extensive stakeholder outreach, EPA compiled potential proposed changes to the UST regulations. EPA shared all of these ideas with the stakeholders and gave them an opportunity to comment on each idea that was submitted to us. We then revised and added items to the list as necessary based on data, analysis and consideration of costs and benefits. Ultimately, EPA identified the items in this proposed rule as the needed regulatory changes at this time.

1.3 Summary of the Proposed Rule

EPA is proposing to revise the UST regulations in order to: establish federal requirements that are similar to certain key provisions of the Energy Policy Act; ensure owners and operators perform proper operation and maintenance; address deferrals; update the regulations to current technology and practices; and make technical and editorial corrections. Specifically, EPA is proposing the following set of revisions (hereafter referred to as the Preferred Option):

4 We refer here to mechanisms other than those whose specific purpose is to fund remediation for new releases from UST systems. For example, if owners and operators in a particular state are compelled to participate in a fund operated by a public (or private) entity, and the contributions made directly by the owners and operators are equal to all the remediation costs, such a policy overcomes the market failure. However, if taxpayers are required to cover any portion of remediation costs through general funds or revenues obtained for other purposes, the negative externality will not be rectified.
• Establish federal requirements for secondary containment and operator training similar to those established by the EPAct for states that receive federal Subtitle I money

• Add operation and maintenance requirements
 o Walkthrough inspections
 o Spill prevention equipment tests
 o Overfill prevention equipment tests
 o Interstitial integrity tests
 o Operability tests for release detection methods

• Address existing 40 CFR 280 deferrals
 o Require release detection for emergency generator UST systems
 o Remove deferrals and regulate airport hydrant fuel distribution systems (AHFDSs) and UST systems with field-constructed tanks (FCTs) with alternate release detection requirements
 o Remove deferrals for wastewater treatment tanks

• Provide for other changes to improve release prevention and detection and program implementation
 o Require testing after repairs to spill and overfill prevention equipment, and interstices
 o Eliminate flow restrictors in vent lines as an overfill prevention option for all new tanks and when overfill devices are replaced
 o Require closure of lined tanks that cannot be repaired according to a code of practice
 o Address responses to interstitial monitoring alarms
 o Notification requirement of ownership change
 o Eliminate groundwater and vapor monitoring as release detection methods
 o Establish requirements for determining compatibility

• Make general updates to the regulation
 o Reference newer technologies, including explicitly adding statistical inventory reconciliation (SIR) and continuous in-tank leak detection (CITLD) as release detection methods
 o Update codes of practice listed in the regulation
 o Remove old upgrade and implementation deadlines
 o Make editorial and technical corrections

• Revise state program approval (40 CFR Part 281) to be consistent with the above revisions
1.4 Alternative Regulatory Options

In addition to assessing the impacts of the Preferred Option, this document assesses the costs, benefits, and economic impacts of two regulatory alternatives, as outlined in Exhibit 1-1. Please refer to the preamble for a discussion on the rationale behind the development of these two alternatives.

Under each of these alternatives, EPA evaluated variations of a subset of the proposed changes, while some of the proposed regulatory requirements remained in effect across all options. The differences between the three regulatory options considered in this regulatory impact analysis are described in Exhibit 1-1.

<table>
<thead>
<tr>
<th>Exhibit 1-1</th>
<th>Options Considered For The Proposed Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement Description</td>
<td>Options</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
</tr>
<tr>
<td>Release Prevention</td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>Monthly</td>
</tr>
<tr>
<td>Overfill prevention equipment tests</td>
<td>3 year</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>1 year</td>
</tr>
<tr>
<td>Interstitial integrity tests</td>
<td>3 year</td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and interstices</td>
<td>Required</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>Required</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
<td>1 year</td>
</tr>
<tr>
<td>Change leak rate probabilities from 95/5 to 99/1 (Pd/Pfa)</td>
<td>Not required</td>
</tr>
<tr>
<td>Add SIR/CTILD to regulations with performance criteria</td>
<td>Required</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>Required</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>Eliminate in 5 years</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>Required</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>Required</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>Required</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>Required</td>
</tr>
<tr>
<td>Remove deferrals for airport hydrant fuel distribution systems and UST systems with field-constructed tanks</td>
<td>Regulate under alternative release detection requirements</td>
</tr>
</tbody>
</table>

EPAAct-related Provisions |
| Operator training | Required | Required | Required |
| Secondary containment | Required | Required | Required |
Note that each option considered by EPA contains a set of new requirements that does not vary across options. As explained in the introduction, operator training and secondary containment are being proposed in order to ensure parity in program implementation among states and in Indian country. Therefore, these requirements are necessary across all options. Based on input EPA received from stakeholders, EPA believes the other proposed requirements in this set represent the minimum necessary changes for its proposed rule. Specifically, these requirements are:

- Testing after repairs to spill and overfill prevention equipment, and interstitial spaces
- Adding SIR/CITLD to regulations with performance criteria
- Reporting and testing for interstitial alarms
- Removing the deferral for release detection for emergency generator tanks
- Notification of ownership change
- Closure of lined tanks that cannot be repaired according to a code of practice
- Requirements for determining compatibility, and
- Requiring operator training and secondary containment

Many of the requirements proposed in this rule will not immediately impose new costs upon UST owners or operators. For example, new requirements for periodic testing of equipment do not require owners or operators to perform those tests at the time the rule comes into effect; depending on the requirement, they may have up to three years to satisfy the new requirements.\footnote{Please refer to the preamble section for each proposed requirement for a discussion on the rationale behind the delayed or phase-in implementation periods.} EPA’s analysis accounts for this delay in its estimate of costs by discounting the costs associated with each requirement as shown in \textbf{Exhibit 1-2}. EPA assumes that the monetized positive impacts associated with these requirements accrue at the end of the year in which costs occur to incorporate an assumption that some beneficial impacts may lag requirements.\footnote{EPA does not have data to suggest any particular length of lag for each requirement; for this analysis, we effectively assume that benefits accrue at the end of the year in which costs occur. Chapters 3 and 4 provide detailed descriptions of the methods used to assess costs and beneficial impacts.}
Finally, EPA is including a set of proposed revisions and clarifications that are not expected to have any economic impact, due either to the nature of the requirement or to the interaction of UST regulations with existing regulations. The only cost associated with these clarifications and changes is the cost of reading the new regulations. These revisions include:

- Removing deferrals for wastewater treatment tanks

7 As part of this analysis, we assume that overfill prevention equipment tests and interstitial integrity tests will begin after a three-year delay. Phasing in these costs over a three-year period would increase total costs by approximately $5.1 million compared to a three-year delay; this does not affect the total cost estimate presented in the RIA for the proposed rule.

8 Removing deferrals for airport hydrant fuel distribution systems and field-constructed tanks will require these systems to comply with Subparts B, C, D, E, G, and H of 40 CFR Part 280. The proposed regulation requires these systems to comply with Subparts B, C, and D after 3 years, while compliance with Subparts E, G, and H would be required immediately.

9 While this represents a new requirement, based on conversations with the Georgia Environmental Protection Division, the National Association of Clean Water Agencies (NACWA), Highland Tank, and the Automobile Recyclers Association, EPA believes that all active wastewater treatment tanks, including tanks at most publicly owned treatment works and many private treatment facilities, are currently regulated by either section 402 or section 307(b) of the Clean Water Act and therefore excluded from 40 CFR 280. As a result, EPA believes that there are no wastewater treatment tank systems currently deferred. Therefore, we assume that the removal of the deferral will have no impact on the regulated universe.
• Updating the regulations to reference newer technologies
• Updating the codes of practice listed in the regulations
• Updating the regulations to remove old upgrade and implementation deadlines
• Updating the regulations for editorial and technical corrections, and
• Revising the State Program Approval (40 CFR Part 281) regulations to be consistent with the above revisions

1.5 Scope of Analysis

Within the constraints of data availability, this analysis attempts to capture all quantifiable and qualitative impacts for this proposed rule. EPA obtained sufficient data to identify, by state, the number of units likely to be affected by each proposed change in the rule. The analysis uses these data to assess the compliance costs on these units and relevant state governments. In conducting these analyses, EPA also assessed the sensitivity of outcomes to key assumptions. Separately, the analysis monetizes a number of impacts of the rule, including the avoided costs generated by avoided releases, reduction in severity of releases, avoided product loss, avoided vapor intrusion damages, and a subset of human health benefits. This analysis quantifies, but does not value, groundwater impacts. Finally, this analysis is unable to quantify or value a subset of human health benefits and ecological impacts, but addresses these qualitatively.

In addition to identifying costs and the positive impacts of the rule, this analysis also examines the economic and distributional impacts of the rule. The economic impact analysis includes the proposed rule’s effect on facility closures, employment, and energy output and cost. The analysis of the distributional impacts of the rule examines the effect of a reduction in releases on state financial assurance funds, impacts on childrens’ health, small business impacts, and impacts on low-income and minority populations. Finally, this analysis considers impacts of the rule related to certain executive orders and statutes, including the Unfunded Mandates Reform Act, impacts on Tribal Governments, and Federalism impacts.

1.6 Report Organization

To support the development of the proposed rule, EPA designed and conducted this analysis of the rule’s costs, benefits, and economic impacts consistent with the requirements of Executive Order 12866, and OMB Circular A-4. Data, methods, and results of this analysis are presented in the following chapters:

• **Chapter 2: Universe of UST Systems Affected by the Proposed Rule.** This chapter identifies a profile of the entities that may be affected by the proposed rule.

• **Chapter 3: Assessment of Compliance Costs.** This chapter summarizes the methods employed by EPA to assess the cost impacts of the proposed rule.

• **Chapter 4: Assessment of Benefits and Cost Savings.** This chapter presents estimates of the benefits and avoided costs of the proposed rule.

• **Chapter 5: Distributional Impacts and Considerations.** This chapter summarizes the assessment of distributional impacts of the proposed rule, including economic and energy impacts, effects on small businesses and governments, impacts on low-income and minority populations, and children's health effects.

• **Chapter 6: Other Statutory and Executive Order Analyses.** This chapter summarizes analyses required by certain statutes or executive orders, including regulatory planning and review, impacts created by unfunded mandates, federalism implications, effects on tribal governments, and joint impact of the proposed rule in the context of existing rules.

• **Chapter 7: Comparison of Costs, Benefits, and Other Impacts.** This chapter summarizes and compares the costs, cost savings, and benefits of the proposed rule.

• **Appendices.** We present the details to methods and assumptions we employ in a number of appendices.
Chapter 2. Universe of UST Systems Affected by the Proposed Rule

This regulatory impact analysis addresses the effects of the proposed regulatory changes on four types of UST systems: conventional UST systems with prefabricated tanks that store and dispense petroleum products; emergency generator tank systems that store fuel for occasional use; UST systems with field-constructed tanks that are typically designed to store large volumes of fuel; and airport hydrant fuel distribution systems that provide large volumes of fuel to aircraft using underground distribution systems.

This chapter describes the universe of systems, facilities, firms, and sectors that are likely to be affected by the proposed regulatory changes, and documents the extent to which state regulations already require compliance with the proposed regulations.

2.1 Types of Entities Affected by the Proposed Rule

The four types of UST systems that are potentially affected by the proposed regulation are characterized as follows:

- **Conventional UST systems (conventional USTs):** These systems include the universe of facilities and tanks that are currently subject to existing regulations, along with ancillary equipment (e.g., piping, dispensers, sumps, spill prevention equipment, and release detection equipment). The majority of these systems store and dispense petroleum products and are typically found at gas stations. A limited number store other hazardous substances, but the regulatory impact analysis does not consider these UST systems separately. These UST systems are subject to all requirements under 40 CFR Part 280.

- **Emergency generator tank systems (EGTs):** Emergency generator tank systems refer to the tanks and piping for systems that provide longer-term storage of fuel for occasional use as a back-up fuel supply. These tanks are currently deferred from 40 CFR Part 280 Subpart D (release detection) but are subject to all other requirements under 40 CFR Part 280. The proposed regulation does not address emergency tanks at nuclear power plants, which are regulated by the Nuclear Regulatory Commission under 10 CFR Part 50, appendix A.

1 Because tanks storing hazardous substances are also currently subject to the 1988 UST regulations under 40 CFR Part 280 this analysis assumes that incremental costs and benefits associated with the proposed rule will be comparable to the costs and benefits associated with other conventional UST systems. Although hazardous substance tanks are not included in the total number of active petroleum UST systems, EPA roughly estimates that less than one percent of all active regulated UST systems contain hazardous substances.

2 See 40 CFR 280.10 Subpart A – Applicability.
• **UST systems with field-constructed tanks (FCTs):** Field-constructed tanks are underground bulk storage tanks that are built on-site because they are too large to be pre-fabricated. All identified field-constructed tanks currently in operation are owned by Federal facilities and mainly serve operations at military bases. These tanks are currently deferred from all regulation under 40 CFR Part 280, except for Subparts A and F, but are typically subject to regulation under the Oil Pollution Act of 1990, 40 CFR Part 112 (EPA’s Spill Prevention, Control, and Countermeasure regulations).

• **Airport Hydrant Fuel Distribution Systems (AHFDSs):** Airport hydrant fuel distribution systems are systems that include one or more tanks (either above-ground or underground), underground piping, and underground ancillary equipment used to fuel aircraft. These systems do not have a dispenser at the end of the piping run, but instead have a pressurized hydrant (fill stand). Large commercial and military airports employ these systems, but most commercial systems have only above-ground storage tanks and are thus not affected by the proposed regulation. These systems are currently deferred from all regulation under 40 CFR Part 280, except for Subparts A and F, but are typically subject to regulation under 40 CFR Part 112.

2.2 Configuration of Average Conventional UST System

Conventional UST systems reflect a relatively consistent configuration of standard equipment. While facility size and complexity vary significantly, this analysis assumes that a typical (average) conventional UST system is configured as follows (Exhibit 2-1):4

| Assumed Average Configuration For A Conventional UST System |
|---------------------------------|----------|
| **System Component** | **Configuration** |
| Pipes per tank | 1 |
| Feet per pipe | 100 |
| Fill pipes (per tank) | 1 |
| Spill prevention equipment (per fill pipe) | 1 |
| Under-Dispenser Containment (UDC) (per tank) | 2 |
| Turbine sumps (per tank) | 1 |

These assumptions best characterize motor fuel retailers, which represent approximately 80 percent of the 611,449 conventional UST systems in operation in 2009.5 EGT systems and other conventional UST systems used to store fuel or hazardous substances are likely to have systems with similar components and less complex dispenser systems. The configurations of FCTs and AHFDSs are considered separately, and are described in detail in Appendix A.

Exhibit 2-2 provides an illustration of an UST system at a retail motor fuel establishment. Note that in this exhibit, the “dispenser sump” is a specific form of under-dispenser containment, and the “spill bucket” is an example of spill prevention equipment.

\textbf{Exhibit 2-2}

\textbf{Configuration of Retail Motor Fuel UST System}

5 The remaining 20 percent of conventional UST systems consist of EGTs and tanks used for storing and dispensing fuel in commercial settings, hospitals, manufacturing, transportation, communications and utilities, and agriculture. See Exhibit 2-3 for details.
2.3 UST Universe Size and Distribution Across Sectors

The September 30, 2009 Semi-Annual Report of UST Performance Measures reports a universe of 611,449 active petroleum tanks (UST systems) in the United States and its territories.\(^6\)\(^7\) This total includes conventional UST systems and emergency generator tank systems. Estimates based on state data suggest that approximately 3.0 percent, or 18,343 of the 611,449 active UST systems, are emergency generator tanks.\(^8\)

In addition to emergency generator and conventional UST systems, the proposed rule addresses UST systems with field-constructed tanks and airport hydrant fuel distribution systems. While these two types of systems are deferred under current EPA regulations, a subset may be regulated by individual states and included in the total estimate of tanks provided by those states. For the purpose of this analysis, however, these two universes are considered to be separate from the 611,449 tanks identified in the 2009 EPA report. The total universe of UST systems with field-constructed tanks and airport hydrant fuel distribution systems is small, including approximately 239 UST systems with field-constructed tanks, and 162 airport hydrant fuel distribution systems (each hydrant system is supported by an average of roughly eight linked tanks).\(^9\)

Most UST systems in the United States are located at motor fuel retail establishments (i.e., gas stations), and virtually all retail motor fuel establishments use UST systems. Approximately 162,000 (161,768) retail fueling sites operated in the United States in 2008.\(^10\) Of these, approximately 115,000 included convenience stores.\(^11\)

\(^7\) FY2010 data indicate that the universe of tanks has contracted to 597,333 UST systems. To consider the impacts of declining universe sizes on the results of this analysis, we construct and evaluate an alternative baseline for compliance costs and avoided costs in Chapters 3.4.1 and 4.4.1, respectively.

\(^8\) See Industrial Economics, Inc. “Detailed Assessment of UST Universe by Tank Use and Industry Sector,” Work Assignment 1-25, Task 6, January 23, 2009. The number of EGTs is assumed to be approximately 3.0 percent of all active UST systems based on the weighted average from four state databases.

\(^9\) See Industrial Economics, Inc., “Preliminary Assessment and Scoping of Data Related to Potential Revisions to the UST Regulations; Tasks 2-4, Work Assignment 1-25,” November 20, 2008. There are 201 airport hydrant fuel distribution systems owned by the Department of Defense and 40 airport hydrant fuel distribution systems located at commercial airports. Of these, 162 are not fueled by above-ground storage tanks (two commercial airport facilities have UST systems, along with 160 of the 201 Department of Defense systems).

An analysis of state data by EPA concludes that the average retail motor fuel establishment has 2.97 tanks (UST systems). Assuming approximately 2.97 UST systems per facility and 161,768 facilities, 481,108 UST systems, or 79 percent of all active UST systems, are associated with retail motor fuel establishments.

In addition to traditional motor fuel retailers, big-box retailers, or hypermarkets, represent a growing segment of the retail motor fuel seller market. This category (NAICS code 452910) includes stores operated by Wal-Mart, Costco, and other large companies. Collectively, these firms operate approximately 4,500 filling stations; each station is likely to have at least three UST systems.

Other industry sectors that report use of UST systems include agriculture (crop production and animal production), commercial (wholesale trade, retail trade, accommodation, and food services), communications and utilities (wired telecommunications carriers and electric power generation, transmission, and distribution), hospitals, manufacturing, transportation, local and state government operations, and federal facilities run by the U.S. Departments of Defense and Energy. These sectors comprise approximately 130,000 UST systems, including those in the government sector (Exhibit 2-3). In many cases, firms in these sectors use UST systems for fueling fleets of vehicles such as school buses, delivery trucks, or rental cars. In other cases, UST systems store fuel for operations or emergency use, used oil, or hazardous substances.

Facilities in sectors other than retail motor fuel have, on average, between 1.5 and 2.3 UST systems at the facilities that use UST systems. The actual number of UST systems at a specific facility, however, is likely to vary significantly depending on facility size and focus.

Results of an analysis of public UST records of 45 states performed for EPA’s Office of Underground Storage Tanks suggest that the average number of UST systems per facility (across all sectors that use conventional UST systems or EGTs), is approximately 2.74.

12 A 2006 analysis of 13 state UST databases performed for EPA estimated that the average retail motor fuel establishment (i.e., facility) has 3.13 tanks. Further adjustments to reconcile various estimates of UST use by industry total universe decrease the number of tanks per UST system operating in retail motor fuel settings to 2.97 tanks. See Industrial Economics, Inc., “Small Entities Screening Analysis of UST Universe by Industry Sector,” WA 3-25, Task 4, February 4, 2010.

14 “Summary of Key Data from State Public Record Postings,” E2, Incorporated, Task Order No. 1010 – Subtask A1-06C Technical Directive No. 36. All supporting materials not included in the appendices can be found in the docket for the proposed rule.

Exhibit 2-3

Summary Of Universe Of UST Systems By Sector

<table>
<thead>
<tr>
<th>Industry Sector</th>
<th>NAICS</th>
<th>2006</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number of Facilities with UST Systems</td>
<td>Number of UST Systems</td>
</tr>
<tr>
<td>Conventional UST Systems and EGTs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail Motor Fuel Sales</td>
<td>447</td>
<td>168,987</td>
<td>526,008</td>
</tr>
<tr>
<td>Commercial (wholesale trade, retail trade, accommodation, and food services)</td>
<td>42, 44-45, 72 (excluding 447)</td>
<td>22,730</td>
<td>52,271</td>
</tr>
<tr>
<td>Institutional (hospitals only)</td>
<td>622</td>
<td>2,330</td>
<td>3,812</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>31-33</td>
<td>9,261</td>
<td>15,259</td>
</tr>
<tr>
<td>Transportation (air, water, truck, transit, pipeline, and airport operations)</td>
<td>481, 483-486, 48811</td>
<td>8,559</td>
<td>15,140</td>
</tr>
<tr>
<td>Communications and Utilities (wired telecommunications carriers; and electric power generation, transmission, and distribution)</td>
<td>5171, 2211</td>
<td>6,972</td>
<td>10,223</td>
</tr>
<tr>
<td>Agriculture (crop and animal production)</td>
<td>111, 112</td>
<td>889</td>
<td>1,610</td>
</tr>
<tr>
<td>Local governments</td>
<td>Government jurisdiction</td>
<td>N/E</td>
<td>N/E</td>
</tr>
<tr>
<td>State governments</td>
<td>Government jurisdiction</td>
<td>N/E</td>
<td>N/E</td>
</tr>
<tr>
<td>Federal government</td>
<td>Government jurisdiction</td>
<td>N/E</td>
<td>N/E</td>
</tr>
<tr>
<td>Total: Conventional UST systems and EGTs</td>
<td></td>
<td>219,728</td>
<td>624,323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UST systems with Field Constructed Tanks and Airport Hydrant Fuel Distribution Systems</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FCTs: Department of Defense</td>
<td>Government jurisdiction</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>AHFDSs: Department of Defense</td>
<td>Government jurisdiction</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>Total: FCTs and AHFDSs</td>
<td></td>
<td></td>
<td>401</td>
</tr>
</tbody>
</table>

Notes:

- **b** Analysis based on 2006 column (see note a above), adjusted to reflect 2009 universe of 611,449 UST systems. All sector adjustments proportional except retail motor fuel sales, which reflects the 2008 estimate of 161,768 facilities with UST systems from "MarketFacts 2008 Overview," *National Petroleum News*, August 2008, used as a proxy for the number of such facilities in 2009. (See also Industrial Economics, Inc., “Preliminary Assessment and Scoping of Data Related to Potential Revisions to the UST Regulations; Tasks 2-4, Work Assignment 1-25,” November 20, 2008.)

- **c** See United States Environmental Protection Agency, “Economic Impact Analysis of Additional Mechanisms for Local Government Entities to Demonstrate Financial Responsibility for Underground Storage Tanks,” December 1992, Exhibit 3-1. Estimates of local government UST systems adjusted using the 1987 Census of Governments. Consistent with this analysis, the number of government UST systems is assumed to be two percent of all 2009 UST systems owned by state and federal governments and four percent of all 2009 UST systems owned by local governments.

- **d** The totals shown are the sum of the number of facilities of the rows above. These estimates are used only to establish distribution of facilities across sectors based on available data.

- **e** This number assumes that there are eight tanks per AHFDS. For more detail on assumptions for AHFDSs, see Appendix A.
2.4 Universe of Facilities and Systems Potentially Affected by Proposed Rule

EPA expects that all facilities or UST systems in the universe of conventional UST systems will be required to comply with one or more regulatory changes in the proposed rule, but the number of facilities and systems affected by each specific regulatory change will vary depending on the extent of current (baseline) state regulations and the type of equipment currently in use.

To estimate the number of systems that will be required to comply with each regulatory change, EPA reviewed publicly available data about state regulations, combined with data from a limited sample of states and equipment providers about the use of different technologies for release prevention and detection.16

Exhibit 2-4 identifies the total number of UST systems that could potentially be affected by each regulatory change in the proposed regulations, based on the baseline technology currently in place in the universe of systems. Exhibit 2-4 identifies the number of UST systems or facilities with relevant technologies, the type of system (i.e., conventional UST and EGT systems, facilities with conventional UST systems or EGTs, AHFDSs, or FCTs), the proportion of the relevant universe of UST systems with the technology, and a summary of the assumptions that define the number of affected units. Note that proposed changes for AHFDSs, EGTs, and FCTs affect only those universes of facilities, and Energy Policy Act-related provisions affect only facilities and UST systems in Indian country.17 See Appendix B for detailed descriptions of the values and sources used in each calculation. These estimates do not reflect baseline state regulations (e.g., whether a state already requires interstitial integrity testing). As discussed later in this chapter, some baseline state requirements satisfy requirements of the proposed rule.

16 E2, Incorporated, memoranda and analyses submitted under Contract EP-W-05-018, “U.S. Environmental Protection Agency. Underground Storage Tanks/Leaking Underground Storage Tanks Analytical and Technical Support.” Where gaps existed in the analyses, EPA used the best professional judgment of its UST system technical experts. All supporting materials not included in the appendices can be found in the docket for the proposed rule.

17 EPA assumes that all states have adopted Energy Policy Act-related provisions in the baseline, consistent with existing guidance.
<table>
<thead>
<tr>
<th>Regulatory Change</th>
<th>Universe</th>
<th>Proportion of Total Universe Affected Annually</th>
<th>Number of Potentially Affected Systems (Annual)</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>Facilities with Conventional UST systems and EGTs</td>
<td>100.0%</td>
<td>223,157 facilities</td>
<td>All facilities require periodic walkthrough inspections.</td>
</tr>
<tr>
<td>Overfill prevention equipment tests</td>
<td>Conventional UST systems and EGTs</td>
<td>100.0%</td>
<td>611,449 systems</td>
<td>Percentage of UST systems with overfill prevention equipment.</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>Conventional UST systems and EGTs</td>
<td>90.0%</td>
<td>550,304 systems</td>
<td>One-to-one spill prevention equipment to tank ratio, 10 percent have self-monitoring mechanism and do not need monitoring.</td>
</tr>
<tr>
<td>Interstitial integrity tests</td>
<td>Conventional UST systems and EGTs</td>
<td>17.5%</td>
<td>106,747 systems</td>
<td>Tanks and pipes that use interstitial monitoring and do not use continuous sensors, pressure, vacuum, or liquid-filled leak detection monitoring mechanisms. Includes five percent of tanks and 90 percent of piping that use interstitial monitoring.</td>
</tr>
<tr>
<td>Spill prevention equipment test after repair</td>
<td>Conventional UST systems and EGTs</td>
<td>6.3%</td>
<td>38,216 systems</td>
<td>Spill prevention equipment requires fix once every four years; repairs are used as the fix 25 percent of the time.</td>
</tr>
<tr>
<td>Overfill prevention equipment test after repair</td>
<td>Conventional UST systems and EGTs</td>
<td>5.0%</td>
<td>30,572 systems</td>
<td>Overfill prevention equipment requires fix once every five years; repairs are used as the fix 25 percent of the time.</td>
</tr>
<tr>
<td>Interstitial integrity test after repair</td>
<td>Conventional UST systems and EGTs</td>
<td>3.3%</td>
<td>20,443 systems</td>
<td></td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>Conventional UST systems and EGTs</td>
<td>6.5%</td>
<td>39,744 systemsb</td>
<td>13% of new UST systems would have installed flow restrictors in vent lines.</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests – ATG</td>
<td>Conventional UST systems and EGTs</td>
<td>33.7%</td>
<td>205,814 systems</td>
<td>UST systems that use automatic tank gauges.</td>
</tr>
<tr>
<td>Operability tests – interstitial monitoring</td>
<td>Conventional UST systems and EGTs</td>
<td>18.8%</td>
<td>114,781 systems</td>
<td>UST systems that use interstitial monitoring (excluding five percent that conduct manual testing of the interstice).</td>
</tr>
<tr>
<td>Operability tests – line leak detection</td>
<td>Conventional UST systems and EGTs</td>
<td>27.5%</td>
<td>168,440 systems</td>
<td>Pressurized piping systems that use electronic line leak detectors.</td>
</tr>
<tr>
<td>Operability tests – mechanical LLDs</td>
<td>Conventional UST systems and EGTs</td>
<td>54.9%</td>
<td>335,628 systems</td>
<td>Proportion of pressurized piping that already performs a LLD test, but which will require additional capital expenditures to comply with new regulations.</td>
</tr>
<tr>
<td>Operability tests – groundwater and vapor monitoring</td>
<td>Conventional UST systems and EGTs</td>
<td>5.17%</td>
<td>31,612 systems</td>
<td>UST systems that use vapor monitoring and/or groundwater monitoring as their sole release detection method(s). Universe affected phases out in equal parts over initial five years of proposed rule.</td>
</tr>
</tbody>
</table>
Exhibit 2-4

<table>
<thead>
<tr>
<th>Regulatory Change</th>
<th>Universe</th>
<th>Proportion of Total Universe Affected Annually</th>
<th>Number of Potentially Affected Systems (Annual)</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>Conventional UST systems and EGTs</td>
<td>5.17%</td>
<td>31,612 Systems</td>
<td>UST systems that use vapor monitoring and/or groundwater monitoring as their sole release detection method(s). Universe affected phases in over five years.</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulations with performance criteria</td>
<td>Conventional UST systems and EGTs</td>
<td>0.5%</td>
<td>2,972 systems</td>
<td>13 percent of UST systems use SIR; 15 percent of these use qualitative methods. Of these, 25 percent are assumed to incur costs to comply.</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – ATG</td>
<td>Conventional UST systems and EGTs</td>
<td>33.7%</td>
<td>205,814 systems</td>
<td>UST systems that use automatic tank gauges.</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – LLD</td>
<td>Conventional UST systems and EGTs</td>
<td>27.5%</td>
<td>168,440 systems</td>
<td>Pressurized piping systems that use electronic line leak detectors.</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – SIR</td>
<td>Conventional UST systems and EGTs</td>
<td>1.9%</td>
<td>11,887 systems</td>
<td>UST systems that use qualitative SIR.</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – CITLD</td>
<td>Conventional UST systems and EGTs</td>
<td>25.2%</td>
<td>154,360 systems</td>
<td>33.7 percent of systems use ATG; of these, 75 percent employ CITLD.</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>Conventional UST systems and EGTs</td>
<td>2.4%</td>
<td>14,814 systems</td>
<td>Weighted average annual percentage of UST systems and piping that experience an interstitial monitoring alarm.</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>EGTs</td>
<td>3.0%</td>
<td>18,343 systems</td>
<td>UST systems assumed to be emergency generator tanks.</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>AHFDSs</td>
<td>100.0%</td>
<td>162 facilities</td>
<td>All airport hydrant fuel distribution systems.</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>FCTs</td>
<td>100.0%</td>
<td>239 systems</td>
<td>All UST systems with field-constructed tanks.</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>Facilities with Conventional UST systems and EGTs</td>
<td>10.1%</td>
<td>22,502 facilities</td>
<td>Annual number of facilities that change ownership.</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>Conventional UST systems and EGTs</td>
<td><0.1%</td>
<td>84 systems</td>
<td>Annual number of lined UST systems that cannot be repaired.</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>Conventional UST systems and EGTs</td>
<td>100.0%</td>
<td>611,449</td>
<td>All conventional UST systems and EGTs</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>UST Facilities in Indian country</td>
<td>100.0%</td>
<td>958 facilities</td>
<td>All facilities in Indian country. Universe affected phases in over three years.</td>
</tr>
<tr>
<td>Secondary containment - new and replaced tanks</td>
<td>UST systems in Indian country</td>
<td>36.2%</td>
<td>950 systems</td>
<td>Approximately 72.4 percent of systems in Indian country are single-walled. Analysis assumes midpoint of time horizon until all units are replaced (year 10, 50 percent of universe affected).</td>
</tr>
</tbody>
</table>
Exhibit 2-4

<table>
<thead>
<tr>
<th>Regulatory Change</th>
<th>Universe</th>
<th>Proportion of Total Universe Affected Annually</th>
<th>Number of Potentially Affected Systems (Annual)</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold for pipe replacement rather than repair</td>
<td>UST systems in Indian country</td>
<td>6.0%</td>
<td>158 systems(^a)</td>
<td>Piping replaced every five years, where 60.3% are single-walled. Analysis assumes midpoint of time horizon until all units are replaced (year 10, 50 percent of universe affected).</td>
</tr>
<tr>
<td>Under-dispenser containment for all new dispensers</td>
<td>UST systems in Indian country</td>
<td>48.5%</td>
<td>1,273 systems(^a)</td>
<td>Approximately 97 percent of systems require under-dispenser containment. Analysis assumes midpoint of time horizon until all units are replaced (year 10, 50 percent of universe affected).</td>
</tr>
</tbody>
</table>

\(^a\) Figures in this column are calculated assuming that the average number of UST systems per facility is approximately 2.74, per “Summary of Key Data from State Public Record Postings,” E\(^2\), Incorporated, Task Order No. 1010 – Subtask A1-06C Technical Directive No. 36, Table 1.

\(^b\) The affected universes presented for these items reflect 50 percent of ultimately affected systems or facilities. Because these requirements take effect over time and future costs are discounted, we present the universe affected at year 10 as a central estimate. In addition, we adjust unit costs to reflect the fact that the total cost of these requirements grows as the number of affected systems or facilities increases.

2.5 Facilities and Systems Affected by Proposed Rule

Many states currently have baseline regulations consistent with one or more requirements in the proposed regulations. As a result, only a portion of the universe of potentially affected facilities will be required to change practices to comply with each regulatory change. Whereas Exhibit 2-4 displays the number of units that may potentially be subject to each requirement, Exhibit 2-5 identifies, based on EPA’s review of baseline state regulations, the number of units that will be subject to these requirements as a result of the proposed regulations. For nearly all requirements, some portion of the potentially affected universe is already in compliance with the proposed regulatory changes.

Alternative Option 2 will affect the smallest number of systems. Among the specific changes proposed, walkthrough inspections and spill prevention equipment tightness testing affect the largest number of UST systems in all scenarios.\(^{18}\) In contrast, several regulatory changes (e.g., closure of irreparable lined tanks and pipe replacement requirements) are likely to affect only a small number of systems.

The distribution of incremental impacts of the rule also depends on the distribution of baseline technologies across states with different baseline regulations. Facilities and systems in states with fewer current regulations may bear a greater proportion of costs and benefits than facilities and systems in states with extensive baseline regulations. A key limitation of available baseline data is that baseline technology data is not available at the state level. For example, it is possible that facilities and systems with specific release detection technologies (e.g., automatic tank gauges, (ATGs)) may not be distributed evenly across all states. However, estimates of the

\(^{18}\) Walkthrough inspections are estimated at a facility level; the number of UST systems estimated as affected by these regulations is 440,817.
percentage of systems using ATGs are available only at the national level. As a result, the regulatory scenarios in Chapters 3 (Compliance Costs) and Chapter 4 (Benefits and Cost Savings) reflect regulatory changes required by an “average” facility in a state under the proposed rule, assuming that all systems reflect the national profile of existing technologies. Analyses of economic impacts and small businesses in Chapter 5 (Distributional Analyses) assess the possible distribution of compliance impacts related to this uncertainty.

Exhibit 2-5

<table>
<thead>
<tr>
<th>Description</th>
<th>Universe of Potentially Affected Systems</th>
<th>Systems Affected by Preferred Option</th>
<th>Systems Affected by Alternative Option 1</th>
<th>Systems Affected by Alternative Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>223,157 (facilities)</td>
<td>160,882 (facilities)</td>
<td>160,882 (facilities)</td>
<td>141,505 (facilities)</td>
</tr>
<tr>
<td>Overfill prevention equipment tests</td>
<td>611,449</td>
<td>378,672</td>
<td>421,137</td>
<td>378,672</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>550,304</td>
<td>460,696</td>
<td>550,304</td>
<td>460,696</td>
</tr>
<tr>
<td>Interstitial integrity tests</td>
<td>106,747</td>
<td>76,157</td>
<td>93,538</td>
<td>N/A</td>
</tr>
<tr>
<td>Spill prevention equipment test after repair</td>
<td>38,216</td>
<td>37,847</td>
<td>37,847</td>
<td>N/A</td>
</tr>
<tr>
<td>Overfill prevention equipment test after repair</td>
<td>30,572</td>
<td>29,844</td>
<td>29,844</td>
<td>29,844</td>
</tr>
<tr>
<td>Interstitial integrity test after repair</td>
<td>20,443</td>
<td>14,585</td>
<td>14,585</td>
<td>14,585</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>39,744</td>
<td>32,460</td>
<td>32,460</td>
<td>N/A</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests – ATG</td>
<td>205,814</td>
<td>201,874</td>
<td>201,874</td>
<td>201,874</td>
</tr>
<tr>
<td>Operability tests – interstitial monitoring</td>
<td>114,781</td>
<td>112,584</td>
<td>112,584</td>
<td>112,584</td>
</tr>
<tr>
<td>Operability tests – line leak detection</td>
<td>168,440</td>
<td>165,216</td>
<td>165,216</td>
<td>165,216</td>
</tr>
<tr>
<td>Operability tests – mechanical LLDs</td>
<td>335,628</td>
<td>335,628</td>
<td>335,628</td>
<td>335,628</td>
</tr>
<tr>
<td>Operability tests – groundwater and vapor monitoring</td>
<td>31,612</td>
<td>31,612</td>
<td>31,612</td>
<td>31,612</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>31,612</td>
<td>31,612</td>
<td>31,612</td>
<td>31,612</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulations with performance criteria</td>
<td>2,972</td>
<td>2,882</td>
<td>2,882</td>
<td>2,882</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – ATG</td>
<td>205,814</td>
<td>N/A</td>
<td>201,874</td>
<td>N/A</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – LLD</td>
<td>168,440</td>
<td>N/A</td>
<td>165,216</td>
<td>N/A</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – SIR</td>
<td>11,887</td>
<td>N/A</td>
<td>11,659</td>
<td>N/A</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – CITLD</td>
<td>154,360</td>
<td>N/A</td>
<td>151,406</td>
<td>N/A</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>14,814</td>
<td>10,569</td>
<td>10,569</td>
<td>10,569</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>18,343</td>
<td>11,704</td>
<td>11,704</td>
<td>N/A</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>162</td>
<td>97</td>
<td>97</td>
<td>N/A</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>239</td>
<td>102</td>
<td>102</td>
<td>N/A</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>22,502</td>
<td>3,265</td>
<td>3,265</td>
<td>3,265</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>84</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>611,449</td>
<td>611,449</td>
<td>611,449</td>
<td>611,449</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>958 (facilities)</td>
<td>958 (facilities)</td>
<td>958 (facilities)</td>
<td>958 (facilities)</td>
</tr>
<tr>
<td>Secondary containment - new and replaced tanks</td>
<td>950</td>
<td>950</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>Threshold for pipe replacement rather than repair</td>
<td>158</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Description</td>
<td>Universe of Potentially Affected Systems</td>
<td>Systems Affected by Preferred Option</td>
<td>Systems Affected by Alternative Option 1</td>
<td>Systems Affected by Alternative Option 2</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Under-dispenser containment for all new dispensers</td>
<td>1,273</td>
<td>1,273</td>
<td>1,273</td>
<td>1,273</td>
</tr>
</tbody>
</table>

a The universe of affected systems for these requirements varies because some states have current requirements that differ in frequency and ensure baseline compliance in some regulatory scenarios but not others.

b The affected universes presented for these items reflect 50 percent of ultimately affected systems or facilities. Because these requirements take effect over time and future costs are discounted, we present the universe affected at year 10 as a central estimate. In addition, we adjust unit costs to reflect the fact that the total cost of these requirements grows as the number of affected systems or facilities increases.

c Universe affected phases in over five years.

d The universe of potentially affected units is 162 systems, or 1,296 tanks (at eight tanks per system).

e EPA’s screening analysis shows that a requirement to replace piping if more than 50 percent of it requires repairs would likely generate no net costs, as owners or operators would ordinarily pursue replacement under those circumstances. See Appendix C for details.
Chapter 3. Assessment of Compliance Costs

3.1 Introduction

This chapter describes EPA’s analysis of the social costs associated with the proposed rule. OMB guidance suggests that an analysis that relies on measures of opportunity cost and willingness to pay provides a holistic basis for assessing the total cost of any proposed rule. Specifically, a social cost analysis should focus on measuring changes in consumer and producer surplus by considering the market responses to compliance costs (e.g., changes in demand and supply). Along with the administrative costs incurred by the government, changes in producer and consumer surplus reflect the true cost to society of adopting a set of proposed measures.

For this regulatory impact analysis, EPA uses a combination of direct compliance costs and state oversight costs to approximate social costs. In this context, compliance costs represent a reliable indicator of social costs for the following reasons:

- The regulatory requirements generally focus on additional testing and inspection of existing equipment, and do not reflect large-scale investments in equipment or significant changes to operations at the facility level. In addition, the facilities affected by the rule are distributed with relative geographic uniformity for consumers and producers.

- Given the small per-facility costs of the rule (less than $900 for the average facility, as documented in this chapter), closures or changes in market structure represent an unlikely response to the rule. Therefore, it is unlikely that significant changes to production or consumer behavior will affect social costs.

- The short- and long-run impacts of the rule are not likely to differ significantly. Testing and inspection requirements under the rule may offer some opportunities for owners and operators to reduce costs by learning over time, but they are not likely to reduce costs enough to facilitate large-scale equipment upgrades.

For these reasons, compliance costs are likely to be a reasonable approximation for social costs over both the short- and long-run. This chapter presents EPA’s compliance cost methodology and results, and summarizes the calculation of government oversight costs. The chapter also provides a discussion of key uncertainties and several brief sensitivity analyses. An analysis of the potential economic impacts of the proposed rule is presented in Chapter 5, and a sensitivity analysis that evaluates the effects of alternative interest rates is presented in Chapter 7.

3.2 Compliance Cost Methodology

In this chapter, EPA presents its methodology for estimating incremental compliance costs of the proposed rule beyond the current baseline costs of existing federal and state
regulation of underground storage tanks. EPA’s analysis focuses on the specific incremental costs that occur as a consequence of the proposed rule. Throughout this chapter, the analysis distinguishes between three types of costs:

- **System-level**: Costs that occur at the individual UST tank level, including ancillary equipment.

- **Facility-level**: Costs that occur at the level of a facility that owns several USTs; typically 2.74 times the system-level cost to reflect UST ownership by the average facility.

- **Unit costs**: System-level costs related to a particular proposed requirement. For example, the requirement to test spill prevention equipment after repairs has a unit cost of approximately $130.

Calculation of total incremental compliance costs for UST facilities reflects two key components: identification of specific measures necessary for compliance at individual facilities, and calculation of the costs associated with each of these measures. To estimate these costs, EPA developed a compliance cost model that identifies incremental equipment and labor requirements for an individual system. Based on the baseline equipment, existing state regulations, and anticipated responses to the proposed regulation, the model then generates system-specific estimates of compliance costs. Compliance costs include the labor and capital costs associated with new equipment and installation, inspection, testing, and recordkeeping. The model also includes other compliance costs, such as those associated with more frequent detection of equipment failure and repair of equipment. Some component costs are specific to individual UST system configurations – for example, airport hydrant fuel distribution systems or UST systems with field-constructed tanks – while others are consistent across all system types.

We calculate the compliance costs of the proposed rule by measuring three factors: the regulations already in place in each state (i.e., baseline regulations); the proportion of facilities or UST systems with specific technologies (i.e., the portion of systems that require specific types of upgrades or tests); and the unit cost to comply with each proposed element of the proposed regulation. Chapter 2 of this regulatory impact analysis discusses the baseline state regulations and the proportion of facilities affected by this rule (see Exhibit 2-5).

An important limitation of our analysis is that we do not have data on the distribution of UST technologies. Consider the following from Exhibit 2-5: we estimate that overfill prevention tests will be a new requirement for 378,672 systems, and spill prevention equipment tests will be a new requirement for 460,696 systems. These requirements could together affect as few as 460,696 systems if all systems that are affected by overfill prevention testing are a subset of the systems that are affected by spill prevention testing. In the absence of additional information, it

1 For this proposed rule, EPA does not specifically attempt to measure baseline regulatory costs. However, costs identified in the 1988 EPA regulation that set original technical standards under 40 CFR Part 280 provide an indication of baseline costs. The 1988 RIA calculated per-tank costs of $28,770, equivalent to $44,450 in 2009 dollars. See August 24, 1988 RIA entitled Regulatory Impact Analysis of Technical Standards for Underground Storage Tanks, Volume 1, page ES-7, Exhibit ES-1.
is equally plausible that these two requirements affect the entire universe of USTs if they overlap as little as possible.

EPA has not identified any information that could allow us to reliably narrow the universe of affected USTs to a number smaller than the entire universe. Further, EPA’s review of state data suggests that facilities in all states will be subject to some cost under the proposed rule. Consequently, when considering the total cost of the proposed rule on a facility or UST system basis, we divide the total cost by the number of facilities or systems in the entire universe.

3.2.1 Categories of Compliance Costs Analyzed

This analysis includes the following categories of compliance costs: operations and maintenance costs; capital costs; and implicit capital costs, or “time value of money costs” associated with earlier detection of equipment failure. Because the proposed rule focuses on operational improvements, operations and maintenance costs constitute the majority of the compliance costs identified in this analysis. These costs are relatively frequent, recurring costs that mainly involve a service activity. Operations and maintenance activities include the labor and materials costs associated with maintenance of equipment, routine testing, and inspection (whether performed by the owner, operator, or a contractor). This analysis assumes that UST facility owners and operators pay in full for these costs when they occur (that is, they do not obtain financing and pay over time).

Because the proposed rule does not focus on broad equipment requirements, capital costs represent a small portion of the total compliance costs for this proposed rule. Capital costs address the purchase and installation of new equipment, such as installing a new double-walled UST or under-dispenser containment. Total capital costs typically include installation labor and initial service required to ensure the new equipment is fully functioning. EPA assumes that UST owners and operators finance these compliance costs over the life of the equipment; all capital costs are calculated over a regulatory time horizon of 20 years. The following examples characterize the three types of capital cost calculations that are relevant to this regulatory analysis:

2 The discounted cost per UST system ranges from less than $100 in one state to over $700, with costs in 54 states and territories falling between $200 and $450.

3 We address uncertainty in the distribution of technology and costs with a set of sensitivity analyses in section 3.5 of this chapter, and we consider the economic impacts of different distributions of costs in Chapter 5.

4 Certain one-time costs that occur only once over the regulatory time horizon (e.g., one-time spending on initial operator training for personnel at existing facilities) are also annualized over 20 years.

5 EPA assumes that owners and operators amortize all capital costs over a 20-year expected regulatory horizon to be consistent with the 20-year expected lifetime of an UST system. For equipment with a lifetime shorter than 20 years, EPA assumes that a proportion of the universe is affected per year; for example, EPA assumes that piping is replaced every five years, such that one-fifth of the universe must replace it every year. The central analysis uses a seven percent discount rate, consistent with Office of Management and Budget Circular No. A-94, Revised, October 29, 1992. Other discount rates are considered in Chapter 7.
Existing equipment replacements: An UST system owner or operator must upgrade an existing system with new equipment to comply with a requirement under the proposed rule (e.g., facilities with EGTs may be required to install release detection equipment if the deferral is removed). The incremental compliance cost is the total cost of the new equipment and installation (including removal of existing equipment). Any additional (incremental) operation and maintenance costs are also included.

New equipment requirements: An operator is installing new or replacement equipment as an ordinary business expense. Under baseline regulations, Equipment A is compliant. However, new regulations require a higher level of compliance for new tank systems that can be satisfied at lowest cost by Equipment B. The incremental compliance cost to the owner of the equipment is the additional cost (if any) of purchasing and installing and operating Equipment B instead of Equipment A. The costs of this requirement reflect the timing of the normal replacement cycle for all equipment in the universe. For example, owners and operators installing new UST systems will be required to use technologies other than flow restrictors to ensure release prevention.

Time value of money (TVM) costs: Under baseline regulations, the average UST system requires inspection every three years. EPA estimates that the baseline three-year inspection, on average, identifies a hypothetical repair or replacement cost of $100 associated with certain equipment. Under the proposed rule, a new annual test would discover the repair sooner and require repair or replacement one-to-two years earlier. While the repair expense is the same, the proposed rule generates a time value of money cost by requiring an expenditure sooner.

EPA estimates that the proposed regulations will impose capital costs on the following components due to earlier detection of problems as a result of the new testing requirements:

- Overfill prevention equipment;
- Spill prevention equipment;
- Interstitial areas; and

6 This approach may overstate costs, as it does not account for the age of existing equipment. Owners and operators typically plan for new capital expenditures over the lifetime of existing equipment, recording depreciation as operations consume its usefulness over time. If an owner or operator is close to replacing certain equipment and is required to replace that equipment when the proposed rule becomes effective, he or she incurs a lower incremental cost than an owner or operator who only recently installed that equipment. By not attempting to adjust for this factor, EPA assumes that owners and operators replace brand new equipment, a conservatism that results in a higher cost. Using this approach, these annualized one-time costs comprise approximately one percent of annual costs under Preferred Option and Alternative 2. Under Alternative 1, the requirement of three-year spill prevention equipment replacement increases these costs to 38 percent of total costs.

7 There is significant uncertainty regarding whether total expenditures would increase or decrease over time. More frequent inspections may lead to more frequent repairs and replacements but may also reduce the severity and cost of issues.
• ATGs, interstitial monitors, vapor monitors, groundwater monitors, and line leak detectors.

The proposed rule requires testing, in addition to inspections, for several UST system components. EPA assumes that testing adds value to baseline release prevention strategies in two ways: first, testing detects issues with an UST system that may not be detectable in inspections. In addition, in some cases, testing will occur more frequently than baseline inspections and therefore may identify issues that occur between inspections. This analysis therefore considers two types of increased capital costs. First, EPA assumes that additional testing required under the proposed rule will identify malfunctions that prior inspections would have overlooked, and will therefore mandate additional compliance costs related to repair and replacement of equipment. Second, some baseline compliance costs will occur earlier than they would in the baseline, creating time value of money costs as owners and operators forgo the use of funds for other investments. The time value of money cost of incurring a repair sooner is estimated at seven percent, consistent with OMB’s discount rate. See Appendix D for the detailed cost methodology.

3.2.2 Estimation of System-Level Compliance Costs for UST Systems

Estimates of system-level compliance costs for each part of the proposed rule are based on publicly available data on equipment, installation, and testing costs, information collected from professionals in industries that provide relevant equipment and services, and EPA’s professional judgment. Costs are estimated to occur according to the rule implementation schedule identified in Exhibit 1-2; we use an annual discount rate of seven percent to adjust costs with compliance windows of more than one year.

Labor costs used in this analysis reflect labor-hour estimates from EPA Information Collection Request 1360.08 for specific inspection and recordkeeping tasks. The cost of labor is based on Bureau of Labor Statistics (BLS) labor rates for skill categories appropriate to the retail sector and technical requirements of the proposed rule. In particular, EPA selected labor rates that correspond to categories of labor employed in the retail motor fuels sector (NAICS 447).

The analysis adjusts these rates using a 12 percent overhead factor and a fringe benefits factor of 28.3 percent, which is specific to service-providing industries. For requirements that are likely

8 E², Incorporated, memoranda and analyses submitted under Contract EP-W-05-018, “U.S. Environmental Protection Agency. Underground Storage Tanks/Leaking Underground Storage Tanks Analytical and Technical Support.” Where gaps existed in the analyses, EPA used the best professional judgment of its UST system technical experts. All supporting materials not included in the appendices can be found in the docket for the proposed rule.

9 Labor rates reflect the May 2008 Occupational Employment and Wage publication by the Bureau of Labor Statistics. See Appendix D for the particular Standard Occupational Classification codes used. EPA does not use the costs in its Information Collection Request 1360.08 because those labor rates reflect all industries and do not represent typical costs to the majority of UST owners and operators.

10 The overhead factor of 12 percent comes from Office of Management and Budget Circular No. A-76, p. D-7. Although this rate reflects government overhead rates, we believe it is also representative of the low-overhead structure of the retail motor fuels sector. The fringe benefits factor is from Bureau of Labor Services, Employer Costs for Employee Compensation, September 2009. See Table 10: All workers, service-providing industries.
to be satisfied by third-parties, such as testing, labor costs are included in the costs of those services.

In addition, specific requirements under the proposed regulation are addressed as follows:

- For proposed regulatory changes that take effect over time as equipment ages, the analysis assumes a constant rate of equipment replacement, and calculates a constant annual payment for the net present value of 20 years of replacements. Appendix D discusses the specific assumptions made in the analysis.

- To identify the total system-level compliance cost of removing deferrals from airport hydrant fuel distribution systems (AHFDSs) and field-constructed tanks (FCTs), the analysis calculates both the direct costs of removing the deferral of these systems from the regulations under 40 CFR Part 280, and the additional costs of complying with other new regulatory options that apply to all systems (and become relevant when deferrals are removed). Under the proposed regulations, owners and operators of these systems must perform annual bulk line testing at prescribed rates or use an automatic tank gauge at prescribed leak rates. Appendix A discusses specific assumptions related to these tank populations.

- To estimate the total system-level compliance cost of removing the deferral from emergency generator tanks, the analysis calculates the cost of complying with specific proposed changes that apply to the broader universe of conventional UST systems and become relevant when the deferral is removed. Removal of the deferral under the proposed rule means that EGTs must comply with release detection requirements at 40 CFR Part 280, Subpart D.

Exhibit 3-1 presents the unit-level costs for the individual requirements in the proposed rule.11

11 See Appendix D for a detailed discussion of these costs.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>ONE-TIME a ($)</th>
<th>O&M ($)</th>
<th>REPAIR/REPLACEMENT COST b ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$0.00</td>
<td>$25.36</td>
<td>$0.13</td>
</tr>
<tr>
<td>Overfill prevention equipment tests</td>
<td>$0.00</td>
<td>$214.69</td>
<td>$11.00</td>
</tr>
<tr>
<td>Spill prevention equipment tests</td>
<td>$0.00</td>
<td>$125.68</td>
<td>$3.34</td>
</tr>
<tr>
<td>Interstitial integrity tests</td>
<td>$0.00</td>
<td>$310.25</td>
<td>$126.10</td>
</tr>
<tr>
<td>Spill prevention equipment test after repair</td>
<td>$0.00</td>
<td>$125.68</td>
<td>$0.00</td>
</tr>
<tr>
<td>Overfill prevention equipment test after repair</td>
<td>$0.00</td>
<td>$157.78</td>
<td>$0.00</td>
</tr>
<tr>
<td>Interstitial integrity test after repair</td>
<td>$0.00</td>
<td>$157.78</td>
<td>$0.00</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>$394.20</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests – ATG</td>
<td>$0.00</td>
<td>$56.17</td>
<td>$1.12</td>
</tr>
<tr>
<td>Operability tests – interstitial monitoring</td>
<td>$0.00</td>
<td>$9.93</td>
<td>$1.16</td>
</tr>
<tr>
<td>Operability tests – electronic LLDs</td>
<td>$0.00</td>
<td>$56.17</td>
<td>$2.15</td>
</tr>
<tr>
<td>Operability tests – mechanical LLDs</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.77</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td></td>
<td>$68.89 c</td>
<td></td>
</tr>
<tr>
<td>Add SIR/CITLD to regulations with performance criteria</td>
<td>$10.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – ATG</td>
<td>$2,431.37</td>
<td>-$8.00 f</td>
<td>$0.00</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – LLD</td>
<td>$412.39</td>
<td>-$12.00 f</td>
<td>$0.00</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – SIR</td>
<td>$15.00</td>
<td>-$2.40 f</td>
<td>$0.00</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities – CITLD</td>
<td>$80.00</td>
<td>-$1.60 f</td>
<td>$0.00</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$0.00</td>
<td>$78.19</td>
<td>$0.00</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks h</td>
<td>$298.56</td>
<td></td>
<td>$172.74</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>$11,281.20</td>
<td>$229,837.14</td>
<td>$0.00</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>$12.83</td>
<td>$55,474.81</td>
<td>$0.00</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>$0.00</td>
<td>$12.83</td>
<td>$0.00</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$35,499 d</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>$0.00</td>
<td>$1.89 e</td>
<td>$0.00</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$265.89</td>
<td>$130.80</td>
<td>$0.00</td>
</tr>
<tr>
<td>Secondary containment - new and replaced tanks</td>
<td>$7,890.18</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Threshold for pipe replacement rather than repair e</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Under-dispenser containment for all new dispensers</td>
<td>$1,795.11</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

* One-time costs presented here are not shown in annual terms. For the purposes of estimating total annual costs for the proposed rule, these one-time expenditures are annualized over 20 years at a seven percent interest rate.

b Time value of money costs due to earlier repair and replacement of equipment reflect costs of repair or replacement sooner than would have occurred in the baseline. For most requirements, these are costs that would occur and be identified by annual tests, i.e., they reflect one year's worth of accumulated issues that require equipment repairs or replacements. Three requirements represent exceptions. TVM costs for overfill prevention and interstitial integrity testing, which occur every three years under the Preferred Option, represent the repairs and replacements over three years. In addition, TVM costs for
walkthrough inspections represent the repairs and replacements identified on a monthly basis to match the requirement under the Preferred Option. See Appendix D for additional details.

c The cost presented here is the average unit cost for the phasing out of groundwater and vapor monitoring and the phasing in of alternative compliance methods. It includes elements of annualized one-time costs and O&M costs.

d We assume that this cost occurs in full for the systems that require closure of lined tanks in a given year.

e We assume all facilities exceeding the 50 percent threshold for piping replacement would opt to replace piping in the baseline; costs are therefore zero. See Appendix C for detailed calculations.

f Operations and maintenance costs associated with the adjustment of release detection leak rate probabilities is negative because operators avoid costly testing related to false alarms.

g This includes an annualized cost of $0.01 related to the cost of storing records for the life of the UST system.

h Because different subsets of EGTs are subject to different requirements, we present average unit costs that divide the total cost to the affected universe by the total number of affected units. O&M costs include any TVM costs associated with operability tests. See Appendix D for additional details.

i Cost estimates were derived using a seven percent discount rate.

3.3 Calculation of Incremental Compliance Costs

This analysis estimates the compliance cost of the proposed rule by calculating the incremental cost of each regulatory change on the population of tank systems in every U.S. state and territory. This procedure relies on national estimates of the universe of systems employing specific baseline technologies, as well as EPA’s assessment of the baseline regulatory requirements in each state and territory. The analysis categorizes compliance costs into one-time or operations and maintenance costs and amortizes one-time compliance costs over the 20-year regulatory time horizon. As a final step, it discounts annual compliance costs associated with several of the proposed changes to delayed compliance horizons specified in the proposed rule (e.g., overfill operability testing must be performed within three years of the date the proposed rule becomes effective).

To calculate compliance costs, EPA employs a number of assumptions, some of which likely overstate compliance costs:

- **Time value of money costs.** This analysis does not assume that the rate at which problems occur in UST systems will decline as a result of the proposed rule. The number and severity of problems will likely fall due to more frequent testing and inspections, but the rate of decline is uncertain and the analysis does not attempt to adjust for these changes. This likely causes the analysis to overestimate the costs of the proposed rule.

12 For details regarding these assumptions, see Appendix B.

13 See footnote 5 for an explanation of the use of a 20-year time horizon.
• **Size of universe.** EPA’s analysis assumes that the number of UST systems in the universe remains constant over time, with new systems replacing closures. EPA’s end-of-year reporting data reveal that the universe of conventional UST systems has declined at a rate over two percent per year since 1999. Assuming this pattern continues, future annual compliance costs due to the proposed rule are likely to be lower than estimated in this analysis. However, in absence of other data we assume that new installations and upgrades will offset all closures, and that annual compliance costs will remain constant. Impacts of assuming an alternative baseline universe of UST systems that declines over time are discussed in Sections 3.3.1 and 3.4.1.

• **Full compliance.** EPA assumes that all owners and operators subject to each requirement will come into compliance. This ensures a high estimate of costs, as each system subject to the rule implements the required measures and consequently incurs the related costs.

• **Timeliness of repairs.** EPA assumes that all issues identified through testing of equipment will be properly addressed through immediate repair or replacement of equipment. This may overstate costs if owners or operators fail to address identified issues in a timely fashion.

• **Date on which costs are incurred.** EPA assumes that all costs are incurred at the beginning of the year in which each requirement of the proposed rule becomes effective. This may overstate costs that occur at the end of the time frame.

These combined assumptions help ensure that the total costs estimated in each scenario below are not likely to be understated, even in cases where some uncertainty is associated with unit cost estimates for equipment or testing. Two key areas of uncertainty that affect the distribution of costs are noted below.

• **Geographic distribution of technologies:** EPA lacks information on how UST systems with specific equipment (e.g., ATG) are distributed nationally. If most are located within states with existing applicable requirements, then costs could be lower (conversely, if most are located in states with no existing applicable requirements, then costs could be higher). In the absence of this data, EPA assumes a uniform distribution of technologies across all states. EPA assesses the extent to which this assumption creates cost uncertainty at the end of this chapter.

• **Distribution of costs across systems:** EPA does not have information on how costs are likely to be distributed among the systems that are subject to new requirements. For example, a correlation among systems that require overfill operability testing, spill prevention equipment tightness testing, and interstitial integrity testing after repair would concentrate costs on these systems in ways that

14 See U.S. Environmental Protection Agency, Office of Underground Storage Tanks, Semi-Annual Report of UST Performance Measures for Fiscal Years 1999 and 2009. In addition, industry data indicates that in recent years, the net decline in the population of facilities with UST systems has been roughly 1.4 percent per year.
EPA’s primary assessment of costs does not capture. While this does not affect total cost estimates, EPA assesses the distributional consequences of an outcome where costs are highly-concentrated in Chapter 5.

3.3.1. Calculation of Incremental Compliance Costs Using an Alternative Baseline

EPA’s primary analysis assumes that the universe of UST systems stays constant over time. That is, the analysis assumes that when an UST system enters the universe, another exits, and vice versa. However, data show that the universe of UST systems has been declining over the past two decades (albeit at a slowing rate). Therefore, EPA also assesses compliance costs associated with the proposed rule based on an alternative baseline that projects a declining universe.

To calculate the rate of universe decline, EPA mapped historical data on the universe of UST systems from 1991 through 2010 to an exponential one-phase decay function, which appears to most accurately represent the observed behavior of the UST system universe over time. Steep declines in the universe of UST systems in past years reflect increases in tank size as well as industry consolidation. However, these declines may be reaching functional limits, both because the number of fuel outlets needed to serve the population is considerable, and because tank sizes may be reaching a practical limit in their ability to be transported and installed.

The function used to project future UST universe sizes indicates that over a 20-year time period, the annual number of affected UST systems gradually declines to 586,021 UST systems by year 20 under this alternative baseline. The number of UST systems affected under this alternative baseline is approximately 97 percent of the size of the original baseline, which assumes a constant universe size of 611,449 UST systems over this period. As a result, compliance costs associated with the proposed rule are only marginally smaller under this alternative baseline. See Appendix J for additional details.

15 To estimate future UST universe sizes, we used a single exponential decay function, which assumes that a quantity declines at a rate proportional to its value. This is an appropriate function given the singular and slowing rate of decline observed in the universe of UST systems over time. The equation for such an exponential singular decay function is $Y = (Y_0 - P) \times e^{(-kX)} + P$, where P represents the “plateau,” or limit of the function and k represents the function’s half-life. (See Appendix J for additional details.)

16 See Wayne Geyer, “Where Has Our Petroleum Storage Capacity Gone?” Steel Tank Institute, https://www.steeltank.com/LinkClick.aspx?fileticket=h8g9YO5y%2Bfl%3D&tabid=108&mid=502. This source indicates simultaneous trends in increasing average tank sizes as well as decreasing UST system totals.

17 While this alternative baseline assumes a steady decline in the number of UST systems, it is possible that the number of UST systems may actually increase in the future to trend with population growth and economic expansion as more people living in more areas may necessitate more retail motor fuel outlets.

18 EPA assumes that owners and operators amortize all capital costs over a 20-year expected regulatory horizon to be consistent with the 20-year expected lifetime of an UST system.
3.4 Results of Assessment of Compliance Costs

Exhibit 3-2 presents a summary of the estimated incremental compliance costs associated with the proposed rule by type of UST system affected. In all options, it is clear that the category of conventional UST systems will bear the largest proportion of compliance costs under the proposed rule. While compliance costs associated with removal of deferrals from EGTs are constant across regulatory scenarios, other costs vary substantially among the regulatory options. The model parameters used to produce the results discussed in this chapter are presented in Appendix E and were selected to reflect the preferred and alternative options described in Chapter 1.

<table>
<thead>
<tr>
<th>Option</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems (^a)</td>
<td>$180</td>
<td>$360</td>
<td>$120</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs) (^b)</td>
<td>$2.2</td>
<td>$2.2</td>
<td>$2.1</td>
</tr>
<tr>
<td>Airport Hydrant Fuel Distribution Systems (AHFDSs)</td>
<td>$18</td>
<td>$120</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$4.6</td>
<td>$33</td>
<td>$0.0</td>
</tr>
<tr>
<td>Total</td>
<td>$200</td>
<td>$520</td>
<td>$120</td>
</tr>
</tbody>
</table>

\(^a\) Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

\(^b\) Costs for EGTs are lower in Alternative 2 because operability testing is performed every 3 years versus every year under other options.

\(^c\) Cost estimates were derived using a seven percent discount rate.

Exhibit 3-3 presents a disaggregation of compliance costs under each regulatory option. The following areas contribute significantly to the differences in compliance costs among the alternatives.

- **Release prevention**: The greatest difference in compliance costs between Alternative 1 and the Preferred Option is related to release prevention; specifically, due to the combination of walkthrough inspections, overfill prevention equipment tests, spill prevention equipment tests, and interstitial integrity tests, and testing after repairs. These requirements account for 55 percent and 73 percent of total compliance costs, respectively. This variation is largely dependent on the testing or inspection frequency required under each alternative.

- **Removal of deferrals for AHFDSs and UST systems with FCTs**: Removal of deferrals for AHFDSs and FCTs is accompanied by tightness testing of equipment that varies in frequency depending on the alternative. This tightness test drives most of the variation in compliance costs. Under the Preferred Option, total costs for these systems are $23 million, or approximately 11 percent of total compliance costs; under Alternative 1, total costs are $153 million or
approximately 29 percent of total compliance costs. Alternative 2 maintains the deferrals and therefore has no incremental compliance cost.

- **Operability tests for release detection methods:** The Preferred Option and Alternative 1 each require annual testing of the operability of release detection systems, while Alternative 2 requires these tests every three years. Operability testing costs approximately $21 million under both the Preferred Option and Alternative 1, though they constitute 11 percent of total compliance costs for the Preferred Option and only four percent of total compliance costs for Alternative 1. Three-year testing under Alternative 2 (which includes operability tests for groundwater and vapor monitoring since they would remain as release detection methods) costs approximately $8 million, or about seven percent of total compliance costs for that option.

In total, these categories represent approximately 90 percent of the total compliance costs for each option. In addition, the adjustment of release detection leak rate probabilities under Alternative 1 constitutes most of the remaining 10 percent of costs for that option.

EPA determines average compliance costs per system by dividing the total cost of the proposed rule by the total 611,449 systems in the regulated universe of conventional UST systems and EGTs. EPA’s analysis shows that the compliance cost for this proposed rule is $300 per system, or approximately $890 per typical facility among motor fuel retailers, the sector with the highest average number of UST systems per facility.

Exhibit 3-4 presents the same total costs as Exhibit 3-3 but shows the number of systems affected and the cost of the requirement per affected system. The costs in this exhibit reflect annualized one-time costs, discounting, and adjustments for the adoption of certain requirements over time (e.g., elimination of flow restrictors for new and replaced tanks), and therefore differ from the unit costs presented in Exhibit 3-1. It is important to note that the unit costs in Exhibit 3-4 cannot be summed to obtain a cost per system, as nearly all systems are already in compliance with some requirements of the proposed rule.

19 In addition, Alternative 1 calls for tightness testing at a lower leak rate. See Appendix A for details.

20 The $300 estimate excludes costs associated with removal of deferrals for AHFDSs and UST systems with FCTs, assumes 2.97 systems per retail motor fuel facility, and includes the cost of $23 per facility for them to review the regulation. This approach does not address variability of baseline compliance across systems; to assess uncertainty associated with this approach, EPA presents a sensitivity analysis in Chapter 5.
Exhibit 3-3

Annual Compliance Costs Due To The Proposed Rule For UST Systems Affected

All values in $ thousands

<table>
<thead>
<tr>
<th>Description</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost (Annualized)</td>
<td>O&M</td>
<td>Total Cost</td>
</tr>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$0.0</td>
<td>$46,000.0</td>
<td>$46,000.0</td>
</tr>
<tr>
<td>Periodic testing of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
<td>$0.0</td>
<td>$87,000.0</td>
<td>$87,000.0</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Interstitial integrity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and interstices</td>
<td>$0.0</td>
<td>$13,000.0</td>
<td>$13,000.0</td>
</tr>
<tr>
<td>Elimination of flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>$1,200.0</td>
<td>$0.0</td>
<td>$1,200.0</td>
</tr>
<tr>
<td>Subtotal – Release Prevention</td>
<td>$1,200.0</td>
<td>$146,000.0</td>
<td>$147,200.0</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
<td>$0.0</td>
<td>$21,000.0</td>
<td>$21,000.0</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td></td>
<td>$2,000.0</td>
<td>$2,000.0</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulations with performance criteria</td>
<td>$2.7</td>
<td>$0.0</td>
<td>$2.7</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>$310.0</td>
<td>$1,900.0</td>
<td>$2,200.0</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$0.0</td>
<td>$830.0</td>
<td>$830.0</td>
</tr>
<tr>
<td>Subtotal – Release Detection</td>
<td>$312.7</td>
<td>$23,730.0</td>
<td>$26,032.7</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>$85.0</td>
<td>$18,000.0</td>
<td>$18,000.0</td>
</tr>
</tbody>
</table>

a, b, c, d, e, f are footnotes.
Exhibit 3-3

Annual Compliance Costs Due To The Proposed Rule For UST Systems Affected

All values in $ thousands.

<table>
<thead>
<tr>
<th>Description</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost (Annualized)</td>
<td>O&M</td>
<td>Total Cost</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>$0.0</td>
<td>$4,600.0</td>
<td>$4,600.0</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>$0.0</td>
<td>$42.0</td>
<td>$42.0</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$0.0</td>
<td>$2,100.0</td>
<td>$2,100.0</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>$11.0</td>
<td>$1,200.0</td>
<td>$1,200.0</td>
</tr>
<tr>
<td>Subtotal – Other</td>
<td>$96.0</td>
<td>$25,942.0</td>
<td>$25,942.0</td>
</tr>
<tr>
<td>EPA Act-related Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$23.0</td>
<td>$120.0</td>
<td>$140.0</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>$920.0</td>
<td>$0.0</td>
<td>$920.0</td>
</tr>
<tr>
<td>Subtotal – EPA Act-related Provisions</td>
<td>$943.0</td>
<td>$120.0</td>
<td>$1,060.0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$2,600.0</td>
<td>$200,000.0</td>
<td>$200,000.0</td>
</tr>
<tr>
<td>Additions for new units (beyond those included above)</td>
<td>$4.6</td>
<td>$0.0</td>
<td>$4.6</td>
</tr>
<tr>
<td>Total</td>
<td>$2,600.0</td>
<td>$200,000.0</td>
<td>$200,000.0</td>
</tr>
</tbody>
</table>
Exhibit 3-3

Annual Compliance Costs Due To The Proposed Rule For UST Systems Affected

All values in $ thousands

<table>
<thead>
<tr>
<th>Description</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost (Annualized)</td>
<td>O&M</td>
<td>Total Cost</td>
</tr>
<tr>
<td>C</td>
<td>a Alternative 1 calls for spill prevention equipment replacement every three years. For analytical convenience, we annualize the cost of replacement over three years and incorporate it as an O&M cost. b Costs fall under Alternative 1 compared with the Preferred Option because replacement of spill prevention equipment every 36 months will eliminate the need for repairs to such equipment. c Costs related to removal of deferrals for the regulation of emergency generator tanks include the cost of removal of deferrals, installation and maintenance of ATG on approximately seven percent of systems, installation and maintenance of SIR on 60 percent of systems, and performing operability testing on all EGT systems. See Appendix D for details. O&M costs for emergency generator tanks are lower in Alternative 2 because operability testing is performed every 3 years versus every year under other options. d Operations and maintenance costs associated with the adjustment of release detection leak rate probabilities is negative because operators avoid costly testing related to false alarms. These avoided costs are the only items included in the O&M for this requirement. e Airport hydrant fuel distribution systems include a capital cost because tanks associated with airport hydrant fuel distribution systems without existing ATGs are assumed to install ATGs to comply with the requirement. UST systems with field-constructed tanks without existing ATGs are assumed to conduct annual precision tightness tests to comply with the requirement. See Appendix A for details. f Although the closure of lined tanks represents a capital cost, we consider it an operations and maintenance cost as a modeling convenience. See Appendix D for details. g Total may not add correctly due to rounding. h As a simplifying assumption, EPA assumes that UST systems enter and exit the universe at a constant annual rate, such that the total number of UST systems in the universe does not change. We assume that operations and maintenance costs associated with these systems offset each other, as the number of entries equals the number of exits; however, new systems entering the universe will still incur incremental capital costs associated with certain requirements (e.g., a new emergency generator tank would need to install a release detection method). For modeling purposes, we account for these new units in the “Additions for new units.” The costs shown reflect the capital costs associated with new units for all but the following requirements: elimination of flow restrictors for new tanks, requirement of secondary containment for new tanks, and requirement of under-dispenser containment for new dispenser systems. i Cost estimates were derived using a seven percent discount rate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Preferred Option</td>
<td>Alternative 1</td>
<td>Alternative 2</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$104</td>
<td>440,817</td>
<td>$104</td>
</tr>
</tbody>
</table>
| Periodic testing of:
 - Overfill prevention equipment | $299 | 290,891 | $681 | 335,750 | $180 | 432,682 |
| - Spill prevention equipment | | | | | | |
| - Interstitial integrity | | | | | | |
| Testing after repairs to spill and overfill prevention equipment, and interstices [d] | $164 | 82,276 | $106 | 82,276 | $164 | 82,276 |
| Eliminate flow restrictors in vent lines for all new tanks and when overfill devices are replaced | $37 | 32,460 | $37 | 32,460 | $0 | 32,460 |
| **Release Detection** | | | |
| Operability tests for release detection methods [b] | $121 | 176,934 | $121 | 176,934 | $52 | 152,915 |
| Eliminate groundwater and vapor monitoring as release detection methods | $63 | 31,612 | $74 | 31,612 | $0 | 31,612 |
| Add SIR/CITLD with performance criteria | $1 | 2,882 | $1 | 2,882 | $1 | 2,882 |
| Remove deferral for emergency generator tanks [d] | $188 | 11,704 | $188 | 11,704 | $181 | 11,704 |
| Change release detection leak rate probabilities [d] | $251 | 197,532 | $251 | 197,532 | $0 | 197,532 |
| Response to interstitial monitoring alarms | $78 | 10,569 | $78 | 10,569 | $78 | 10,569 |
| **Other** | | | |
| Remove deferral from airport hydrant fuel distribution systems | $188,545 | 97 | $1,193,506 | 97 | N/A | N/A |
| Remove deferral from UST systems with field-constructed tanks | $45,344 | 102 | $327,861 | 102 | N/A | N/A |
| Require notification of ownership change | $5 | 8,946 | $5 | 8,946 | $5 | 8,946 |
| Closure of lined tanks that cannot be repaired according to a code of practice | $35,499 | 59 | $35,499 | 59 | $35,499 | 59 |
| Requirements for determining compatibility | $2 | 611,449 | $2 | 611,449 | $2 | 611,449 |
| **EPA-related Provisions** | | | |
| Operator training | $54 | 2,625 | $54 | 2,625 | $54 | 2,625 |
| Secondary containment | $415 | 2,224 | $415 | 2,224 | $415 | 2,224 |

* Requirements that apply at the facility level are converted to a system basis using a conversion factor of 2.74 systems per facility.

b Because the number of systems affected varies depending on the individual testing requirements, we estimate the number of systems affected by all three requirements by dividing their total cost by the sum of their unit costs. For example, if the three requirements had total unit costs of $100 and created new costs of $100,000, we would estimate that they affect 1,000 systems.

c Alternative 1 calls for spill prevention equipment replacement every three years. For analytical convenience, we annualize the cost of replacement over three years and incorporate it as an O&M cost.

d Costs fall under Alternative 1 compared with the Preferred Option because replacement of spill prevention equipment every 36 months will eliminate the need for repairs to such equipment.

e Costs related to removal of deferrals for the regulation of emergency generator tanks include the cost of removal of deferrals, installation and maintenance of ATG on approximately seven percent of systems, installation and maintenance of SIR on 60 percent of systems, and performing operability testing on all EGT systems. See Appendix D for details. Costs for emergency generator tanks are lower in Alternative 2 because operability testing is performed every 3 years versus every year under other options.

f It is important to note that these unit costs cannot be summed to obtain a total cost per system because nearly all systems are already in compliance with some requirements of the proposed rule.

g Cost estimates were derived using a seven percent discount rate.

Exhibit 3-4 Discounted And Annualized Cost Per System Affected By Requirement

<table>
<thead>
<tr>
<th>Description*</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$104</td>
<td>440,817</td>
<td>$104</td>
</tr>
<tr>
<td>Periodic testing of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
<td>$299</td>
<td>290,891</td>
<td>$681</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Interstitial integrity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and interstices [d]</td>
<td>$164</td>
<td>82,276</td>
<td>$106</td>
</tr>
<tr>
<td>Eliminate flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>$37</td>
<td>32,460</td>
<td>$37</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods [b]</td>
<td>$121</td>
<td>176,934</td>
<td>$121</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>$63</td>
<td>31,612</td>
<td>$74</td>
</tr>
<tr>
<td>Add SIR/CITLD with performance criteria</td>
<td>$1</td>
<td>2,882</td>
<td>$1</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks [d]</td>
<td>$188</td>
<td>11,704</td>
<td>$188</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities [d]</td>
<td>$251</td>
<td>197,532</td>
<td>$251</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$78</td>
<td>10,569</td>
<td>$78</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral from airport hydrant fuel distribution systems</td>
<td>$188,545</td>
<td>97</td>
<td>$1,193,506</td>
</tr>
<tr>
<td>Remove deferral from UST systems with field-constructed tanks</td>
<td>$45,344</td>
<td>102</td>
<td>$327,861</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>$5</td>
<td>8,946</td>
<td>$5</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$35,499</td>
<td>59</td>
<td>$35,499</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>$2</td>
<td>611,449</td>
<td>$2</td>
</tr>
<tr>
<td>EPA-related Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$54</td>
<td>2,625</td>
<td>$54</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>$415</td>
<td>2,224</td>
<td>$415</td>
</tr>
</tbody>
</table>

* Requirements that apply at the facility level are converted to a system basis using a conversion factor of 2.74 systems per facility.
3.4.1 Assessment of Compliance Costs under the Alternative Baseline Scenario

Exhibit 3-5 presents total annual compliance costs of the proposed rule under the alternative baseline discussed in Section 3.3.1. Annual compliance costs are slightly less than those presented in Exhibit 3-2, reflecting the fact that the cumulative universe of affected systems in the alternative baseline is only marginally smaller than the universe in the original baseline.

Exhibit 3-5

<table>
<thead>
<tr>
<th>Option</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems (^a)</td>
<td>$170</td>
<td>$350</td>
<td>$110</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs) (^b)</td>
<td>$2.2</td>
<td>$2.2</td>
<td>$2.1</td>
</tr>
<tr>
<td>Airport Hydrant Fuel Distribution Systems (AHFDSs)</td>
<td>$18</td>
<td>$120</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$4.6</td>
<td>$33</td>
<td>$0.0</td>
</tr>
<tr>
<td>Total(^c)</td>
<td>$200</td>
<td>$500</td>
<td>$120</td>
</tr>
</tbody>
</table>

\(^a \) Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

\(^b \) Costs for EGTs are lower in Alternative 2 because operability testing is performed every 3 years versus every year under other options.

\(^c \) Totals may not add exactly due to rounding.

\(^d \) Cost estimates were derived using a seven percent discount rate.

3.5 Sensitivity Analyses

Certain aspects of EPA’s compliance cost estimates are characterized by significant uncertainty and are sufficiently large that deviations from chosen assumptions may have a measurable impact on cost estimates. In this section, the analysis evaluates the sensitivity of certain results to variation in key parameters. These sensitivity analyses include evaluations of:

- Total compliance costs to the proposed rule under an alternative estimate of labor costs. Specifically, the analysis evaluates the effect of using higher labor rates, overhead costs, and fringe benefits factors, and lower average labor costs.

- Highest and lowest compliance cost scenarios for the distribution of technologies tested for overfill prevention equipment operability, tightness of spill prevention equipment, and interstitial integrity. If facilities using these technologies are disproportionately located in states that do not already have similar regulations in place, costs could be higher than estimates presented in the earlier parts of this chapter. Similarly, if affected facilities are located in states that already have similar regulations in place, costs could be substantially lower than estimated.

- High-end and low-end estimates of possible compliance costs for interstitial integrity testing. EPA’s estimate of costs associated with interstitial integrity testing assumes a certain distribution of technologies, each of which carries a different testing cost. Variation in this distribution of technologies among
facilities can significantly affect the estimates of compliance costs associated with interstitial integrity testing.

For conventional UST facilities, EPA has selected labor, overhead, and fringe benefits rates that best reflect a “typical” UST facility. These labor rates are representative of skilled labor costs at motor fuel retailers, which own and operate roughly 80 percent of the universe of UST systems. The use of these rates has a material impact on the estimated compliance cost of the proposed rule because they drive the operations and maintenance costs associated with requirements for walkthrough inspections and operability tests.

To evaluate the impact of alternative labor rates on total compliance cost estimates, EPA considered two alternative scenarios. The first is consistent with the OUST Information Collection Request 1360.08 and reflects labor rates reflective of economy-wide average wages, benefits, and overhead. This represents a high-end estimate because it reflects industries with highly skilled labor requirements and benefits (e.g., law firms). The second uses specific labor categories and costs representative of retail motor fuel establishments, but assumes that lower-level staff may complete walkthrough inspections.

Exhibit 3-6 presents the results for the three labor category scenarios. While one-time costs are not affected by the change in labor rates, operations and maintenance costs in the high-cost scenario are roughly $100 million higher than EPA’s primary estimate, totaling $300 million rather than $200 million (an increase of 50 percent). The majority of this increase is due to higher operations and maintenance costs related to walkthrough inspections and operability tests. In contrast, the low-end labor-rate cost estimate totals approximately $180 million, roughly $20 million (or 10 percent) lower than EPA’s central estimate. In addition to lower benefits and labor rates, this estimate assumes that clerical-level personnel will perform walkthrough inspections. This is consistent with remarks by UST experts, who indicated these tasks were most likely to be completed by non-technical workers. For AHFDSs and systems with FCTs, EPA uses constant industry average labor rates across all scenarios.

1 These labor categories were reported in OUST Information Collection Request 1360.08, dated October 24, 2007. We used revised labor rates from those categories to reflect 2009 conditions. However, documentation in this analysis did not provide a reason for the use of economy-wide average labor rates, and our assessment of the universe suggests that retail-based rates are more appropriate.

2 Engineering experts consulted for this analysis suggest that walkthrough inspections are most likely to be performed by gas station clerks or service attendants, not technical personnel.
Compliance Cost Sensitivity Analysis: Alternative Labor Rates

<table>
<thead>
<tr>
<th>Description</th>
<th>Proposed Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Estimate ($ thousands)</td>
</tr>
<tr>
<td>Release Prevention</td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections<sup>d</sup></td>
<td>$23,000</td>
</tr>
<tr>
<td>Periodic testing of:</td>
<td></td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
<td>$87,000</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
<td></td>
</tr>
<tr>
<td>- Interstitial integrity</td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and interstices</td>
<td>$13,000</td>
</tr>
<tr>
<td>Elimination of flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>$1,200</td>
</tr>
<tr>
<td>Subtotal - Release Prevention</td>
<td>$124,200</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
<td>$20,000</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods<sup>e</sup></td>
<td>$2,100</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulations with performance criteria</td>
<td>$3</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>$2,100</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities</td>
<td>$0</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$830</td>
</tr>
<tr>
<td>Subtotal - Release Detection</td>
<td>$25,033</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems<sup>f</sup></td>
<td>$18,000</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks<sup>f</sup></td>
<td>$4,600</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td>$19</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$2,100</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>$910</td>
</tr>
<tr>
<td>Subtotal – Other</td>
<td>$25,629</td>
</tr>
<tr>
<td>EPAAct-related Provisions</td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$130</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>$920</td>
</tr>
<tr>
<td>Subtotal - EPAAct-related Provisions</td>
<td>$1,050</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$180,000</td>
</tr>
<tr>
<td>Additions for new units (beyond those included above)<sup>g</sup></td>
<td>$5</td>
</tr>
<tr>
<td>Total</td>
<td>$180,000</td>
</tr>
</tbody>
</table>
Exhibit 3-6

Compliance Cost Sensitivity Analysis: Alternative Labor Rates

<table>
<thead>
<tr>
<th>Description</th>
<th>Proposed Rule</th>
<th>Lower Estimate ($ thousands)</th>
<th>Primary Estimate used for Analysis ($ thousands)</th>
<th>Upper Estimate ($ thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Lower Estimate relies on BLS Industry-Specific Occupational Employment and Wages, NAICS 447000 - Gasoline Stations, May 2008 for: Managerial (41-1011 First-Line Supervisors/Managers of Retail Sales Workers); Technical (53-1021 First-Line Supervisors/Managers of Helpers, Laborers, and Material Movers, Hand); Clerical (53-6031 Service Station Attendants); and BLS National Occupational Employment and Wages, May 2008 for Technical for operability testing (49-2094 Electrical and Electronics Repairers, Commercial and Industrial Equipment) and Legal (23-1011 Lawyers). Benefits rate is 24.6 percent of wages, as reported in BLS Employer Costs for Employee Compensation, September 2008. Table 10: Trade, transportation, and utilities - retail trade. Overhead rate is 12 percent from OMB Circular A-76, p. D-7. Assumes that service station attendants perform walkthrough inspections, consistent with information from experts consulted for this analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c Upper Estimate relies BLS Employer Costs For Employee Compensation, September 2008 for Managerial (Table 9, Management, Professional, and Related); Technical and Technical for operability testing (Table 10, Professional and Technical Services (Service Industries)); and Clerical (Table 11, Office and Administrative Support); and BLS National Occupational Employment and Wages, May 2008 for Legal (23-1011 Lawyers). Overhead rate used is 67 percent from OUST Information Collection Request 1360.08 from October 24, 2007.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d Walkthrough inspections under the Lower Estimate rely on clerical labor rates estimated using BLS Standard Occupational Code 53-6031, Service Station Attendants; under other scenarios, we use technical labor rates estimated using BLS Standard Occupational Code 53-1021, First-Line Supervisors/Managers of Helpers, Laborers, and Material Movers, Hand. UST experts consulted for this analysis suggest that walkthrough inspections are most likely to be performed by gas station clerks or service attendants, not technical personnel (e.g. 3rd-party contractors).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e Baseline activities for operators of tanks that use groundwater or vapor monitoring include activities such as recording of monthly measurements, which rely on technical labor. By eliminating groundwater and vapor monitoring as release detection methods under the proposed rule, these activities will no longer be required. As a result, increasing labor rates reduces the incremental costs of the proposed rule.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f The labor rate used for these types of system is the latest ICR labor rate, except for a component of the Operator Training requirement, which uses the United States Air Force labor rate for pay grade E-6 over 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g Totals may not add exactly due to rounding.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h As a simplifying assumption, EPA assumes that UST systems enter and exit the universe at a constant annual rate, such that the total number of UST systems in the universe does not change. We assume that operations and maintenance costs associated with these systems offset each other, as the number of entries equals the number of exits; however, new systems entering the universe will still incur incremental capital costs associated with certain requirements (e.g., a new emergency generator tank would need to install a release detection method). For modeling purposes, we account for these new units in the “Additions for new units.” The costs shown reflect the capital costs associated with new units for all but the following requirements: elimination of flow restrictors for new tanks, requirement of secondary containment for new tanks, and requirement of under-dispenser containment for new dispenser systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i Cost estimates were derived using a seven percent discount rate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5.2 Sensitivity Analysis of Distribution of Technologies Tested for Overfill Operability, Spill Prevention Equipment Tightness, and Interstitial Integrity

Because data on the distribution of UST technologies (including release detection and prevention technologies) is available only at a national level, EPA is not able to identify how facilities and systems with certain technologies are distributed across different states. As a result, the cost analysis assumes that technologies are distributed uniformly across all states and territories. For systems that require testing for overfill operability, spill prevention equipment tightness, and interstitial integrity, actual compliance costs may differ substantially from EPA’s estimates if this assumption does not hold. For example, if facilities using these technologies are disproportionately located in states that do not already have similar testing requirements in place in the baseline, compliance costs could be higher than the estimates based on a uniform distribution presented in Exhibit 3-2 and Exhibit 3-3. Similarly, if affected facilities are concentrated in states that already have similar regulations in place in the baseline, then actual compliance costs could be substantially lower than estimates based on a uniform distribution.

To investigate the impact of the assumption of uniform distribution of technologies, EPA performed a bounding analysis of the two extreme cases of distribution. Exhibit 3-7 reports the possible range of values for scenarios where compliance cost is the lowest (i.e., facilities are located in states that already satisfy the proposed rule), the actual model scenario based on uniform distribution, and the scenario in which compliance costs are highest. Variation between the minimum and maximum cost scenarios totals approximately $21 million, or eleven percent of the total compliance costs estimated for the rule. EPA’s primary estimate of these costs is near the mid-point of the range of estimates.

<table>
<thead>
<tr>
<th>Regulatory change</th>
<th>Lower ($ millions)</th>
<th>Primary ($ millions)</th>
<th>Upper ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overfill operability testing</td>
<td>$23</td>
<td>$23</td>
<td>$23</td>
</tr>
<tr>
<td>Spill prevention equipment testing</td>
<td>$54</td>
<td>$55</td>
<td>$62</td>
</tr>
<tr>
<td>Interstitial integrity testing</td>
<td>$0</td>
<td>$9</td>
<td>$13</td>
</tr>
<tr>
<td>Total</td>
<td>$77</td>
<td>$87</td>
<td>$98</td>
</tr>
</tbody>
</table>

* Because the entire universe of systems will be required to test overfill operability, EPA does not expect any uncertainty related to the locations of affected systems.

b Cost estimates were derived using a seven percent discount rate.
3.5.3 Sensitivity Analysis of Compliance Costs for Interstitial Integrity Testing

EPA’s estimates of compliance costs associated with interstitial integrity tests are weighted to exclude tanks and piping that are continuously monitored using vacuum, pressure, or liquid-filled methods. In addition, tanks using continuous interstitial monitoring sensors are excluded. For the purpose of this analysis, EPA assumes that five percent of tanks and 90 percent of piping with interstices will require such testing. Costs may vary to the extent that the actual number of facilities with these types of equipment differs from these estimates.

To establish a range of possible values, EPA investigated the scenarios outlined in Exhibit 3-8. For relatively large changes in EPA’s choices of parameters for universe affected, total costs for this proposed change vary between $5 million and $12 million. This uncertainty of $7 million represents four percent of the total estimated compliance costs of the rule.

| Exhibit 3-8 |
| Sensitivity Analysis Of Interstitial Integrity Testing Universe |
| --- | --- | --- |
| Estimate | Universe Affected | Discounted Cost ($ millions) |
| Lower | Tanks | 5% | $5 |
| | Piping | 50% | |
| Primary | Tanks | 5% | $9 |
| | Piping | 90% | |
| Upper | Tanks | 50% | $12 |
| | Piping | 95% | |

Note: Cost estimates were derived using a seven percent discount rate.

3.5.4 Summary of Sensitivity Findings

EPA’s sensitivity findings suggest that possible variation in labor rates is likely to produce the most significant impact on the estimated cost of the proposed rule: plausible selections for labor rates may reduce preferred option costs by approximately $20 million (10 percent) or increase them by $100 million (50 percent). Separately, EPA has identified potential variation of approximately eleven percent related to the distribution of technologies involved in overfill operability testing, integrity testing of interstitial areas, and spill prevention equipment tightness testing, and approximately four percent related to assumptions regarding interstitial

3 Secondary containment areas include tank and piping interstitial areas as well as containment sumps used as part of the piping secondary containment or interstitial monitoring. Under the proposed rule, EPA will allow the following exceptions to interstitial integrity tests: (1) Tanks: Owners and operators using continuous interstitial monitoring on their tanks will not be required to perform periodic interstitial integrity tests; (2) Piping: Owners and operators using vacuum monitoring, pressure monitoring, or liquid-filled interstitial space monitoring on their underground piping will not be required to perform periodic interstitial integrity tests; and (3) Containment Sumps – Owners and operators using containment sumps which have two walls and continuously monitor the interstitial space between the walls for releases are not required to perform interstitial integrity tests.

4 An interstitial integrity test is performed in the space between tank walls, pipe walls, or in a secondary containment sump area and ensures the area being tested has integrity and will contain a leak.
integrity testing. We note that each of these sensitivity analyses reflects variation compared with the primary estimates of costs presented throughout this chapter.

These analyses only illustrate the uncertainty surrounding certain elements of the proposed rule. The estimates presented in the body of this chapter represent reasonable, conservative central tendencies for the costs of the proposed rule.

3.6 Administrative Compliance Costs

In addition to compliance costs related to the operation of UST systems, the proposed rule will also impose certain administrative costs on affected entities. We outline these costs below.

3.6.1 State Government Administrative Compliance Costs

The proposed rule imposes new Underground Storage Tank program administration requirements on state government agencies. Specifically, state government agencies will incur costs associated with new notification requirements, and costs associated with obtaining and reading the regulations. This section reviews state government costs associated with these activities.

Costs associated with obtaining and reading the regulations assume that 10 people will each take six hours to read the regulation in each state (using the legal labor rate for states of $47 per hour from OUST’s ICR 1360.08). In addition, based on the ICR, we assume that the reporting and recordkeeping burden for states to apply for State Program Approval (SPA) is approximately 28.5 hours (using the clerical labor rate for states of $26 per hour). The total compliance cost in nominal terms is therefore approximately $205,000; the annualized compliance cost assuming the 20-year regulatory time horizon is approximately $19,000. States that already require ownership change notifications will incur compliance costs associated with these activities.

State agencies that do not currently have a requirement for notification of changes in UST ownership or for at least an annual UST registration must also process a certain number of notices due to annual turnover in facility ownership. State government compliance costs for this activity assume a typical nominal recordkeeping cost of $30 per facility, based on OUST’s ICR 1360.08; compliance costs assume the use of existing recordkeeping systems. Eight states and territories do not currently have recordkeeping requirements consistent with the proposed

5 In some cases, UST systems are directly owned or operated by local, state, and federal government entities. These costs are subsumed in the estimates of compliance costs presented earlier in this chapter.

6 Consistent with other parts of this regulatory impact analysis, we amortize one-time or capital costs over the regulatory time horizon of 20 years. If these costs are phased in over a three-year period, annual costs decrease to approximately $18,000.
These eight states and territories will incur approximately $100,000 per year, due to an annual turnover rate of approximately 10 percent in UST facility ownership.

Lastly, each state agency will incur costs to process the one-time notifications of existence for EGTs, AHFDSs, and FCTs. State government compliance costs for this activity assume a typical nominal recordkeeping cost of $30 per facility, based on OUST’s ICR 1360.08; compliance costs assume the use of existing recordkeeping systems. Based on the estimated universe of EGTs, AHFDSs, and FCTs, the total state processing cost in nominal terms is approximately $560,000; the annualized processing cost assuming the 20-year regulatory time horizon is approximately $53,000.

Total state government administrative compliance costs sum to $170,000 per year. Note that under alternative baseline assumptions, these costs would decline by a very small percentage (roughly 2 percent) as the universe of affected systems declines. These costs are reflected in Exhibit 3-10.

3.6.2 Costs to Regulated Universe to Review Regulations

This analysis assumes that all facility operators in the universe will be required to read the proposed rule in order to comply with it. For conventional USTs and EGTs, we estimate that reading and understanding the proposed rule will require 4.75 hours of labor from a manager at each facility. This equates to a one-time cost of approximately $244 for each facility, or $54 million. This is equivalent to an annual cost of $5.1 million under each proposed option. For FCTs and AHFDSs, we assume these costs are subsumed in the management costs for these systems (see Appendix A for details).

3.7 Summary – Total Annual Compliance Costs

In total, EPA estimates that the Preferred Option for the proposed rule will produce incremental costs of approximately $210 million per year compared to the current regulatory baseline. Exhibit 3-9 summarizes these costs per category. Regardless of the option, conventional UST systems will incur over 65 percent of these costs. Costs to AHFDSs and FCTs comprise approximately 11 percent and 29 percent of total costs under the Preferred Option and Alternative 1, respectively.

7 These states are Arizona, Georgia, Idaho, North Carolina, North Dakota, Nevada, and South Carolina. The Virgin Islands will also incur these costs.
Exhibit 3-9

Total Annual Compliance Costs\(^{e,f}\)

<table>
<thead>
<tr>
<th>Category</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems(^a)</td>
<td>$180</td>
<td>$360</td>
<td>$120</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs)(^b)</td>
<td>$2.2</td>
<td>$2.2</td>
<td>$2.1</td>
</tr>
<tr>
<td>Airport Hydrant Fuel Distribution Systems (AHFDSs)</td>
<td>$18</td>
<td>$120</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$4.6</td>
<td>$33</td>
<td>$0.0</td>
</tr>
<tr>
<td>Cost to Owners/Operators to Read Regulations</td>
<td>$5.1</td>
<td>$5.1</td>
<td>$5.1</td>
</tr>
<tr>
<td>State Government Administrative Costs(^c)</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Total Annual Compliance Costs(^d,f)</td>
<td>$210</td>
<td>$520</td>
<td>$130</td>
</tr>
</tbody>
</table>

\(^a\) Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.
\(^b\) Costs for EGTs are lower in Alternative 2 because operability testing is performed every 3 years versus every year under other options.
\(^c\) The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulations, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.
\(^d\) Totals may not add up due to rounding.
\(^e\) Cost estimates were derived using a seven percent discount rate.
\(^f\) Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.

Limitations of Compliance Cost Analysis

While EPA has taken steps to present a sound analysis of compliance costs, it recognizes that certain assumptions and limitations are inherent to this assessment.

Tank configuration: This analysis assumes that a particular configuration of equipment represents the average UST system. This assumption affects the compliance costs of the proposed rule because systems with different configurations (e.g., more sumps per tank) could have different costs. Mischaracterizing this configuration may under- or overstate total costs as well as system-level costs.

System-level compliance costs: As discussed in Section 3.3, system-level compliance costs are based on public information, input from UST industry professionals, and EPA professional judgment, all of which are assumed to provide the most accurate available data at the time of this proposal. EPA recognizes that these data sometimes reflect only a small number of sources, and are therefore characterized by uncertainty.

As a result of these uncertainties, the precise cost of the proposed rule may differ from the estimate generated by EPA’s analysis. The above sensitivity analyses, though not strictly additive, suggest that the outside range of cost uncertainty is approximately 50 percent from EPA’s central estimates. Moreover, because EPA’s estimate is framed by a number of conservative assumptions (outlined in section 3.3), it is unlikely that this analysis understates the costs of the proposed rule significantly.
3.7.1 Summary – Total Annual Compliance Costs under the Alternative Baseline Scenario

Under the alternative baseline universe assumption described in Section 3.3.1, EPA estimates that the Preferred Option for the proposed rule will produce incremental costs of approximately $200 million per year compared to $210 million in annual costs in the primary analysis. Exhibit 3-10 summarizes these costs per category. Regardless of the option, conventional UST systems will incur over 65 percent of these costs. Costs to AHFDSs and FCTs comprise approximately 11 percent and 30 percent of total costs under the Preferred Option and Alternative 1, respectively.

Exhibit 3-10

<table>
<thead>
<tr>
<th>Category</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional UST systems</td>
<td>$170</td>
<td>$350</td>
<td>$110</td>
</tr>
<tr>
<td>Emergency Generator Tanks (EGTs)</td>
<td>$2.2</td>
<td>$2.2</td>
<td>$2.1</td>
</tr>
<tr>
<td>Airport Hydrant Fuels Distribution Systems (AHFDSs)</td>
<td>$18</td>
<td>$120</td>
<td>$0.0</td>
</tr>
<tr>
<td>UST systems with Field-Constructed Tanks (FCTs)</td>
<td>$4.6</td>
<td>$33</td>
<td>$0.0</td>
</tr>
<tr>
<td>Cost to Owners/Operators to Read Regulations</td>
<td>$5.1</td>
<td>$5.1</td>
<td>$5.1</td>
</tr>
<tr>
<td>State Government Administrative Costs</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Total Annual Compliance Costs</td>
<td>$200</td>
<td>$510</td>
<td>$120</td>
</tr>
</tbody>
</table>

* Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.
* Costs for EGTs are lower in Alternative 2 because operability testing is performed every 3 years versus every year under other options.
* The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulations, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.
* Totals may not add up due to rounding.
* Cost estimates were derived using a seven percent discount rate.
* Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.
Chapter 4. Assessment of Benefits And Cost Savings

4.1 Introduction

The beneficial impacts of a regulatory change are typically measured in two ways: as “social benefits” that usually take the form of reduced environmental damage, reduced human health risk, and improvements in the value of environmental amenities. Benefits also include avoided costs associated with reduced need for cleanup and avoided costs of “averting behavior” (e.g., obtaining replacement water supplies). Ideally, social benefits reflect accurate measures of the total “willingness to pay” (WTP) of consumers to obtain improvements in environmental quality. In other cases, avoided costs (e.g., medical care) can be used to inform proxy estimates of WTP when direct estimates of WTP are unavailable. In the context of this rule, EPA examines social benefits and separately considers the avoided costs associated with reduced need for cleanup of releases because reliable WTP estimates for the value of an avoided cleanup are not available, and because avoided costs represent a real economic cost savings.

This chapter describes the approaches used to evaluate avoided remediation (cleanup) costs and other benefits. It first outlines several different methods attempted for measuring benefits and cost savings, and describes the final selected method (expert consultation) in detail. Next, it provides a description of monetized cost savings and other benefits, including avoided cleanup costs, avoided vapor damage cleanup estimates, avoided product loss, and the value of avoided cancer risk associated with anticipated reductions in releases and reductions in severity of releases. The chapter then presents a screening-level analysis of the quantity of groundwater potentially protected by the regulations. Finally, we provide a qualitative discussion of ecological and other human health benefits.

4.2 Investigation of Empirical Methods for Measuring Benefits and Cost Savings

The benefits and cost savings of the proposed rule result from the reduced incidence and size of releases that would occur due to the new requirements. EPA examined a number of ways to use quantitative, empirical data on release rates, inspection effectiveness, and program performance to estimate directly the changes in releases that could be expected under the proposed rule. This section describes the different data sources and methods considered, and the limitations of each.

4.2.1 Engineering Estimates and Literature

One approach to estimating the benefits of the proposed rule would be to develop an engineering model of the release rates associated with equipment and practices before and after the implementation of the rule requirements. However, this approach would address only a small number of the proposed rule components because most of the requirements are not focused on equipment modifications, but instead call for inspections, testing, and maintenance. These are requirements for changes in human behavior, and are not easily measured using equipment testing.
This suggests that EPA could best measure benefits empirically by examining studies of how changing frequencies in inspection and testing would lead to different leak rates. Therefore, EPA conducted a targeted literature review of engineering literature and studies of the effectiveness of testing and inspection programs. We were unable to identify any studies directly applicable to the proposed UST regulations, but we did identify EPA and published literature on the effects of better inspection and testing rates more generally. We summarize several key studies below.

- **California study of impact of secondary containment on UST system releases (2002):** This study examined whether use of secondary containment throughout UST systems resulted in differences in release rates. The study’s conclusions were hampered by a limited sample size, and authors note that releases from other parts of the systems may have affected results. The study did not find a significant relationship between secondary containment and release rates at sites, but did find that facility-level factors (e.g., improper installations) made it more likely than expected that all systems at a facility would either have or lack releases. While the study cannot be used to directly estimate the benefits associated with the proposed regulation, its conclusions suggest that regulations focusing on effective facility-level inspections may be well-targeted.

- **National Research Council study of effectiveness of state vehicle emissions inspection and maintenance programs (2001):** This study reviewed four state programs and one city program aimed at reducing motor vehicle emissions by requiring inspections and maintenance. While the study did not address UST systems, the structure of vehicle inspection programs is similar to the proposed regulations in that both require owners/operators to undertake routine inspections and undertake maintenance as needed. The study found that the programs had a measureable impact on ambient air quality, but did not identify whether the differences were statistically significant. While the results do not provide a quantitative basis for estimating the impacts of the proposed rule, the study suggests that mandatory inspection programs can reduce emissions.

- **Environmental Results Program (ERP) data:** Data from several environmental results programs (ERPs) show a statistically significant

1 Thomas M. Young and Randy D. Golding, *Underground Storage Tank Field-Based Research Project Report*, submitted to the California State Water Resources Control Board under contract to the University of California, Davis, May 31, 2002

3 The study also concluded that the programs had more modest impacts than those predicted by air quality modeling, but this finding is of limited relevance to the current regulation, since no ambient conditions modeling has been conducted.

improvement in verified compliance as a result of a combination of self-certification, technical assistance, and inspections. While these programs do not isolate the impact of specific regulatory changes, the results are consistent with other findings that programs that rely in part on self-implemented inspections and reporting can reduce noncompliance.

In general, the literature does not address UST inspection programs directly, and does not provide quantitative results that can be used to estimate the impacts of the proposed rule. However, the literature does provide data that generally indicate that self-implementing inspection programs (with external validation) do have an impact on equipment maintenance, and generally lead to a reduction in environmental impacts. This suggests that some positive impact should be expected from the proposed rule.

4.2.2 Statistical Analysis of State Release Data

A different approach to a robust analysis of benefits would be to develop a database of State UST rules and reported release rates before and after the effective dates of rules similar to the proposed rule. With good quality data, one could combine these rules and reported release rates and isolate the marginal impacts of various components of the proposed rule. To collect detailed data at the facility level, however, would require visiting state UST programs individually and collecting detailed site inspection data from state case files and archives. Not only would such an effort be prohibitive in terms of available resources, but our current knowledge of the state programs suggests that variable inspection practices and changes in record-keeping practices over time may limit the ability of the exercise to provide robust results.

In the absence of site-specific data, however, we collected and examined data on state regulatory programs and reported releases from available aggregate sources. Specifically, we identified and evaluated data from the following sources:

- **Leak Autopsy Reports**: In 2004 and 2005, EPA released two draft “leak autopsy” studies (“the draft 23-state Autopsy Report” and a separate study examining the State of Florida). These studies examined the sources and extent of releases that occurred in systems that were compliant with the 1998 standards, and identifies the extent to which different baseline releases are associated with failures of equipment in different parts of the UST system (e.g., piping, overfill protection equipment).5

- **State Regulatory and Report Data**: State programs are required to report aggregated information to EPA on the number of active UST systems, the number of inspections, and the number of confirmed releases reported in each six-month

In addition, EPA obtained information about state regulatory programs and the effective dates for state requirements that are similar to the requirements of the proposed rule.

Using the available data, EPA examined several different statistical approaches, focusing on regression analysis, to compile and examine a set of state-level data that included the number of UST systems in each state in a given year, the number of releases from UST systems in each year, the number of UST inspections conducted in each year, and the presence or absence of regulations designed to prevent releases.

Before conducting regression analysis on the data set of state USTs and releases, EPA first adjusted the data to account for a number of data quality concerns. A key data concern was the relationship between states with low-frequency inspections and states reporting small numbers of confirmed releases. To ensure that the reported UST releases accurately reflected most or all releases taking place, EPA developed an index that scored each state based on the frequency of inspections. States that reported inspection rates less frequent than every five years, and/or inconsistent inspection frequencies over time, were removed from the sample, based on the assumption that release data from those states may be less reliable due to less frequent third party verification (i.e., state inspection) of system operations. In other words, we assume that owners/operators may be less inclined to report releases or properly maintain their equipment if they are in a state where inspections occur infrequently or inconsistently.

In conducting the analysis, however, EPA identified several fundamental problems with available data that limit the value of a regression analysis approach. These include significant data availability and reliability issues related to the limited number of observations and programmatic changes among states that prevent the isolation of regulation-related impacts. Specifically:

- Consistent, accurate release data are not available. It is likely that measurement error exists in the recording of confirmed releases across states (the dependent variable) and that it is related in some systematic way to the regulatory structure of the state or other explanatory variables (as opposed to random reporting error) in the analysis. In addition, state inspections vary in timing and focus across states; this, in turn, affects the consistency of third-party verified compliance and release information. While EPA attempted to account for this by selecting only states with a high frequency of inspections for inclusion in the analysis, the interaction between inspection frequency and degree and effectiveness of regulation creates sample selection problems (i.e., states with higher release rates due to limited regulation may also be states that do not conduct frequent inspections and therefore have less reliable data). Therefore, normal regression

6 Data can be accessed at http://www.epa.gov/oust/cat/camarchv.htm.

7 As noted above, the only reliable approach to identify the relationship between inspection frequency, compliance, and number of releases would require a large-scale data collection effort. In absence of this, we use inspection frequency as an indicator of reliable data.
properties do not hold, and results may be biased in ways that do not allow for a reliable interpretation.\(^8\)

- Many regulations consistent with the proposed rule are currently in place in only a small number of states. EPA addressed limited variation in the presence of regulations by dropping several regulatory variables from the analysis, but the resulting lack of variation and the small number of observations make it likely that regulatory indicators will proxy for other relevant characteristics of that state.

- Study design is limited by available data. Ideally, an analysis of the effectiveness of UST leak prevention regulations would employ observations from a large number of states over a time period that includes years before and after regulations were in place. Such “panel” data would allow for identification of impacts temporally and spatially. Panel data would also allow for fixed-effects estimation, which controls for any unobserved characteristics of states that might affect release rates (such as soil pH or climate), independent of any effect of regulation. Available data superficially appear to be panel data, since they provide information on the number or rate of releases from different states in multiple time periods, along with information on the presence or absence of UST regulations by state. However, for many regulations it is unclear both when the regulation was first promulgated and when the effects of the regulation would be expected to be fully realized (e.g., through inspections).

As discussed in more detail in Appendix F, quantitative analysis of annual UST releases by state did not reveal a consistent measure of the potential impact of release prevention regulations. The data limitations noted above prevented the use of the preferred method of fixed effects estimation using panel data. In the absence of fixed-effects estimation, the analysis cannot reliably draw conclusions about the impacts of regulations on releases, independent of any unmeasured characteristics of states that could be affecting the number of releases in each state. In other words, in addition to data quality issues discussed above, the small number of states with specific UST release prevention regulations prevents identification of robust relationships between individual regulations and the number of releases per year.

However, through cross-sectional analysis, EPA was able to estimate that release rates in California and Florida – two states with mature UST regulation regimes – were about 55-65 percent less than one would expect based on release rates at other states during the time period examined. This difference could serve as an upper bound for the potential of leak prevention regulations to reduce the rate of UST releases.\(^9\)

\(^8\) For example, several regressions found an apparent positive, statistically significant relationship between secondary containment requirements and the number of releases per year. However, empirical data from Florida indicate that secondary containment contributes to release reductions of as much as 50 percent.

\(^9\) Exhibit 6 in Appendix F shows the degree to which the actual number of releases in Florida and California in 2009, 2005, and from 2002 to 2006 is less than the number of releases that would be expected based on the release rates observed at other states. In 2005 and 2009, the years in which the dummy variable for California was statistically significant from zero, California had between 56 and 63 percent fewer releases than would be expected based on the regression analysis. In 2002-2006, when the period in which the dummy variable for Florida was statistically significant from zero, Florida had between 60 and 65 percent fewer releases than would be expected. EPA strongly cautions against generalizing these results beyond the states included in the analysis. However, these
4.3 Final Methodology for Assessment of Positive Impacts: Expert Consultation

To estimate the individual effects of each proposed regulatory change, and in light of the absence of applicable engineering models and limited empirical state data, we resorted to a consultation with five experts with experience in regulation of USTs and implementation of state inspection programs. The remainder of this chapter describes in detail the final methodology used to identify reductions in releases associated with the proposed rule, and the calculation of cost savings associated with those avoided releases.

To ensure that the assessment of regulatory effects relied on broad expertise in regulatory implementation, EPA developed a pool of technical experts with national reputations for leadership in implementation of underground storage tank regulatory programs, or with extensive expertise in assessing spill causation at UST sites. From this pool, several experts were interviewed and five experts were identified. Each of the identified experts has over 20 years of experience in the regulation, assessment, and/or remediation of underground storage tanks, including direction of state programs and implementation of regulations similar to some aspects of the proposed regulation.

EPA provided an identical set of written questions separately to each expert and conducted individual follow-up telephone interviews to clarify and verify responses. Appendix G provides a detailed explanation of the process EPA followed in identifying experts, more detailed information about the qualifications of the experts, and an explanation of the factors EPA considered when including and excluding expert feedback. Appendix H provides the questions distributed to experts and their responses.

One of the five experts did not provide input consistent with EPA’s analytical methods, and as a result his quantitative estimates were not usable. Specifically, his baseline estimate of releases was not consistent with EPA’s, and he was not able to provide information on how to extrapolate to EPA’s universe. In addition, his responses included apparent internal inconsistencies that could not be reconciled without collecting more information about baseline releases. We therefore believe the opinions of the remaining four experts provide the best available data on the expected impact of the proposed rule.

Avoided Costs as a Measure of Beneficial Impacts

Avoided remediation costs provide the basis for a substantial portion of the beneficial impacts associated with the proposed rule. Avoided remediation costs represent cost savings that accrue to owners, operators and public entities charged with remediating releases at regulated facilities. Numbers do suggest an upper bound of potential avoided leaks associated with the operation of the mature, relatively stringent programs in both California and Florida.

10 The expert also provided clear opinions about the optimal regulatory structure and suggested that his answers were not reliable unless the regulatory language was amended to include specific technical requirements. This created additional uncertainty in the interpretation of his results.

11 Chapter 5 provides a more detailed discussion on the potential positive effect of the proposed rule on state financial assurance funds.
for environmental improvements, and are therefore not equivalent to social benefits, they represent real economic cost savings due to reduced demand for baseline remediation.\footnote{12}

Calculation of Annual Positive Impacts

The analysis presents the positive effects of the proposed rule as a constant, recurring, annual value for analytical convenience. The timing of the positive impacts of the rule is uncertain for several reasons:

- As shown in Exhibit 1-2 in Chapter 1, the proposed changes do not take effect simultaneously.
- Irrespective of when they take effect, the changes may require varying lengths of time to achieve full effect.
- EPA relies on its reported confirmed releases to calculate the reductions due to the proposed rule. Confirmed releases recorded in a particular evaluation year vary significantly in severity and length of time undetected, which introduces variability in the extent to which costs are avoided each year.
- The proposed rule includes activities such as: frequent inspections and equipment testing to prevent, identify and address releases; near-term shifts in technology; and long-term changes in technology. Each class of changes necessarily focuses on release avoidance and mitigation over different time horizons.

In the absence of detailed data characterizing releases by age and type, EPA assumes that implementation of the proposed regulations will have a uniform annual impact, with beneficial impacts realized on the last day of the year in which costs are incurred (i.e., a one-year delay). For equipment that is phased in over a period of time, we assume that positive impacts accrue at the same rate as installation and adjust those impacts so that they are constant over time.\footnote{13}

4.3.1 Avoided Remediation Costs

This section explains how EPA arrives at its estimates of avoided remediation costs.\footnote{14} EPA first explains how it calculates avoided remediation costs based on the source of a release. This is followed by a discussion of the methods used to calculate the number of releases avoided and the number of releases for which severity is mitigated. Finally, the two elements are combined to estimate the total avoided remediation cost due to the proposed rule.

\footnote{12}{Economists commonly define social benefits as the sum of individuals’ willingness to pay to obtain a good or service or avoid an unwanted outcome. Avoided remediation costs may not equal willingness to pay.}

\footnote{13}{See Appendix I for detailed explanation of this methodology.}

\footnote{14}{We refer to avoided cleanup costs and avoided remediation costs interchangeably throughout this document.}
4.3.2 Calculating Avoided Remediation Costs

This analysis values avoided releases according to their cost of remediation. EPA developed average remediation costs for the four general release size categories reported in the draft 23-state Autopsy Report. The four categories generally conform with classification conventions used by state LUST offices, and the autopsy reports presented leak frequency data for different UST system components for each of the categories. The four categories include:

- Local site extent with soil contamination;
- Local site extent with water contamination;\(^{15}\)
- Large site extent with soil contamination; and
- Large site extent with water contamination.\(^{16}\)

EPA obtained remediation costs aligned with each of these size categories from a survey of state LUST offices and calculated average expected remediation costs for each of the release categories outlined in the draft 23-state Autopsy Report (Exhibit 4-1).\(^{17}\) Remediation costs associated with groundwater remediation are generally higher than costs for soil remediation. Administrative, response, and oversight costs were provided by New Hampshire, and remediation costs reflect an average of the costs provided by New Hampshire and Utah.\(^{18,19}\)

\(^{15}\) Water contamination refers to both groundwater and surface water contamination, though groundwater contamination is more common than surface water contamination.

\(^{16}\) While no specific definition exists for a large site, the LUST Autopsy survey instruments used by the states generally define large sites as those with contamination that extends beyond the extent of construction excavation. In addition, EPA classified sites with off-site contamination as large sites.

\(^{18}\) To develop an avoided cleanup cost estimate, EPA collected data from Montana, New Hampshire, New Mexico, South Carolina, Utah, and Virginia, all of which use state financial assurance funds to pay for LUST remediation. Each state UST program office received a questionnaire requesting data on typical cleanup costs broken out by the four general release types; New Hampshire, New Mexico, South Carolina, Utah and Virginia provided responses. New Hampshire provided the most comprehensive set of information, including cleanup costs by category (i.e., administrative, response, remediation, and oversight), while New Mexico and Utah could only provide estimates of remediation costs. Virginia and South Carolina were unable to provide the detail required for this analysis, as neither state was able to break out costs by the extent of release (i.e., large or small).

\(^{19}\) New Mexico data are excluded from the calculation for two reasons. First, large-extent groundwater cleanup cost estimates from New Mexico are much higher than those for other states ($2.5 million compared with $0.6 million or less for other states) but the state did not provide data on the number or type of sites that resulted in this high estimate of costs. Second, New Mexico has a relatively small number of UST systems (3,958 UST systems as of September 30, 2009). As a result, we believe that New Mexico may be atypical and could skew results to overstate avoided costs. We therefore do not include its results among the average avoided costs of remediation.
Exhibit 4-1

<table>
<thead>
<tr>
<th>Remediation Cost Category</th>
<th>Small extent, soil only</th>
<th>Large extent, soil only</th>
<th>Small extent, Groundwater Contamination</th>
<th>Large extent, Groundwater Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical administrative cost (public notification, fines, fees, etc)</td>
<td>$0</td>
<td>$0</td>
<td>$500</td>
<td>$3,700</td>
</tr>
<tr>
<td>Typical response cost (e.g., alerting and sending personnel, assessments and planning, immediate actions to stop the release)</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Typical remediation cost</td>
<td>$14,800</td>
<td>$103,000</td>
<td>$98,500</td>
<td>$409,500</td>
</tr>
<tr>
<td>Typical oversight cost (e.g., monitoring)</td>
<td>$500</td>
<td>$1,000</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total typical cost per LUST category</td>
<td>$25,300</td>
<td>$114,000</td>
<td>$110,500</td>
<td>$428,200</td>
</tr>
</tbody>
</table>

Notes:

a Costs shown are one-time costs associated with a site remediation and have been rounded to the nearest hundred dollars.

b The costs presented for administrative, response, and oversight costs are based on New Hampshire data only.

c The remediation costs shown represent the average costs from data provided by New Hampshire and Utah. Although New Mexico also reported costs, we excluded it for two reasons. First, groundwater cleanup cost estimates from New Mexico are much higher than those for other states ($2.5 million compared with $0.6 million or less for other states) but the state did not provide data on the number or type of sites that resulted in this high estimate of costs. Second, New Mexico has a relatively small number of UST systems (3,958 UST systems as of September 30, 2009). As a result, New Mexico’s costs may be atypical and could skew results to overstate avoided costs.

Sources:

1. New Hampshire Department of Environmental Services, Underground Storage Tank Program, November 18, 2008.

EPA then used the average cost data from states to develop weighted average costs associated with remediation of releases from different portions of the UST system, based on release frequency data for each source. Exhibit 4-2 presents, for each of the release sources identified in the draft 23-state Autopsy Report, the probability of a release by LUST category. Using the cost data from Exhibit 4-1, EPA estimates a weighted average avoided cost per release size by multiplying the cost per site by the probability of each release type. These are summed across the categories to obtain the weighted average cost by release source.

20 Office of Underground Storage Tanks, “Evaluation of Releases from New and Upgraded Underground Storage Tank Systems – Peer Review Draft,” U.S. EPA, August 2004. Note that these sources include California and Florida releases, and may therefore be skewed slightly if those more stringent and established programs have smaller releases. We are unable to adjust the data to correct for this, but its impact, if any, would likely be to reduce the average size and cost of releases slightly.

21 For more information on this approach and the draft 23-state Autopsy report, see “Methodology to Estimate Avoided Costs Associated with a Typical UST Leak,” IEc Memorandum to EPA, prepared by Aaron Kamholtz, Neal Etre, and Cynthia Manson, October 27, 2008.

22 If we calculate a weighted-average cost per release where sources are weighted proportionally by their contribution to total releases, we obtain an overall average cost per release of approximately $143,000 (See memo in Appendix I for details). For reference, ASTSWMO estimates the average cost per site to be roughly $127,000 in 2009. See Association of State and Territorial Solid Waste Management Officials, State Fund Survey Results 2009.
Exhibit 4.2

<table>
<thead>
<tr>
<th>Release Source (as identified in 23-state Autopsy Report)</th>
<th>Small extent, soil only</th>
<th>Large extent, soil only</th>
<th>Small extent, groundwater contamination</th>
<th>Large extent, groundwater contamination</th>
<th>Total/Weighted Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Probability</td>
<td>40.50%</td>
<td>22.00%</td>
<td>4.50%</td>
<td>33.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cost</td>
<td>$10,200</td>
<td>$24,300</td>
<td>$5,100</td>
<td>$141,300</td>
<td>$181,000</td>
</tr>
<tr>
<td>Dispenser Probability</td>
<td>71.60%</td>
<td>9.70%</td>
<td>5.40%</td>
<td>13.30%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cost</td>
<td>$18,100</td>
<td>$10,700</td>
<td>$6,100</td>
<td>$57,100</td>
<td>$92,000</td>
</tr>
<tr>
<td>Tank Probability</td>
<td>30.70%</td>
<td>17.70%</td>
<td>17.30%</td>
<td>34.30%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cost</td>
<td>$7,800</td>
<td>$19,500</td>
<td>$19,700</td>
<td>$147,000</td>
<td>$194,000</td>
</tr>
<tr>
<td>STP Area Probability</td>
<td>50.00%</td>
<td>31.00%</td>
<td>0.00%</td>
<td>19.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cost</td>
<td>$12,600</td>
<td>$34,300</td>
<td>$0</td>
<td>$81,400</td>
<td>$128,200</td>
</tr>
<tr>
<td>Delivery Problems Probability</td>
<td>59.20%</td>
<td>16.80%</td>
<td>1.80%</td>
<td>22.20%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cost</td>
<td>$14,900</td>
<td>$18,500</td>
<td>$2,100</td>
<td>$95,200</td>
<td>$130,700</td>
</tr>
</tbody>
</table>

Note: Costs shown have been rounded to the nearest hundredth dollar.

Sources:

4.4 Establishing Avoided Releases

To estimate the number of baseline releases that would be either avoided completely or reduced in severity as a result of the proposed rule, experts responded to a common set of questions about potential impacts of the regulatory changes under consideration and participated in follow-on discussions on specific areas of uncertainty.

Each expert reviewed the proposed requirements and estimated how they would affect the following dimensions of releases:

1. Changes in total frequency (number) of annual confirmed releases;
2. Changes in the number of remaining releases that reach groundwater;
3. Changes in the average quantity released among remaining releases; and,
4. Changes in the average duration of release among remaining releases.

Experts had the option of expressing reductions in release size in terms of duration or volume (quantity) of product, depending on how they typically collected and reviewed release data. In addition, experts were given the option of expressing these changes either: 1) as a total

23 EPA did not provide experts with information about the universe of facilities or costs associated with remediation; experts did, however, have access to information about the number of confirmed releases and their distribution across different parts of the UST system (e.g., tanks, pipes, and STP areas). EPA uses confirmed releases as the baseline estimate of total releases because high quality data on total releases are not available, and release confirmation triggers the remediation costs that would be avoided.
national estimate that accounted for variation in existing regulation and technology among states and facilities, or 2) as a change applied to a specific subset of the tank universe (e.g., 10 percent change among tanks with a certain technology that are not currently regulated).

Experts also estimated the sensitivity of results to changes in the frequency of regulatory requirements (e.g., the impact of inspections occurring at different intervals, consistent with different regulatory options) and noted synergies or dependencies between requirements, such as:

- Dependency between equipment upgrades and walkthrough inspections: Experts consistently noted that simply replacing equipment with newer technologies (e.g., requiring that new systems have secondary containment) is insufficient for preventing all releases. Regular visual inspections are necessary to identify potential problems and ensure timely maintenance when a release has not yet occurred.

- Synergy between equipment maintenance and walkthrough inspections: Experts noted that the combination of operability testing and visual (walkthrough) inspections would result in more avoided releases by identifying equipment problems quickly and ensuring effective maintenance.

- Dependency between operator training and walkthrough inspections: Experts noted that training alone is not adequate to ensure effective site maintenance, and walkthrough inspection requirements are not effective without trained staff. As a result, all experts assumed that impacts related to walkthrough inspections reflected trained staff and did not separately identify release reductions associated with training.

Experts provided separate estimates of impacts for each regulatory requirement. EPA then used these requirement-specific estimates to calculate total avoided costs for the proposed rule. It is important to note, however, that when considering inter-relationships among regulatory requirements, experts differed in how they isolated and/or “allocated” impacts across specific requirements because the allocation of impacts across different regulatory requirements could potentially be interpreted in several ways (e.g., one expert might decide that inspections drove all impacts, while another might decide that testing was the primary factor). EPA

24 Experts were also asked to provide an estimate of the “total cumulative impact” for the proposed rule in aggregate as well. The analysis then compared the effects of simultaneously applying the requirement specific estimates with their total estimate of the overall effect of the proposed rule. This was performed to verify the experts’ logic and identify areas of overlap or synergy among the regulatory requirements. However, subsequent to receiving responses from experts, EPA made slight modifications to the list of regulatory requirements (e.g., experts were asked to consider impacts of an annual overfill prevention equipment test, but EPA is now proposing 3-year tests). While EPA was able to adjust the requirement specific estimate of these slight revisions based on the sensitivity responses from the experts and follow-up questioning, the original “total cumulative impact” estimates provided by the experts are no longer representative of the current proposed rule as a whole. We note, though, that the average of cumulative estimates was generally consistent with (i.e., within 10 percent of) the equivalent requirement-specific impacts.
therefore avoids emphasis on the requirement-specific estimates provided by each expert, and considers their results in total.^[25,26]

In general, EPA applies the most conservative estimates presented by the experts and adjusts for the number of affected units where appropriate. In cases where reductions involved a range of values, EPA typically selected the low end of the range. Where experts’ comments reflect qualitative assumptions that substantially affect their quantitative estimates, the analysis acknowledges those factors as caveats to estimated rates of release avoidance.

To calculate the number of releases completely avoided as a result of potential regulatory changes, EPA combines the estimated reductions as identified by experts with a release distribution based on data from the draft 23-state Autopsy Report (see Appendix I for more detail). To estimate changes in release severity, the analysis uses the distribution of releases from the same report to quantify the number of groundwater releases avoided due to reduced release volume. Exhibit 4-3 provides a summary of our findings with respect to avoided releases. Experts’ responses suggest that the Preferred Option of the proposed rule will avoid approximately 20 percent to 60 percent of 7,168 annual releases, or roughly 1,400 to 4,300 releases in evaluation year 2009. In addition, as summarized in Exhibit 4-4, of the remaining releases, approximately 330 to 1,100 releases would be reduced in severity (i.e., these releases would remain soil contamination only).^[27]

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>1,400</td>
<td>2,100</td>
<td>610</td>
</tr>
<tr>
<td>Expert 2</td>
<td>1,400</td>
<td>1,500</td>
<td>420</td>
</tr>
<tr>
<td>Expert 3</td>
<td>1,800</td>
<td>2,000</td>
<td>1,400</td>
</tr>
<tr>
<td>Expert 4</td>
<td>4,300</td>
<td>4,600</td>
<td>3,300</td>
</tr>
<tr>
<td>Range</td>
<td>1,400 – 4,300</td>
<td>1,500 – 4,600</td>
<td>420 – 3,300</td>
</tr>
</tbody>
</table>

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions. Specifically, Expert 4 verified that he believed the rule would result in avoidance of over half of confirmed releases.

^[25] Note that EPA carefully examined and reviewed each requirement-specific estimate from each expert, and verified the results and assumptions with each expert, particularly in cases where results reflect a wide range.

^[26] Consistent with the approach adopted for the cost analysis, EPA asked experts to estimate reductions in releases and release severity assuming that owners/operators would comply fully with all new regulations under the proposed rule. To the extent that non-compliance occurs, both costs and cost savings estimated in this RIA may be overstated. It is also possible that some expert opinions on specific rule impacts may not completely capture full compliance (and may therefore underestimate the impacts of the proposed rule), because the experience of most experts is related to implementing state regulatory programs and one issue encountered has been non-compliance. However, experts asserted that their estimates approximate full compliance, and we do not therefore attempt to adjust for non-compliance in either cost or cost-savings calculations.

^[27] EPA assumes that these groundwater releases will instead become soil releases. Hypothetically, if releases are proportionally split as 50 percent groundwater and 50 percent soil before the rule takes effect, they will be split 38 percent groundwater and 62 percent soil after the rule.
Avoided Groundwater Contamination Incidents

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>1,100</td>
<td>1,200</td>
<td>380</td>
</tr>
<tr>
<td>Expert 2</td>
<td>470</td>
<td>470</td>
<td>210</td>
</tr>
<tr>
<td>Expert 3</td>
<td>330</td>
<td>320</td>
<td>260</td>
</tr>
<tr>
<td>Expert 4</td>
<td>560</td>
<td>510</td>
<td>530</td>
</tr>
<tr>
<td>Range</td>
<td>330 – 1,100</td>
<td>320 – 1,200</td>
<td>210 – 530</td>
</tr>
</tbody>
</table>

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions. Specifically, Expert 1 verified that he believed the rule would result in a significant number of avoided groundwater releases.

4.4.1 Avoided Releases Using an Alternative Baseline

EPA’s primary analysis assumes that the universe of confirmed releases from UST systems remains constant over the time frame of the analysis. However, both the universe of UST systems and the release rate (defined as the number of confirmed releases divided by the number of UST systems in a given year) have declined over the last two decades. This is consistent with the regulatory context of the past 20 years, in which two key factors have been driving the number of releases. First, the universe of UST systems has been declining as older, smaller tanks have been replaced by newer, larger systems. Second, many of the confirmed releases reported in the 1990s and early 2000s were “legacy” releases associated with older systems that did not meet the technical standards under 40 CFR Part 280 (e.g., tanks that were installed prior to the promulgation of the UST regulation at 40 CFR Part 280). Many of these legacy releases are discovered when tanks are removed during property transactions and other development projects.

As the number of legacy releases has declined, the declining trend in total releases has “flattened” – trend data suggest that release rates have been approximately one confirmed release per hundred tanks in recent years. In addition, it is possible that confirmed releases may increase in future years, as UST systems continue to age, and as new fuel blends with potentially higher corrosivity are introduced into the industry. Given this uncertainty, EPA assumes in the primary analysis that release rates remain constant.

However, to address the uncertainty associated with the number of confirmed releases, EPA also assesses avoided costs under the proposed rule using an alternative baseline that projects a continued decline in the release rate consistent with the recent historical trend, and also captures the decline in the number of UST systems as estimated in Chapter 3, Section 3.3.1. This represents a conservative avoided cost scenario because it does not account for the possibility that aging systems or changes in fuel could result in increases in the number of confirmations.

28 See Appendix J for charts and data sources that demonstrate these two trends.
confirmed releases reported, or that the number of UST systems could increase (if, for example, an expanding economy or population growth demands more service locations).

To estimate the rate of universe decline, EPA mapped historical data on the number of UST systems from 1991 through 2010 to an exponential one-phase decay function, which appears to most accurately represent the observed behavior of the UST system universe over time.29 EPA also mapped historical data on the release rate to a similar decay function.30 These two functions were then used to project future UST universe sizes as well as future release rates. We used the results from these two projections to estimate future number of confirmed releases.31

The cumulative universe of releases over 20 years under this alternative baseline is approximately 60 percent of the number of cumulative releases over 20 years in the primary analysis. The alternative baseline contains proportionally fewer releases than UST systems because two separate declining trends, UST systems and release rate, are used to estimate the future decline in releases. This compounds the projected decline in releases.

Exhibits 4-5 and 4-6 provide a summary of our findings with respect to avoided releases and avoided groundwater contamination events, respectively, assuming the alternative baseline releases occur. The alternative baseline results in a reduction of roughly 40 percent of both avoided releases and avoided groundwater contamination relative to the original baseline. Correspondingly, in the alternative baseline scenario, approximately 810 to 2,600 releases are avoided under the Preferred Option, compared to 900 to 2,800 under Alternative 1 and 250 to 2,000 under Alternative 2. Under the alternative baseline, there are approximately 200 to 650 avoided groundwater contamination incidents under the Preferred Option, 190 to 700 under Alternative 1, and 130 to 320 under Alternative 2.

29 See Section 3.3.1.

30 To estimate future release rates, we used a single exponential decay function, which assumes that a quantity declines at a rate proportional to its value. This is an appropriate function given the singular and slowing rate of decline observed in the release rate over time. The equation for such an exponential singular decay function is $Y = (Y_0 - P) \cdot e^{(k \cdot X)} + P$, where P represents the “plateau,” or limit of the function and k represents the function’s half-life. See Appendix J for additional details.

31 We use release rates to project future number of releases (rather than use past trends in the number of confirmed releases) for two reasons: First, as the UST universe and release rate both appear to decline in a way approximating a single-decay exponential function, these projections can be used to estimate future number of releases without the added uncertainty of whether the release trend is truly a single-decay exponential function. In addition, using the release rate projections to estimate future releases yields a more conservative (lower) total number of releases than if we were to use the past trend in the number of releases, which leads to more conservative (lower) avoided remediation cost estimates in the alternative baseline.
Avoided Releases, Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>810</td>
<td>1,200</td>
<td>370</td>
</tr>
<tr>
<td>Expert 2</td>
<td>860</td>
<td>900</td>
<td>250</td>
</tr>
<tr>
<td>Expert 3</td>
<td>1,100</td>
<td>1,200</td>
<td>810</td>
</tr>
<tr>
<td>Expert 4</td>
<td>2,600</td>
<td>2,800</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Range: 810 – 2,600, 900 – 2,800, 250 – 2,000

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions. Specifically, Expert 4 verified that he believed the rule would result in avoidance of over half of confirmed releases.

Avoided Groundwater Contamination Incidents, Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>650</td>
<td>700</td>
<td>230</td>
</tr>
<tr>
<td>Expert 2</td>
<td>280</td>
<td>280</td>
<td>130</td>
</tr>
<tr>
<td>Expert 3</td>
<td>200</td>
<td>190</td>
<td>150</td>
</tr>
<tr>
<td>Expert 4</td>
<td>330</td>
<td>310</td>
<td>320</td>
</tr>
</tbody>
</table>

Range: 200 – 650, 190 – 700, 130 – 320

Note: See Appendices H and I for inputs and methods for calculating these values. Estimates were validated with experts to ensure they accurately capture their opinions. Specifically, Expert 1 verified that he believed the rule would result in a significant number of avoided groundwater releases.

4.5 Benefits from Avoided Releases and Reduced Release Severity

Two sources of avoided costs constitute the majority of quantifiable positive impacts from the proposed rule. First, some costs related to release remediation costs do not occur because a number of releases are altogether avoided. Second, some remaining releases are reduced in severity because of the proposed requirements (e.g., through earlier detection through via walkthrough inspections and improved operability of release detection equipment). To capture this dimension of avoided costs, the analysis relies on incremental avoided groundwater remediation costs—the cost to remediate a groundwater release less the cost to remediate a soil release—as groundwater releases are generally more costly to remediate than soil releases.

In addition to avoiding remediation costs, release prevention and mitigation results in a variety of other beneficial impacts, including:

- Avoided vapor intrusion damages;
- Avoided product loss;
- Human health benefits;
- Ecological benefits; and
- Protection of groundwater quality.

This section monetizes, quantifies, or otherwise describes these impacts.

4.5.1 Avoided Release Remediation

To determine the benefits of avoided releases, the analysis relies on the draft 23-state Autopsy Report’s distribution of releases by source (i.e., the part of the UST system that produces the release), and applies the reduction associated with each regulation to the appropriate source to reduce the number of releases avoided by source.\(^{32,33}\) Each avoided release is valued according to the weighted average of remediation costs shown in Exhibit 4-2.\(^{34}\)

Exhibit 4-7 presents the total avoided remediation costs under each regulatory option. We estimate that discounted benefits from avoided remediation costs range between approximately $170 million and $570 million under the Preferred Option, while avoided costs amount to between $190 million and $610 million under Alternative 1 and between $54 million and $440 million under Alternative 2.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$170</td>
<td>$250</td>
<td>$75</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$180</td>
<td>$190</td>
<td>$54</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$230</td>
<td>$250</td>
<td>$170</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$570</td>
<td>$610</td>
<td>$440</td>
</tr>
<tr>
<td>Range</td>
<td>$170 - $570</td>
<td>$190 - $610</td>
<td>$54 - $440</td>
</tr>
</tbody>
</table>

Note: Cost estimates were derived using a seven percent discount rate.

4.5.2 Reduction in Release Severity

To assess the impact on remediation costs associated with reduced release severity, the analysis focuses on changes in the number of releases that would have involved groundwater in the baseline, but because of the proposed rule, involve only soil. While this metric does not capture all of the release mitigation effects of the proposed requirements, groundwater avoidance...
is likely to be among the most significant effects of the rule. The difference in remediation costs between soil and groundwater releases is substantial: remediation cost for an average groundwater release is approximately $270,000, while an average soil release costs approximately $70,000 to remediate.\footnote{These costs reflect a simple average of the costs to remediate a large extent and local extent release of each medium.} Remediation costs across release extent and medium contaminated range from $25,250 to $428,200 based on typical site remediation costs from New Hampshire and Utah.\footnote{Release extent is classified in the draft 23-state Autopsy Report as either local or large. Releases that do not extend beyond the area excavated during remediation are considered local, while releases that extend beyond property lines are considered large. Extent does not explicitly involve a measure of release volume.}

To estimate the number of releases that are reduced in severity, we use experts’ estimates of reductions in groundwater involvement and distribute them across release source, medium contaminated, and release extent.\footnote{See Appendix I for details on the calculation of avoided costs.} We distribute remaining releases according to the draft 23-state Autopsy Report results and calculate additional benefits from remediation due to reductions in groundwater contamination following the regulation. We calculate avoided costs from reduced release severity by subtracting the cost to remediate all remaining releases after the proposed rule is in effect from the cost to remediate all remaining releases in the baseline. In both cases, we remove from consideration the same number of fully-avoided releases and consider only the avoided costs from shifting releases from groundwater to soil.

A key limitation of this approach may lead to a conservative estimate of the effects of the proposed rule. The analysis assumes that the distribution of releases across size (i.e., extent) does not change as a consequence of changes in groundwater contamination. In reality, changes in the likelihood of groundwater contamination are probably (at least in part) a consequence of reductions in release volume and duration. The same reductions in release volume that lower the incidence of groundwater contamination would likely also reduce the number of large extent releases of all types and decrease the average size of smaller releases. That is, new requirements should both reduce the number of groundwater contamination events and large extent events of all types. Our model captures only changes in the rates of groundwater contamination, and does not consider cost savings associated with smaller soil-only sites. We therefore likely underestimate avoided remediation costs.\footnote{A change in the distribution of releases could also potentially cause the “average size” and cost of soil-only releases to increase (because larger groundwater releases are eliminated but become “large” local soil-only releases). While this could result in higher average costs for local releases, (i.e., the cost savings for avoiding a groundwater release might be less than the difference between “average” groundwater and soil releases), the analysis also does not consider the cost savings associated with reducing the size of groundwater releases that still reach groundwater or the cost savings associated with reducing the size of soil releases.}

\textbf{Exhibit 4-8} displays EPA’s findings regarding discounted avoided costs due to the mitigation of groundwater incidents. The analysis calculates avoided remediation costs by taking the difference between estimated remediation costs before and after the proposed changes are implemented. This difference accounts for both the reduction in groundwater release incidents as
well as the increase in soil contamination events.39 EPA estimates that benefits from averted groundwater releases range from approximately $61 million to $270 million across regulatory options. Avoided costs from reduced groundwater contamination are additive to avoided costs from avoided releases.

Exhibit 4-8

Discounted Avoided Groundwater Remediation Costs

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$260</td>
<td>$270</td>
<td>$93</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$110</td>
<td>$110</td>
<td>$52</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$78</td>
<td>$75</td>
<td>$61</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$130</td>
<td>$120</td>
<td>$130</td>
</tr>
<tr>
<td>Range</td>
<td>$78 - $260</td>
<td>$75 - $270</td>
<td>$61 - $130</td>
</tr>
</tbody>
</table>

Note: Cost estimates were derived using a seven percent discount rate.

4.5.3 Total Avoided Remediation Costs from Avoided Releases and Reduced Release Severity

Exhibit 4-9 displays the sum of avoided remediation costs across both avoided releases and mitigated groundwater incidents for all four experts. Because experts with relatively lower estimates in one of these categories did not necessarily have similarly low estimates in the other, the range of total avoided costs is not the sum of the low and high ranges in Exhibits 4-7 and 4-8.

Exhibit 4-9

Total Discounted Avoided Remediation Costs

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$430</td>
<td>$520</td>
<td>$170</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$300</td>
<td>$300</td>
<td>$110</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$310</td>
<td>$330</td>
<td>$230</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$700</td>
<td>$740</td>
<td>$570</td>
</tr>
<tr>
<td>Range</td>
<td>$300 - $700</td>
<td>$300 - $740</td>
<td>$110 - $570</td>
</tr>
</tbody>
</table>

Note: Cost estimates were derived using a seven percent discount rate.

4.5.4 Benefits from Avoided Releases and Reduced Release Severity under the Alternative Baseline Scenario

Exhibits 4-10 and 4-11 present avoided remediation costs associated with the avoided releases and avoided groundwater incidents shown in Exhibits 4-5 and 4-6. In the alternative baseline scenario, avoided release remediation costs range from $100 million to $340 million.

39 This occurs because the analysis maintains the total number of releases constant: every groundwater release that is avoided still requires remediation as a soil release.
under the Preferred Option, between $110 million and $370 million under Alternative 1, and between $32 million and $260 million under Alternative 2. Averted groundwater remediation costs, meanwhile, range from $47 million to $160 million under the Preferred Option, $45 million to $160 million under Alternative 1, and $32 million to $77 million under Alternative 2. These alternative estimates represent conservative estimates of the potential value of avoided releases, because they do not consider possible factors that may lead to increases in the number of releases reported or the number of UST systems in the future.

Exhibit 4-10
Discounted Avoided Release Remediation Costs, Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$100</td>
<td>$150</td>
<td>$45</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$110</td>
<td>$110</td>
<td>$32</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$140</td>
<td>$150</td>
<td>$100</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$340</td>
<td>$370</td>
<td>$260</td>
</tr>
<tr>
<td>Range</td>
<td>$100 - $340</td>
<td>$110 - $370</td>
<td>$32 - $260</td>
</tr>
</tbody>
</table>

Note: Cost estimates were derived using a seven percent discount rate.

Exhibit 4-11
Discounted Avoided Groundwater Remediation Costs, Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$160</td>
<td>$160</td>
<td>$56</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$68</td>
<td>$68</td>
<td>$32</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$47</td>
<td>$45</td>
<td>$37</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$79</td>
<td>$73</td>
<td>$77</td>
</tr>
<tr>
<td>Range</td>
<td>$47 - $160</td>
<td>$45 - $160</td>
<td>$32 - $77</td>
</tr>
</tbody>
</table>

Note: Cost estimates were derived using a seven percent discount rate.

Exhibit 4-12 displays the sum of avoided remediation costs across both avoided releases and mitigated groundwater incidents under the alternative baseline scenario. Because experts with relatively lower estimates in one of these categories did not necessarily have similarly low estimates in the other, the range of avoided costs presented is not the sum of lower and higher bounds in Exhibits 4-10 and 4-11. As the cumulative release universe in the alternative baseline scenario is roughly 60 percent of cumulative releases in the original baseline, total avoided costs in the alternative baseline are approximately 40 percent lower than they are in the primary analysis.
Exhibit 4-12

Total Discounted Avoided Remediation Costs, Alternative Baseline

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td>$260</td>
<td>$310</td>
<td>$100</td>
</tr>
<tr>
<td>Expert 2</td>
<td>$180</td>
<td>$180</td>
<td>$64</td>
</tr>
<tr>
<td>Expert 3</td>
<td>$190</td>
<td>$200</td>
<td>$140</td>
</tr>
<tr>
<td>Expert 4</td>
<td>$420</td>
<td>$440</td>
<td>$340</td>
</tr>
<tr>
<td>Range</td>
<td>$180 - $420</td>
<td>$180 - $440</td>
<td>$64 - $340</td>
</tr>
</tbody>
</table>

Note: Cost estimates were derived using a seven percent discount rate.

4.5.5 Avoided Costs by Proposed Requirement

Exhibit 4-13 presents overall avoided costs by proposed requirement and regulatory option. The exhibit shows ranges of the avoided costs for each proposed requirement based on experts’ responses to the effects of the individual requirements in the proposed rule. Beneficial impacts are concentrated similarly to costs: the majority of avoided costs are captured by walkthrough inspections, overfill prevention equipment tests, spill prevention equipment tests, interstitial integrity tests, and operability tests. Estimates in **Exhibit 4-13** assume that cost savings associated with each regulatory requirement occur one year after the implementation and reflect discounting.

Under the Preferred Option, total avoided costs are approximately $300 million to $700 million per year. Avoided costs increase to $300 million to $740 million under Alternative 1, largely due to more frequent overfill prevention equipment tests and interstitial integrity tests. Avoided costs under Alternative 2 are $110 million to $570 million per year, where less frequent walkthrough inspections and no requirement for interstitial integrity tests reduce beneficial impacts by approximately 19 percent to 65 percent compared to the Preferred Option.

We note that the model used by EPA to estimate avoided remediation costs is not designed to measure avoided costs from large-scale releases such as those typically associated with FCTs and AHFDSs. We, therefore, do not offer an estimate of avoided costs for

40 Some proposed requirements, particularly those that target narrow subpopulations of the UST system universe, may generate higher avoided costs than this analysis suggests. Three sources of uncertainty drive these smaller universe results. First, EPA's model is calibrated to estimate avoided costs for broad-based national changes at average facilities; extrapolation of these results to small populations may not reflect specific subpopulations (e.g., UST systems in Indian country). Second, several experts stated that their estimates of impacts for requirements affecting narrow subsets of UST populations are more uncertain than broader estimates. Finally, experts emphasized that equipment replacement, inspection, training, and testing are all essential to ensure release reductions, and they used judgment to emphasize the different roles of these different activities. Therefore, the assignment of specific impacts to each of the proposed requirements is potentially less accurate than the aggregate estimates of avoided impacts.
requirements that apply to these systems. However, we include a qualitative discussion of these acute events later in this chapter.

<table>
<thead>
<tr>
<th>Exhibit 4-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Discounted Avoided Cost By Proposed Requirement<sup>b, h</sup></td>
</tr>
<tr>
<td>Description<sup>b, c</sup></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Release Prevention</td>
</tr>
<tr>
<td>Walkthrough inspections</td>
</tr>
<tr>
<td>Periodic testing of:</td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
</tr>
<tr>
<td>- Interstitial integrity</td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and interstices</td>
</tr>
<tr>
<td>Elimination of flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
</tr>
<tr>
<td>Subtotal - Release Prevention<sup>d</sup></td>
</tr>
<tr>
<td>Release Detection</td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
</tr>
<tr>
<td>Add SIR/CITLD to regulations with performance criteria</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
</tr>
<tr>
<td>Subtotal - Release Detection<sup>d</sup></td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
</tr>
<tr>
<td>Require notification of ownership change</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
</tr>
<tr>
<td>Subtotal – Other<sup>d</sup></td>
</tr>
<tr>
<td>EPAAct-related Provisions</td>
</tr>
<tr>
<td>Operator training</td>
</tr>
<tr>
<td>Secondary containment</td>
</tr>
<tr>
<td>Subtotal - EPAAct-related Provisions<sup>d</sup></td>
</tr>
<tr>
<td>Total<sup>d</sup></td>
</tr>
</tbody>
</table>

^a For each proposed requirement, this exhibit presents a range of discounted avoided costs. This range represents the lowest avoided cost estimate for the proposed requirement among the four experts and the highest avoided cost estimate for the proposed requirement among the four experts.

^b For some requirements, such as removing the deferral for emergency generator tanks, avoided costs under Alternative 2 are higher than under the Preferred Option or Alternative 1. This occurs because: 1) these requirements create groundwater contamination reductions; and 2) fewer releases are altogether avoided under Alternative 2. This combination of factors implies that groundwater reductions have a greater effect under Alternative 2, as they affect a larger number of releases. This effect is very small compared to the magnitude of changes in other requirements.
Exhibit 4-13

<table>
<thead>
<tr>
<th>Description b, c</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
</table>

b Some proposed requirements, particularly those that target narrow subpopulations of the UST system universe, may generate higher avoided costs than this analysis suggests. Three sources of uncertainty drive these smaller universe results: First, EPA's model is calibrated to estimate avoided costs for broad-based national changes at average facilities; extrapolation of these results to small populations may not reflect specific subpopulations (e.g., UST systems in Indian country). Second, several experts stated that their estimates of impacts for requirements affecting narrow subsets of UST populations are more uncertain than broader estimates. Finally, experts emphasized that equipment replacement, inspection, training, and testing are all essential to ensure release reductions, and they used judgment to emphasize the different roles of these different activities. Therefore, the assignment of specific impacts to each of the proposed requirements is potentially less accurate than the aggregate estimates of avoided impacts.

c Subtotals and totals presented in this table do not represent the sums of the ranges across the proposed requirements because experts with relatively lower estimates for one proposed requirement did not necessarily have similarly low estimates for other requirements. Instead, the subtotals and totals shown represent the lowest and highest estimates among the four experts for each subtotal group and for the total across all proposed requirements.

d Experts were not asked to estimate avoided costs resulting from the elimination of groundwater and vapor monitoring. EPA decided to include this requirement after consulting with its experts.

e Reductions in frequency and release severity (as measured by changes in groundwater contamination) do not adequately capture the positive impacts of preventing releases from very large systems such as AHFDs and UST systems with FCTs. Releases from these types of systems constitute a small portion of total releases, but may be large in volume and can result in significant groundwater impacts. Especially in the case of AHFDs, even minor problems can create large releases due to the significant pressure under which contents are stored. The model used by EPA to estimate avoided remediation costs is not designed to measure avoided costs from very large releases such as those typically associated with AHFDs and FCTs, and we therefore do not offer an estimate of avoided costs for requirements that apply to these systems.

f Experts were not asked to estimate avoided costs resulting from requirements for determining compatibility. EPA decided to include this requirement after consulting with its experts.

g Cost estimates were derived using a seven percent discount rate.

As noted in Exhibit 4-1, EPA excluded the highest state-level remediation cost values from its calculation of average cost of release remediation. While this step contributes toward a more conservative estimate of avoided costs, the possibility remains that the average remediation costs used in Exhibit 4-13 overestimate the positive impacts of the proposed rule if state data provided are not representative of national average remediation costs. In Exhibit 4-14, we therefore estimate the positive effects of the proposed rule using only the lowest remediation costs available. As shown in Exhibit 4-14, EPA’s estimate of the avoided costs of the proposed rule using the lowest state cost estimates is $190 million to $460 million per year under the Preferred Option. This estimate increases to a range of $190 million to $480 million per year under Alternative 1 and decreases to a range of $66 million to $370 million per year under Alternative 2. While this is not a true “lower bound” estimate, these estimates reflect costs that lead to lower than average costs when compared to figures reported by ASTSWMO.42

41 These were provided by the State of New Hampshire’s UST program.

42 If we calculate a weighted-average cost per release where sources are weighted proportionally by their contribution to total releases using the lowest remediation cost data available (i.e., from New Hampshire), we obtain an overall average cost per release of approximately $96,000 (See memo in Appendix I for details). For reference, ASTSWMO estimates the average cost per site to be roughly $127,000 in 2009. See Association of State and Territorial Solid Waste Management Officials, State Fund Survey Results 2009.
Exhibit 4-14

Sensitivity Analysis: Total Discounted Avoided Cost By Proposed Requirement
Based On New Hampshire Remediation Costs\(^{a,b}\)

<table>
<thead>
<tr>
<th>Description b, c</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkthrough inspections</td>
<td>$55.0 - $370</td>
<td>$54.0 - $360</td>
<td>$25.0 - $310</td>
</tr>
<tr>
<td>Periodic testing of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Overfill prevention equipment</td>
<td>$46.0 - $96.0</td>
<td>$61.0 - $110</td>
<td>$24.0 - $47.0</td>
</tr>
<tr>
<td>- Spill prevention equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Interstitial integrity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing after repairs to spill and overfill prevention equipment, and interstices</td>
<td>$1.00 - $8.00</td>
<td>$1.00 - $8.00</td>
<td>$1.00 - $8.20</td>
</tr>
<tr>
<td>Elimination of flow restrictors in vent lines for all new tanks and when overfill devices are replaced</td>
<td>$0.120 - $8.10</td>
<td>$0.100 - $8.10</td>
<td>$0</td>
</tr>
<tr>
<td>Subtotal - Release Prevention(^d)</td>
<td>$170 - $430</td>
<td>$170 - $440</td>
<td>$57.0 - $350</td>
</tr>
<tr>
<td>Release Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operability tests for release detection methods</td>
<td>$15.0 - $27.0</td>
<td>$15.0 - $27.0</td>
<td>$5.00 - $10.0</td>
</tr>
<tr>
<td>Eliminate groundwater and vapor monitoring as release detection methods</td>
<td>Not estimated. See note e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add SIR/CITLD to regulations with performance criteria</td>
<td>$0.090 - $1.10</td>
<td>$0.090 - $1.10</td>
<td>$0.090 - $1.20</td>
</tr>
<tr>
<td>Remove deferral for emergency generator tanks</td>
<td>$0.340 - $3.80</td>
<td>$0.340 - $3.80</td>
<td>$0.340 - $3.90</td>
</tr>
<tr>
<td>Change release detection leak rate probabilities</td>
<td>$0</td>
<td>$0 - $13.0</td>
<td>$0</td>
</tr>
<tr>
<td>Response to interstitial monitoring alarms</td>
<td>$0 - $0.520</td>
<td>$0 - $0.500</td>
<td>$0 - $0.540</td>
</tr>
<tr>
<td>Subtotal - Release Detection(^d)</td>
<td>$20.0 - $31.0</td>
<td>$20.0 - $44.0</td>
<td>$6.00 - $15.0</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for airport hydrant fuel distribution systems</td>
<td>Not estimated. See note f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove deferral for UST systems with field-constructed tanks</td>
<td>Not estimated. See note f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require notification of ownership change</td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Closure of lined tanks that cannot be repaired according to a code of practice</td>
<td>$0.001 - $0.150</td>
<td>$0.001 - $0.150</td>
<td>$0.001 - $0.150</td>
</tr>
<tr>
<td>Requirements for determining compatibility</td>
<td>Not estimated. See note g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal – Other(^d)</td>
<td>$0.001 - $0.150</td>
<td>$0.001 - $0.150</td>
<td>$0.001 - $0.150</td>
</tr>
<tr>
<td>EPAct-related Provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator training</td>
<td>$0.009 - $0.750</td>
<td>$0.009 - $0.700</td>
<td>$0.011 - $0.810</td>
</tr>
<tr>
<td>Secondary containment</td>
<td>$0.240 - $0.760</td>
<td>$0.230 - $0.760</td>
<td>$0.300 - $0.770</td>
</tr>
<tr>
<td>Subtotal - EPAct-related Provisions(^d)</td>
<td>$0.670 - $1.30</td>
<td>$0.640 - $1.20</td>
<td>$0.760 - $1.40</td>
</tr>
<tr>
<td>Total(^d)</td>
<td>$190 - $460</td>
<td>$190 - $480</td>
<td>$66.0 - $370</td>
</tr>
</tbody>
</table>
Exhibit 4-14

<table>
<thead>
<tr>
<th>Description</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
</table>

a For each proposed requirement, this exhibit presents a range of discounted avoided costs. This range represents the lowest avoided cost estimate for the proposed requirement among the four experts and the highest avoided cost estimate for the proposed requirement among the four experts.

b For some requirements, such as removing the deferral for emergency generator tanks, avoided costs under Alternative 2 are higher than under the Preferred Option or Alternative 1. This occurs because: 1) these requirements create groundwater contamination reductions; and 2) fewer releases are altogether avoided under Alternative 2. This combination of factors implies that groundwater reductions have a greater effect under Alternative 2, as they affect a larger number of releases. This effect is very small compared to the magnitude of changes in other requirements.

c Some proposed requirements, particularly those that target narrow subpopulations of the UST system universe, may generate higher avoided costs than this analysis suggests. Three sources of uncertainty drive these smaller universe results: 1) EPA's model is calibrated to estimate avoided costs for broad-based national changes at average facilities; extrapolation of these results to small populations may not reflect specific subpopulations (e.g., UST systems in Indian country). Second, several experts stated that their estimates of impacts for requirements affecting narrow subsets of UST populations are more uncertain than broader estimates. Finally, experts emphasized that equipment replacement, inspection, training, and testing are all essential to ensure release reductions, and they used judgment to emphasize the different roles of these different activities. Therefore, the assignment of specific impacts to each of the proposed requirements is potentially less accurate than the aggregate estimates of avoided impacts.

d Subtotals and totals presented in this table do not represent the sums of the ranges across the proposed requirements because experts with relatively lower estimates for one proposed requirement did not necessarily have similarly low estimates for other requirements. Instead, the subtotals and totals shown represent the lowest and highest estimates among the four experts for each subtotal group and for the total across all proposed requirements.

e Experts were not asked to estimate avoided costs resulting from the elimination of groundwater and vapor monitoring. EPA decided to include this requirement after consulting with its experts.

f Reductions in frequency and release severity (as measured by changes in groundwater contamination) do not adequately capture the positive impacts of preventing releases from very large systems such as AHFDSs and UST systems with FCTs. Releases from these types of systems constitute a small portion of total releases, but may be large in volume and can result in significant groundwater impacts. Especially in the case of AHFDSs, even minor problems can create large releases due to the significant pressure under which contents are stored. The model used by EPA to estimate avoided remediation costs is not designed to measure avoided costs from very large releases such as those typically associated with AHFDSs and FCTs, and we therefore do not offer an estimate of avoided costs for requirements that apply to these systems.

g Experts were not asked to estimate avoided costs resulting from requirements for determining compatibility. EPA decided to include this requirement after consulting with its experts.

h Cost estimates were derived using a seven percent discount rate.

For reference, we also estimate avoided costs using ASTSWMO’s reported average cleanup cost of $127,216 for 2009. If we value the releases and groundwater incidents avoided under each option using this estimate, we obtain total avoided costs of approximately $250 million to $610 million under the Preferred Option, $250 million to $640 million under Alternative 1, and $87 million to $490 million under Alternative 2. Note that these values fall between our primary estimates and sensitivity analyses.43

43 Under the alternative baseline, total avoided costs based on New Hampshire remediation costs range from $110 million to $280 million in the Preferred Option. This represents an extreme lower bound analysis of avoided remediation costs.
4.6 **Avoided Vapor Intrusion Damages**

Vapor intrusion generally occurs when petroleum or highly-dissolved concentrations come into direct contact with building sumps and foundations, elevator shafts, and preferential pathways (e.g. improperly sealed utility lines). Intrusion can also occur when these substances come close to building foundations.\(^{44}\) The cost to remediate vapor intrusion is typically incremental to the cost to remediate a LUST site. Based on information provided by four states, EPA estimates that from one to 10 percent of all releases cause vapor intrusion issues. Each of these instances requires additional remedial actions valued between $27,000 and $52,000 beyond ordinary release remediation costs.\(^{45}\) As reported in **Exhibit 4-15**, given 1,680 to 5,370 avoided releases and mitigated groundwater incidents, we estimate between 17 and 540 avoided vapor intrusion incidents under the Preferred Option. This reduction would avoid between $0.4 million and $26 million per year in avoided remediation costs related to vapor intrusion. While the lower end of this range does not vary significantly among the options, EPA estimates savings of up to $28 million under Alternative 1 and $19 million under Alternative 2.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total avoided releases and avoided groundwater incidents</td>
<td>1,680 - 5,370</td>
<td>1,820 - 5,780</td>
<td>630 - 3,860</td>
</tr>
</tbody>
</table>
| Low 1% of releases involve vapor intrusion
$27,000 per release to remediate | $0.4 - $1.4 | $0.5 - $1.5 | $0.2 - $1.0 |
| High 10% of releases involve vapor intrusion
$52,000 per release to remediate | $8.2 - $26.0 | $8.9 - $28.0 | $3.1 - $19.0 |

Under the alternative baseline, avoided vapor intrusion costs fall due to the smaller universe of releases. In the Preferred Option, avoided costs are $0.3 million to $16.0 million. Under Alternative 1, avoided costs range from $0.3 million to $17 million; under Alternative 2, they range between $0.1 million and $11.0 million. See **Exhibit 4-20** for a full accounting of avoided costs in the alternative baseline.

4.7 **Product Loss**

Releases into the environment cause operators to lose otherwise marketable fuel products. **Exhibit 4-16** presents costs avoided due to product loss. The analysis calculates the product loss

\(^{45}\) New Hampshire, Utah, South Carolina, Virginia, and New Mexico were contacted for LUST remediation costs, but only New Hampshire was able to provide a cost for cleanup actions related to vapor intrusion. Other state programs contributed data to the frequency of incidents, but not to costs.
associated with avoided releases by multiplying the average volume associated with each release source by the number of releases of that type before and after the proposed rule is in effect. Based on the estimates of avoided releases presented by the experts, the draft 23-state Autopsy Report’s distribution of releases, and average release volumes reported in the Florida study, EPA estimates that approximately 0.64 million gallons to 2.3 million gallons per year of diesel and gasoline releases are avoided as a consequence of the Preferred Option. At an average price of $3.27 per gallon, owners and operators avoid losing approximately $2.0 million to $7.2 million in product due to releases. These values increase to a range of 0.84 million gallons to 2.5 million gallons and $2.6 million to $7.6 million under Alternative 1 and decrease to a range of 0.13 million gallons to 1.7 million gallons and $0.4 million to $5.3 million under Alternative 2. Limited data on release size do not support an analysis of avoided product loss associated with releases that are reduced in severity.

Exhibit 4-16

<table>
<thead>
<tr>
<th>Expert</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thousand gallons</td>
<td>$ millions</td>
<td>Thousand gallons</td>
</tr>
<tr>
<td>Expert 1</td>
<td>640</td>
<td>$2.0</td>
<td>950</td>
</tr>
<tr>
<td>Expert 2</td>
<td>800</td>
<td>$2.5</td>
<td>840</td>
</tr>
<tr>
<td>Expert 3</td>
<td>810</td>
<td>$2.5</td>
<td>860</td>
</tr>
<tr>
<td>Expert 4</td>
<td>2,300</td>
<td>$7.2</td>
<td>2,500</td>
</tr>
<tr>
<td>Range</td>
<td>640 – 2,300</td>
<td>$2.0 - $7.2</td>
<td>840 - 2,500</td>
</tr>
</tbody>
</table>

Releases are valued using an average price of motor fuel for 2008. Prices per gallon for all grades of retail motor gasoline and No. 2 diesel fuel (all concentrations of sulfur) were $3.32 and $3.15, respectively, as reported by the Bureau of Transportation in Table 3-8: Sales Price of Transportation Fuel to End-Users in National Transportation Statistics 2010 (at http://www.bts.gov/publications/national_transportation_statistics/pdf/entire.pdf). We weight these prices according to prime supplier sales volumes in 2009 published by the Energy Information Administration, which summed to 362,798.5 thousands of gallons per day for gasoline and 132,489.3 thousands of gallons per day for all grades of diesel fuel (at http://www.eia.gov/dnav/pet/pet_cons_prim_dcu_nus_a.htm).

Under the alternative baseline, avoided costs due to product loss are lower than in the original baseline as there are relatively fewer releases. In the Preferred Option, avoided costs due to product loss are $1.2 million to $4.3 million. Under Alternative 1, avoided costs range from $1.6 million to $4.6 million; under Alternative 2, they range between $0.2 million and $3.2 million. See **Exhibit 4-20** for a full accounting of avoided costs in the alternative baseline scenario.

46 Releases are valued using an average price of motor fuel for 2008. Prices per gallon for all grades of retail motor gasoline and No. 2 diesel fuel (all concentrations of sulfur) were $3.32 and $3.15, respectively, as reported by the Bureau of Transportation in Table 3-8: Sales Price of Transportation Fuel to End-Users in National Transportation Statistics 2010 (at http://www.bts.gov/publications/national_transportation_statistics/pdf/entire.pdf). We weight these prices according to prime supplier sales volumes in 2009 published by the Energy Information Administration, which summed to 362,798.5 thousands of gallons per day for gasoline and 132,489.3 thousands of gallons per day for all grades of diesel fuel (at http://www.eia.gov/dnav/pet/pet_cons_prim_dcu_nus_a.htm)
4.8 Human Health Benefits

Exposure to petroleum through ingestion, dermal contact, and inhalation can cause a range of health effects, including cancer and non-cancer impacts associated with benzene, and non-cancer impacts (e.g., neurological impacts) associated with other petroleum constituents such as toluene. Reductions in the number and severity of releases will reduce these exposures and associated morbidity and mortality impacts. This benefits assessment examines the impacts of the regulations under consideration on population cancer risks associated with benzene exposures through groundwater. Other health impacts, including benzene-related risks through inhalation of vapor and nonbenzene health effects, are not able to be reliably quantified with available data, but represent additional potential benefits of the rule.

4.8.1 Avoided Benzene Cancer Risk

To address human health benefits associated with avoided exposure to benzene through groundwater, EPA performed a screening analysis using data on:

- Expected number of cancer cases per underground storage tank release;
- Estimated number of releases prevented through implementation of the regulatory revisions; and,
- Estimated WTP to avoid a fatal cancer, expressed as the value of a statistical life (VSL).

The EPA risk assessment provides population risk estimates on a per-release basis, expressed as the expected number of cancer cases per release. That analysis estimated population risk for releases of varying volumes and plume ages. To estimate the benefits of avoided cancer cases, EPA uses the estimated number of releases avoided and releases reduced in severity and applies the 2009 EPA estimated value of a statistical life (VSL) of $8.9 million as the value associated with avoiding one terminal cancer.

Exhibit 4-17 presents EPA’s findings for four avoided release scenarios. The analysis shows that, even under unlikely assumptions of 100-year plumes and 5,000 gallon releases, total upper bound human health benefits due to avoided cancer cases are limited to approximately

50 This screening analysis also does not address the issue of latency, or discounting the VSL to reflect health effects that occur many years after exposure.
$850,000 per year under the Preferred Option. This value changes little when considering Alternatives 1 or 2. EPA’s central estimate of the benefits associated with avoided cancer incidence uses avoided costs from scenarios in which plume ages are one and five years and average release volume is 50 gallons, consistent with release data from available studies. These assumptions suggest human health benefits of approximately $1,400 to $4,500 per year associated with avoided benzene-related cancer risk.

These modest findings reflect a number of assumptions that may provide an incomplete picture of the risks associated with leaks from underground storage tanks. First, they reflect the frequency of confirmed releases, and (except in the 100-year spill time frame) the assumption that the existing UST cleanup program eliminates all exposure immediately upon release discovery. In addition, the risk assessment did not consider larger-scale releases over 5,000 gallons in any scenario, though a number of these are reported annually. Finally, exposure scenarios generally reflect behavioral assumptions that exposed individuals will limit their own exposure in certain cases (e.g., when petroleum contamination exceeds a “taste/odor threshold” and water is no longer palatable). Any or all of these assumptions may not hold in all cases, and other risks and health benefits are not reflected at all in this screening level risk assessment (see below). However, it is also not unreasonable to assume that health impacts under this proposed rule would be limited, given the baseline existence of technical and cleanup requirements designed to minimize human exposure.

51 U.S. Environmental Protection Agency, Office of Underground Storage Tanks, “Petroleum Releases at Underground Storage Tank Facilities in Florida,” draft, March 2005. Note that this estimate differs from the calculated avoided product loss based on average release volumes in the Florida autopsy data. We use a more conservative estimate of release volumes (consistent with median release volumes from Florida’s autopsy study) to reflect uncertainty regarding exposure and to offset the risk analysis assumption that releases occur over a very short time frame.

Discounted Benefits From Benzene Cancer Avoidance\(^d\)

<table>
<thead>
<tr>
<th>Release time to discovery and volume (^a,b,c)</th>
<th>Preferred Option ($ thousands)</th>
<th>Alternative 1 ($ thousands)</th>
<th>Alternative 2 ($ thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total releases</td>
<td>1,680 - 5,370</td>
<td>1,820 - 5,780</td>
<td>630 - 3,860</td>
</tr>
<tr>
<td>1 year until discovery, 10 gals. release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Prob(Cancer Case) = 0.000000012)</td>
<td>$0.15 - $0.49</td>
<td>$0.17 - $0.53</td>
<td>$0.06 - $0.35</td>
</tr>
<tr>
<td>1 year until discovery, 50 gals. released</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Prob(Cancer Case) = 0.000000032)</td>
<td>$0.43 - $1.4</td>
<td>$0.47 - $1.5</td>
<td>$0.16 - $0.99</td>
</tr>
<tr>
<td>5 years until discovery, 50 gals. released</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Prob(Cancer Case) = 0.000000017)</td>
<td>$2.4 - $7.6</td>
<td>$2.6 - $8.2</td>
<td>$0.89 - $5.5</td>
</tr>
<tr>
<td>100 year until discovery, 5,000 gals. release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Prob(Cancer Case) = 0.0000019)</td>
<td>$270 - $850</td>
<td>$290 - $910</td>
<td>$100 - $610</td>
</tr>
<tr>
<td>Primary estimate (average of 50 gal. release over 1 and 5 years)</td>
<td>$1.4 - $4.5</td>
<td>$1.5 - $4.8</td>
<td>$0.53 - $3.2</td>
</tr>
</tbody>
</table>

\(^a\) The pathway assessed to evaluate avoided cancer risk is benzene exposure through contaminated groundwater.
\(^b\) Calculations based on a value of statistical life of $8.9 million, as presented in U.S. EPA, “Summary of the updated Regulatory Impact Analysis (RIA) for the Reconsideration of the 2008 Ozone National Ambient Air Quality Standard (NAAQS).”
\(^d\) Estimates were derived using a seven percent discount rate.

Under the alternative baseline, the total upper bound human health benefits due to avoided cancer cases are limited to approximately $510,000 per year under the Preferred Option. The central estimate of the benefits associated with avoided cancer incidence suggests human health benefits of approximately $840 to $2,700 per year associated with avoided benzene-related cancer risk. See Exhibit 4-20 for a full accounting of avoided costs in the alternative baseline scenario.

4.8.2 Other Human Health Benefits

The foregoing benefits from avoided benzene cancer avoidance represent only one portion of the health risk associated with releases from leaking UST systems. The risk assessment examined only benzene risks through groundwater ingestion and shower inhalation and focused on average population risks. Such risks are limited in part because the analysis concluded that many sites do not have residents using groundwater near the area affected by a plume. Nevertheless, the risk assessment concluded that some larger releases may have significant human health risks associated with them.

Inhalation risks associated with direct exposure to vapor and other petroleum-related chemicals were not evaluated.\(^{52}\) While EPA does not expect most instances of these risks to be

\(^{52}\) Neither cancer nor non-cancer risks of these types were evaluated.
large, significant risks remain for a subset of releases. To the extent that the proposed rule would prevent or mitigate the most significant releases, this analysis may understate the avoided human health impacts associated with the rule.

More broadly, the complex nature of petroleum mixtures and the limited toxicological data available both for petroleum mixtures and for individual component compounds of petroleum limits EPA’s ability to comprehensively document the health effects associated with the most significant releases. However, the toxicological testing that has been conducted on some common components of total petroleum hydrocarbons (TPH) suggests that exposures to TPH through inhalation or ingestion could result in the following effects:

- Neurological effects, such as central nervous system depression, have been associated with acute and chronic exposures to toluene and xylenes; n-hexane exposure has been associated with effects on peripheral neuropathy;
- Hematological effects associated with oral and inhalation exposure to benzene and with oral and inhalation exposure to naphthalene;
- Renal and hepatic effects associated with BTEX compounds and other aromatic hydrocarbon compounds;
- Developmental effects associated with intermediate exposures to ethylbenzene and xylenes; and
- Carcinogenic effects of oral exposures to certain polycyclic aromatic hydrocarbons (PAHs) including benzo(a)pyrene, benz(a)anthracene, and dibenz(a,h)anthracene.53

Reduced exposure to TPH as a result of the proposed rule could therefore have nonquantified benefits related to reducing the risks of one or more of the above health effects.

4.9 Avoided Acute Exposure Events and Large-Scale Releases

Most health effects associated with leaking underground storage tanks reflect long-term exposures, but some releases from UST systems relate to acute events such as fire or explosion. These releases can involve acute exposures, large volumes of free product, extensive ecological damage, and injuries and death, depending on the circumstances of the event. Because these events are difficult to predict and infrequent, it is not possible to quantify or monetize the impact associated with avoiding them, but the response, remediation, and medical costs associated with a single acute incident could be significant. The proposed regulations are designed to ensure effective maintenance of UST systems, and one benefit will be to reduce the chances of an acute event that could result in a large-scale release and its associated damages (e.g., a well-maintained UST system is less likely to be in a condition where it may explode).

Acute events are especially important in the case of UST systems such as airport hydrant fuel distribution systems and UST systems with field-constructed tanks, which can hold large volumes of fuel. Releases from these systems can be large in volume and can result in significant groundwater and other environmental and health impacts. For instance, an estimated 300,000 to 500,000 gallons of fuel was released from a 2.1 million gallon underground field-constructed tank at a fuel depot in Portsmouth, VA that was in operation from the 1950s to mid-1980s. Free product was found within 20 feet of a nearby creek in 1987. To date, approximately 143,000 gallons of product have been recovered.54

Another example of the potential magnitude of the releases from these systems is Pease Air Force Base, where jet fuel was delivered to the runway apron via an underground fueling system.55 Historical leakage from the system contaminated soil and groundwater, forming groundwater plumes at many sites along the system.56 A site release study identified 60 to 70 release points with varying degrees of severity along the refueling system line with free product found under the apron at closure.57 While there are no historical records available indicating the amount of leaked fuel or leak origins, the presence of residual soil and groundwater contamination poses a significant threat to human health and the environment.

While the analytical procedure used by EPA to estimate benefits was unable to capture the positive impacts of preventing releases from these types of systems, we note that preventing or mitigating these releases may generate substantial reductions in remediation costs.

4.10 Ecological Benefits

A document prepared for EPA outlines the types of ecological damages that can result from land-based pollution releases:58

Measurable damage to ecological resources from land releases generally occurs when groundwater or overland flow of water carry contaminants to a nearby surface water body. Flood events and other acute incidents can cause releases of waste that have an immediate and significant effect on

54 Phone conversation and email from Lynne Smith, Geologist, VA DEQ and Russ Ellison, VA DEQ.

ecological resources (e.g., a surface impoundment dike fails and releases contaminants into a river, killing fish and other biota). More common are gradual increases in contaminant levels due to long-term releases to groundwater. These may have a broad array of impacts on both resources used by humans (such as fish populations) and on “non-use value” such as the value of preserving habitat and species diversity. In addition, biota can be affected by uptake of contaminants from soil, particularly in wetlands or areas where the water table is high.

Because of their locations, releases from underground storage tanks would likely be classified as land releases. Thus, any releases avoided due to the proposed rule may result in ecological benefits. A complete assessment of ecological benefits, however, requires significant location-specific data, and it is often difficult to identify sufficient data to support valuation of both use and non-use values of preserving habitat and species diversity.

The ecological benefits that accrue from the proposed rule are likely to occur as a consequence of averted groundwater contamination. The resource economics literature contains numerous examples of studies that value these services, as demonstrated by the public’s WTP for groundwater protection programs (e.g., see Poe et al. 2001). However, these values are largely context-specific in terms of location, scale, and the specific threat to groundwater considered and do not provide broadly-applicable information on the value of groundwater.

Some attempts have been made to develop standardized values for groundwater, often for purposes of Natural Resource Damage Assessment (NRDA). For instance, the State of New Jersey currently employs a replacement cost approach to determine interim economic losses associated with injuries to groundwater. Even so, replacement cost methods do not constitute a proper WTP valuation. The replacement cost of natural resources and their services capture WTP only when they meet three criteria: 1) replacement provides equivalent quality and quantity of services; 2) the public is actually willing to pay for the replacement; and 3) replacement is the most cost-effective means of restoring the lost services. Even if these conditions are true, this approach may overestimate groundwater values in urban areas, as land is typically more expensive, and underestimate groundwater values in areas where land is less expensive.

60 Natural Resource Damage Assessment (NRDA) is the process of estimating the monetary cost of restoring natural resources injured by discharges of oil or releases of hazardous substances. Monetary costs, or damages, are estimated by identifying the services provided by the injured natural resources, determining the baseline level of the services provided by the resources, and quantifying the reduction in services that result from the natural resource injury. U.S. EPA. Natural Resource Damage Assessment. www.epa.gov/superfund/programs/nrd/nrda2.htm.

61 New Jersey’s approach follows three steps. First, the approach determines the total present value of potential yield from the contaminated area over the relevant period of impairment, typically based on a site-specific or regional recharge rate for the area in question. Second, again considering regional recharge rates, it estimates the amount of land required to protect an equivalent present value total volume of groundwater. Finally, the approach identifies and appraises candidate parcels. The cost of acquiring such a parcel for purposes of protecting a volume of groundwater equivalent to what was lost represents the measure of damages.

Because an assessment of the value of groundwater protected by the proposed rule is affected by spatial heterogeneity, it requires information about the public’s WTP for protection in all states and territories. These data are not available, and EPA is therefore unable to place a value on the groundwater protected. Instead, we provide an estimate below of the total quantity of groundwater that may be protected by the rule. We note, though, that a portion of the value of restoring groundwater is captured as part of the cost to remediate each release discussed earlier in this chapter. However, while the cost of restoring groundwater to a higher quality after contamination is captured as part of the cost to remediate each release, it cannot be assumed that remediation captures WTP. In many cases, performing remediation to “safe” levels does not fully eliminate contamination, and therefore does not restore the resource to its original value. Therefore, while a significant portion of the value of the quantity of groundwater protected may be captured by the avoided remediation costs, it may not reflect the full WTP of groundwater protection.

Exhibit 4-18 summarizes a screening assessment of the volume of groundwater contamination potentially avoided because of reductions in releases and groundwater contamination incidents. The analysis relies on the EPA risk assessment, which describes typical volumes of groundwater affected by releases of different sizes over various discovery time frames. EPA’s analysis estimates that 40 billion gallons to 130 billion gallons of groundwater per year are protected under conservative assumptions of 10 gallon release volumes that migrate for only one year before discovery. Under the upper bound conditions of 5,000 gallon release volumes and 100 year lifetimes, up to 5.7 trillion gallons of groundwater per year would be potentially protected by the regulatory changes. We also calculate the impact of 50 gallon releases over one- and five-year time frames. These releases appear most consistent with empirical data in the draft 23-state Autopsy Report. Assuming that 50 gallon releases and one- to five-year time frames represent the average parameters of avoided releases, we estimate that approximately 110 to 350 billion gallons of groundwater would be protected annually from LUST-related releases due to the potential regulatory changes.

64 The risk assessment on which this analysis is based did not estimate groundwater contamination volumes outside of a one-mile radius about the point of release. The assessment notes that groundwater may be contaminated outside that radius, but it does not estimate this quantity. Generally, only releases greater than 1,000 gallons are affected by this phenomenon, i.e., groundwater contamination is likely underestimated for the 5,000 gallon, 100-year release scenario.

65 The release volume data used in the groundwater protection assessment differs from the data used to calculate product loss and may lead to apparent inconsistencies. For instance, under the Preferred Option, prevention of 1.2 million gallons of product loss over 2,200 releases implies an average of over 500 gallons per release; however, in the groundwater protection analysis, EPA relies on estimates of groundwater contaminated based on releases of 50 gallons for the following two reasons: (1) the volumes of product loss based on Florida data are based on actual data, while the risk analysis relies on a simulation; and (2) the simulation assumes that product is released over a relatively short period of time (approximately one month), which likely overstates the effect of groundwater contamination for any given volume. Given these circumstances, EPA selected an average release volume to characterize groundwater contamination that is significantly lower than the volume implied by the analysis of product loss, but which reduces the risk of overstating positive impacts from groundwater protection.
Under the alternative baseline, assuming that 50 gallon releases and one- to five-year time frames represent the average parameters of avoided releases, approximately 65 to 210 billion gallons of groundwater would be protected annually in the Preferred Option. See Exhibit 4-20 for a full accounting of avoided costs in the alternative baseline.

4.11 Conclusion

Exhibit 4-19 summarizes the monetized avoided costs and benefits due to the proposed rule. In total, EPA estimates approximately $300 million to $740 million in costs will be avoided as a consequence of the Preferred Option. In addition, the proposed rule will generate modest benefits due to avoided cancer risks. Although their value cannot be reliably monetized, roughly 110 billion to 350 billion gallons of groundwater per year will avoid contamination due to new requirements. Finally, the proposed rule will generate ecological benefits and reductions in nonbenzene morbidity and mortality risks that we could not quantify in our analysis.
Exhibit 4-19

Summary Of Positive Impacts

<table>
<thead>
<tr>
<th>Type of Impact</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetized Benefits ($ millions, present value 2008$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided cancer risks<sup>a</sup></td>
<td>$0.001 - $0.005</td>
<td>$0.002 - $0.005</td>
<td>$0.001 - $0.003</td>
</tr>
<tr>
<td>Monetized Avoided Costs ($ millions, present value 2008$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents</td>
<td>$300 - $700</td>
<td>$300 - $740</td>
<td>$110 - $570</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$0.4 - $26</td>
<td>$0.5 - $28</td>
<td>$0.2 - $19</td>
</tr>
<tr>
<td>Product loss</td>
<td>$2.0 - $7.2</td>
<td>$2.6 - $7.6</td>
<td>$0.4 - $5.3</td>
</tr>
<tr>
<td>Total<sup>b</sup></td>
<td>$300 - $740</td>
<td>$310 - $770</td>
<td>$110 - $590</td>
</tr>
<tr>
<td>Nonmonetized Impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater protected (billion gallons)</td>
<td>110 - 350</td>
<td>120 - 370</td>
<td>41 - 250</td>
</tr>
<tr>
<td>Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Ecological benefits</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Nonbenzene human health risks</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
</tbody>
</table>

^a The pathway assessed to evaluate avoided cancer risk is benzene exposure through contaminated groundwater.
^b Avoided cancer risks and avoided costs are separate and additive (i.e., these estimates do not overlap). Avoided cancer risks are the benefits associated with reducing cancer cases prior to discovery of the release. Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.
^c Due to data and resource constraints, EPA was unable to monetize some of the positive impacts of the proposed rule. Chapter 4 provides a qualitative discussion of these benefits.
^d Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

4.11.1 Summary of Positive Impacts under the Alternative Baseline Scenario

Exhibit 4-20 summarizes the monetized avoided costs and benefits due to the proposed rule under the alternative baseline. In total, EPA estimates approximately $180 million to $440 million in costs will be avoided as a consequence of the Preferred Option under the alternative baseline. The proposed rule will also generate modest benefits due to avoided cancer risks. Approximately 65 billion to 210 billion gallons of groundwater per year will avoid contamination due to the proposed requirements in the Preferred Option. Overall, positive impacts under the alternative baseline are roughly 60 percent of positive impacts when the original baseline is assumed.
<table>
<thead>
<tr>
<th>Type of Impact</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetized Benefits ($ millions, present value 2008$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided cancer risksa</td>
<td>$0.001 - $0.003</td>
<td>$0.001 - $0.003</td>
<td>$0.0003 - $0.002</td>
</tr>
<tr>
<td>Monetized Avoided Costs ($ millions, present value 2008$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents</td>
<td>$180 - $420</td>
<td>$180 - $440</td>
<td>$64 - $340</td>
</tr>
<tr>
<td>Vapor intrusion, average</td>
<td>$0.3 - $16</td>
<td>$0.3 - $17</td>
<td>$0.1 - $11</td>
</tr>
<tr>
<td>Product loss</td>
<td>$1.2 - $4.3</td>
<td>$1.6 - $4.6</td>
<td>$0.2 - $3.2</td>
</tr>
<tr>
<td>Totalb</td>
<td>$180 - $440</td>
<td>$180 - $460</td>
<td>$64 - $360</td>
</tr>
<tr>
<td>Nonmonetized Impactsc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater protected (billion gallons)</td>
<td>65 - 210</td>
<td>71 - 220</td>
<td>25 - 150</td>
</tr>
<tr>
<td>Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Ecological benefits</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Nonbenzene human health risks</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
</tbody>
</table>

a The pathway assessed to evaluate avoided cancer risk is benzene exposure through contaminated groundwater.

b Avoided cancer risks and avoided costs are separate and additive (i.e., these estimates do not overlap). Avoided cancer risks are the benefits associated with reducing cancer cases prior to discovery of the release. Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.

c Due to data and resource constraints, EPA was unable to monetize some of the positive impacts of the proposed rule. Chapter 4 provides a qualitative discussion of these benefits.

d Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.
Chapter 5. Distributional Impacts and Considerations

5.1 Introduction

This chapter considers specific impacts that may be created by the distribution of the costs and benefits of the proposed rule. EPA has undertaken several analyses to examine how the pattern of costs and benefits may affect specific populations and sectors of the economy. Specifically, the chapter considers:

- Economic impacts associated with the costs of the proposed rule: These could include changes in facility operation and closure of facilities due to cost increases under the regulation. In addition, the proposed rule may create negative and positive employment impacts, including both reductions in employment to reduce costs and increases in employment to ensure implementation of rule provisions. Finally, the proposed rule may affect public spending related to cleanup of contaminated sites.

- Energy impacts associated with the proposed rule: EPA considers the potential for this proposed rule to affect the supply, distribution, or use of energy, including changes in the price of fuel.

- Impacts on small business and governments: EPA’s regulatory flexibility analysis considers the potential for rule-related costs to have a significant impact on a substantial number of small entities (SISNOSE).

- Impacts on minority and low-income populations: EPA considers the potential for the proposed rule to have disproportionate impacts on minority or low-income populations.

- Children’s health impacts: EPA considers the potential for the proposed rule to have a significant or disproportionate impact on the health of children.

Note that the analyses in this chapter employ data and results from EPA’s primary analysis assuming a constant number of tanks and releases over 20 years. This chapter does not consider impacts under the alternative baseline scenarios. In general, impacts under alternative baseline assumptions would be slightly smaller, reflecting the smaller universe of affected facilities over time.

5.2 Economic Impacts

In the context of regulatory analysis, an economic impact is an effect on the economic wellbeing, or welfare, of any stakeholder due to compliance with the proposed rule. Direct economic impacts can be borne by producers (i.e., those who produce, distribute, or sell products
associated with the proposed rule), by consumers (i.e., those who purchase products associated with the proposed rule), or both.

The economic impacts of the proposed rule result from increases in compliance costs due to new regulation. In the short run, producers (i.e., owners or operators of facilities with UST systems) can respond to cost increases in one of two ways: by passing through some or all costs to customers (consumers) through increases in price, or by absorbing costs and reducing profitability. If producers cannot pass on to consumers any of their increased compliance costs, the proposed rule will chiefly affect producers in the short run, and economic impacts may include reduced profits, changes in operation, and in extreme cases, facility closure. If producers are able to increase prices on products to recover some or all compliance costs, the proposed rule will affect consumers by raising prices. The extent to which producers can pass through costs depends on the structure of the markets in which they operate.

As we discuss in subsequent sections, we do not believe that many firms will be able to pass increases in prices on to consumers through higher fuel prices. While local level motor fuel retail stations may face similar increases in costs of compliance, consumers’ sensitivity to changes in gasoline prices provides a significant disincentive for station operators to increase fuel prices. Instead, compliance costs are likely to be passed on through cross-marketed goods whose demand is less sensitive to changes in prices, such as items for sale at gas station convenience stores.

EPA’s assessment of the economic impacts associated with this rule is presented as follows:

- **Distribution of affected facilities.** We first discuss the universe of affected facilities, with a focus on the retail motor fuels sector. This section also describes supply and demand dynamics within the retail motor fuels market and the likely economic responses to increased compliance costs.

- **Screening level economic impact analysis of average costs on facilities.** EPA presents a screening assessment of the impacts of average estimated facility-level costs on the facilities affected by the rule.

- **Sensitivity analysis of economic impacts.** To address uncertainty related to the distribution of costs among UST facilities, we present a “worst case” sensitivity analysis that identifies the maximum number of facilities that could face significant economic impacts due to regulatory costs. This section also briefly discusses implications for facility closures and changes in employment.

1 A high degree of consumer sensitivity to changes in gasoline prices does not imply that prices are equal across gasoline stations in the same area. Factors that affect retail motor fuel prices at the station-level include traffic flows, population density, and intensity of local retail competition on the demand side, while supply can be affected by land cost, station setup, labor costs, and taxes. See p. 15 – 16, Fischer, Jeffrey. “The Economics of Price Zones and Territorial Restrictions in Gasoline Marketing,” 2004, Federal Trade Commission, accessed at http://www.ftc.gov/be/workpapers/wp271.pdf
• **Impacts on public funding for cleanups.** The proposed rule is estimated to result in significant cost savings associated with avoided cleanup requirements as releases decline. A significant portion of cleanup costs are currently borne by the public sector, using taxes and fees to fund state cleanup efforts. EPA examines the potential reduction in public sector liabilities associated with the broader reduction in releases.

5.2.1 Distribution of UST Systems by Industry Sector

As shown in **Exhibit 2-3** in Chapter 2, the majority of UST systems are located at motor fuel retailers (i.e., gas stations). EPA estimates that, of the 611,449 UST systems active in 2009, 481,108 (roughly 80 percent) were located at approximately 162,000 motor fuel locations in the United States.\(^2\) The remaining 130,341 (roughly 20 percent) of facilities are spread across several industries, including the commercial sector (wholesale, retail, accommodation, and food services), manufacturing, transportation, communications and utilities, and hospitals.\(^3\) Notably, the sectors other than retail motor fuels are difficult to characterize with regard to UST systems; depending on their uses, UST systems may occur in varying numbers at facilities of varying size and purpose across all sectors. Only in the retail motor fuel sector do UST systems serve a similar, central function at virtually all facilities in the sector.

In addition to comprising 80 percent of all UST systems, establishments in the retail motor fuels sector also have the highest average number of UST systems per facility, with a facility average of 2.97 (roughly three systems per facility). In comparison, facilities in other sectors have, on average, between 1.47 and 2.30 systems.\(^4\) Because many requirements in the proposed rule occur at the UST system level, establishments in the retail motor fuels sector have the highest average compliance costs per facility. In total, this sector is likely to bear roughly 70 percent of total costs associated with the proposed rule.\(^5\)

Because the costs of the proposed rule will primarily affect the retail motor fuels sector, and because this sector is characterized by a large number of independently-owned facilities and companies, this economic impact analysis focuses on the retail motor fuels sector.

\(^2\) EPA’s count of UST systems includes states and territories, while the estimate of retail motor fuel locations includes only facilities in the continental U.S., Hawaii, and Alaska. Because only 7,619 UST systems (approximately 1.1 percent) are located in other U.S territories, we use 162,000 facilities as the total population.

\(^3\) See Chapter 2.1 for more detail.

\(^4\) See **Exhibit 2-3**. For example, we calculate 2.30 systems per commercial facility by dividing 52,271 systems by 22,730 facilities.

\(^5\) Total costs under the Preferred Option are $210 million, with $180 million directly related to conventional USTs and EGTs. Motor fuel retailers will bear approximately 80 percent of these $180 million in costs, which represent roughly 70 percent of total costs under the Preferred Option.
5.2.2 Market Dynamics in the Retail Motor Fuels Sector

This section provides an overview of the U.S. wholesale and retail motor fuels markets, including market concentration, fuel distribution practices, and the implications of market structure for pricing.

Supply-side Characteristics: Ability of Producers to Pass Through Costs

The North American Industrial Classification System (NAICS) code for retail motor fuel sales (i.e., gasoline stations) is 447, and specifically applies to retailers of automotive fuel and automotive oils. Establishments classified under NAICS code 447 include facilities with and without convenience stores, and all have specialized equipment for the storing and dispensing of automotive fuels.6

According to the 2002 Economic Census, average revenues for establishments in NAICS sector 447 were approximately $2.1 million. On average, each establishment employed approximately eight employees.7

Market Concentration

Market concentration is an indicator of the ability of firms to raise prices in response to changes in the costs of doing business: in markets with fewer, larger companies (i.e., highly concentrated markets), large firms typically have greater ability to pass through price increases to consumers. One indicator of market concentration is the proportion of total sales made by individual firms within a particular market. In markets where concentration is high, few firms earn a relatively large proportion of the total revenues in a market and are sometimes able to pass price increases through to consumers because of limited competition from smaller firms.

The retail motor fuels sector is representative of the broader retail sector in market concentration. Specifically, one-third of all sales made by NAICS sector 447 are made by establishments owned by the fifty largest firms in the sector, compared with 32 percent of sales to the largest 50 firms in the broader retail sector.8 This level of market concentration does not suggest that retailers will easily pass through price increases.9

7 While EPA relies on 2002 Economic Census figures for values per facility, this analysis relies on more recent and focused National Petroleum News Survey values for a count of the number of facilities.

9 A common measure of market concentration can be obtained through the Herfindahl-Hirschman Index ("HHI"), which is calculated by squaring the market share of each firm competing in the market and then summing the resulting numbers. For example, if only two firms operate in a market and each has 50 percent of sales, then the index would register $50^2 + 50^2 = 5,000$. The U.S. Department of Justice’s merger guidelines categorize markets in which HHI is between 1,000 and 1,800 points as moderately concentrated, and those in which the HHI is in excess of 1,800 points as concentrated. Because the four largest firms in NAICS sector 447 generate only eight percent of
Geographical Concentration

Gasoline stations are generally distributed across the United States in proportion to population. The most populous states have more establishments and higher proportions of gasoline sales.\(^{10}\) While no data are available regarding the distribution of facilities by size, the retail gasoline market is relatively homogeneous nationwide, and it is likely that facilities of different sizes are distributed according to population as well.

Ownership Structure

The 2009 Gas Price Kit published by the National Association of Convenience Stores classifies motor fuel retailers into three broad categories, depending on the manner in which they obtain their wholesale product:\(^{11}\)

- **Refinery-Owned:** Fewer than two percent of facilities are retail operations directly owned by large oil producers. These stations receive wholesale product directly from the oil company’s refinery, and their profit is part of the oil company’s profit. At these facilities, the parent corporation manages all aspects of the customer experience and establishes a consistent brand identity.

- **Branded Independent Retailers:** Approximately 55 percent of facilities are branded independent retailers. These facilities are owned by independent operators and contract with a refinery to sell a particular brand of gasoline. This owner leverages the supplier’s marketing and ensures constant supply in exchange for a surcharge per gallon paid to the supplier. Branded retailers’ contracts with refiners typically contain clauses that specify the margins retailers can charge above wholesale prices.

- **Unbranded Independent Retailers:** Approximately 45 percent of facilities are unbranded independent retailers. These retailers purchase gasoline on the open market, without committing to a particular supplier.

Wholesale gasoline is a commodity, but varies in price regionally based on a combination of refinery locations, specific fuel mixes (e.g., to meet air quality standards), and the type of distributors in a region. Types of wholesalers include:\(^{12}\)

• **Refinery-owned wholesalers**: Refiners (typically large oil companies) distribute directly to their own retail outlets in all regions, and in some areas may also distribute directly to independent branded and unbranded retailers (competing with other suppliers in the unbranded market).

• **Area Franchisees**: Otherwise known as “jobbers,” these firms obtain the right from oil companies to franchise a brand of motor fuel in a particular area. Jobbers are responsible for siting and building new facilities and marketing the brand, which further removes refiners from operating activities. The term is also used to describe wholesale distributors of motor fuels that offer multiple brands.

While some regions have significant competition among distributors, the market power of refiners and the contract structure of many retailers means that retailers in general have little control over the price of their fuel supply. As a consequence, any cost increases must be absorbed by retailers or passed through to customers.

Demand-side Characteristics: Consumer Response to Price Increases

Consumer reactions to price changes are critical in determining whether a producer (i.e., retailer) can pass on costs. The degree to which consumers change the quantity they consume when the price of a good increases is known as the price elasticity of demand. Economists define demand as inelastic if the quantity demanded changes less than price (e.g., quantity demanded changes by one percent when prices rise (or fall) by 1.4 percent). Similarly, demand is said to be elastic if quantity demanded changes proportionally more for a relative change in price.

Motor fuel retailers rely on sales of gasoline for most revenues, though most also sell other automobile-related or convenience products. Research has documented that broad (national) market demand for gasoline is relatively price-inelastic in the short-run: consumers do not make immediate, significant changes in gasoline purchases if prices increase. On its face, this dynamic would suggest that a retailer could pass through any cost increases to consumers. However, the structure of the market for gasoline prohibits significant price fluctuations at the facility level. While national demand is relatively consistent, consumers are highly sensitive to price differences within local markets. Small increases in price at one location can produce relatively large changes in quantity demanded for a particular facility as consumers seek other local retailers with lower costs.

13 Other suppliers, e.g. for convenience store items, may be easier with which to negotiate but may not be available to all motor fuel retailers.

A recent National Association of Convenience Stores (NACS) survey provides insights into the price pressures faced by local retailers:\(^\text{16}\)

- 73 percent of respondents stated that price was the most important factor in their gasoline-purchasing choices.
- 32 percent stated that they would take the time to make a left turn on a busy street to save a penny per gallon of gasoline.
- 20 percent said they would drive ten minutes out of their way (a 20-minute round trip plus cost of fuel) to save two cents per gallon. This amounts to savings of less than one dollar in terms of fuel for nearly all passenger vehicles on the road today.

Local competition for price-sensitive customers discourages retailers from increasing gasoline prices, except in cases such as wholesale price increases or tax increases where changes are uniform across facilities.\(^\text{17}\) Because compliance costs may vary by facility depending on existing technology and practice, it is not likely that retailers will opt to pass through compliance costs by raising gasoline prices. While retailers may be able to increase the prices of other products (e.g., motor oil or convenience store products), it is also likely that some retailers will be forced to absorb some or all of the costs associated with the regulation.

Retailers in relative isolation may be better positioned to pass on increases in cost to consumers. Research shows that store-level pricing is sensitive to the concentration of competition. In areas where motor fuel retailers are relatively sparse, facilities may be better able to pass cost increases on to consumers, for whom the opportunity cost of finding an alternative store is higher when they must travel farther.\(^\text{18}\)

However, because consumers are especially price sensitive about gasoline and it is not clear what other options owners or operators have to increase prices, we assume that owners or operators will likely bear the economic impacts of the rule. We therefore examine producer impacts, including the possibility that some facilities may close due to cost increases.\(^\text{19}\)

\(^\text{17}\) This may vary, depending on the region. For example, in Vancouver, gasoline prices are uniform and rigid (due to tacit collusion among wholesalers), while prices in Ottawa are dispersed and volatile (due to the price-disrupting behavior of “maverick” firms). See Eckert, Andrew and Douglas S. West, “A tale of two cities: Price uniformity and price volatility in gasoline retailing,” 2003, The Annals of Regional Science 38:25–46.

\(^\text{19}\) A more detailed analysis of consumer impacts is prohibitively difficult for two reasons. First, the precise set of goods and services whose prices may increase is difficult to characterize. Second, gasoline aside, the main draw to products sold at retail motor fuel facilities is convenience, i.e., ease of access. Most non-fuel products can be purchased for lower prices at grocery stores, for example. Consumers can therefore shop at other types of
5.2.3 Assessment of Market Exits and Employment Impacts

In a market setting where producers cannot reliably pass through costs, the most significant economic impacts are related to reduced facility profits. In some cases, managers can cut supply or employment costs (this could result in smaller worker paychecks). In cases where costs exceed facility profits, it is likely that in the long term a facility would exit the market. A critical factor, therefore, is an estimate of average firm or facility profits.

It is difficult to estimate the profitability of retail motor fuel stations because many are small and privately held and are not required to report profits publicly. However, some evidence suggests that profit margins are below five percent, and data suggest that average after-tax profit margins reported to the IRS for gas stations are roughly 1.5 percent. Holding all other things equal, an annual cost greater than 1.5 percent of gross sales (i.e., a cost greater than $1,500 for a firm earning $100,000 a year) would exceed average reported profits and would therefore cause a motor fuel retailer to operate at a loss. If the facility cannot adjust its prices or lower costs, it will eventually exit the market.

Consistent with the assessment of small business impacts in Section 5.4 of this chapter, EPA considers the impact of the proposed rule on small facilities in order to identify the most likely facilities to exit the market. Assuming that all motor retail facilities, regardless of income, have an “average” configuration of approximately three tanks, EPA calculates the average total cost per facility to be $892 under the Preferred Option (reflecting a cost of approximately $300 per UST system). Using data from the 2002 Economic Census and the regulatory flexibility screening analysis methodology, EPA concludes that a facility-level cost of $892 would exceed 1.5 percent facilities for the same goods, but typically opt to pay a premium for purchases at a convenient location. Note that, even though consumers will be able to purchase equivalent goods at different locations, there is a reduction in consumer surplus associated with the loss of convenience in the purchase.

20 For corporations reporting net income, profit margins before non-cash items (depreciation and amortization) and income tax (or credits) were approximately 1.8 percent. Earnings before depreciation and amortization account for the fact that firms can postpone capital expenditures to save cash, and would likely do so while adapting to higher costs. If non-cash items and taxes are included, earnings drop to roughly one percent. Our approach averages of the two options, reflecting an assumption that firms will do something to adapt to higher costs while they sort out how to adjust prices, and that firms typically minimize profits reported to the IRS. See SOI TaxStats, Table 7: Corporation Returns with Net Income for 2007, accessed at http://www.irs.gov/taxstats/article/0,,id=170693,00.html. See also 2002 - 2010 RMA Statement Studies, Sector 447, for a range of profitability data from facilities of different sizes.

21 Throughout this chapter, EPA refers interchangeably to reductions in net profit and the proportion of revenues that the costs of the proposed rule will create. In both cases, we refer to the impact of the cost of the proposed rule on the profitability of a facility.

22 Specifically, we assume 2.97 UST systems per facility.

23 Under Alternative 1 the average retail motor fuel facility cost would be $1,801, and under Alternative 2 it would be $613. In Indian country, where facilities are required to meet more requirements than elsewhere; average cost per facility is $2,364 under the Preferred Option, $3,333 under Alternative 1, and $1,999 under Alternative 2.
of total reported revenues (i.e., be equal to or greater than total profits) for 561 firms, representing less than one percent of the universe of motor fuel retail facilities. In comparison, approximately 2,400 facilities per year closed over the period between 2005 and 2008. In some cases, any exits related to regulatory costs may coincide with exits that would have occurred in the baseline. Furthermore, it is likely that many of the affected facilities will also have options to pass through at least a portion of costs, and many small facilities may have fewer than three UST systems. Therefore, EPA concludes that the market impacts associated with this proposed rule are likely to be diffuse and minimal, assuming a relatively uniform distribution of costs nationwide.

Sensitivity Analysis

EPA’s finding of minimal market impacts rests on an assessment of “average” facilities with “average” rule-related costs. If the costs of the proposed rule are concentrated on certain facilities, it is possible that additional impacts (e.g., market exits) could occur. EPA therefore employs several sensitivity analyses to consider alternative, “worst case” distributions of regulatory costs across facilities.

To examine the extent to which the distribution of regulatory costs can be “concentrated” on specific facilities, EPA constructs a “worst case distribution” in which regulatory costs are concentrated on a subset of facilities. To obtain this distribution, we artificially assign costs to create the largest cost for the largest number of facilities, by assuming that the same facilities in

24 An analogous statement of this outcome is that all facilities with revenues below approximately $59,500 per year would incur new costs equal to or in excess of profits of 1.5 percent of total revenue. Note that U.S. Census data indicate that all firms in the motor fuel sector that earn less than $59,500 are single-location firms.

26 There is a significant discrepancy between the number of establishments reported by the 2007 Economic Census by the U.S. Census Bureau and the 2008 station count published by National Petroleum News. The Census reported 118,756 stations operating in any capacity, while NPN counted 161,768 stations. EPA contacted the Census Bureau, which offered three possible reasons for this discrepancy. First, grocery stores with gas stations and wholesale truck stops with gas stations may be categorized under grocery stores or wholesale retail instead of gas stations. Second, the count reported by the Census excludes non-employer establishments (10,131), which are family-owned and only employ family members. Third, for those establishments that do not report back to the Census regularly, the Bureau is not likely to record changes in establishments that have happened at the location (personal communication with the Office of Underground Storage Tanks, November 3, 2010). NPN likely provides a more accurate reflection of the number of stations because it is an industry publication specific to the petroleum sector.

27 Ideally, EPA would evaluate which facilities are likely to incur significant impacts by examining the specific changes each will be required to make to achieve compliance. These costs would be compared with the facility’s revenue and profit margin to establish whether it can incur the additional costs and remain in business. To EPA’s knowledge, no data of this resolution are available for the large population of facilities with UST systems.
the state make every regulatory change. We further assume that the smallest facilities in the U.S. are the facilities that bear the highest cost.

Exhibit 5-1 displays the universe of retail motor fuel UST facilities in the United States when costs are allocated to concentrate impacts. This creates an allocation of costs that varies broadly, from as little as $30 to just over $3,400 per facility.

28 For example, consider a state with 1,000 UST facilities that will be subject to three hypothetical technical requirements: Requirement A will affect 500 facilities and cost $50 per facility; Requirement B will affect 250 facilities and cost $100 per facility; and Requirement C will affect 100 facilities and cost $200 per facility. The average cost for all of these facilities is $70 ((50*500) + (250*100) + (100*200))/1000). However, the highest cost possible in this state is $350 (costs of $50 from Requirement A, $100 from Requirement B, and $200 from Requirement C), and the largest number of facilities that could incur this cost is 100 (the smallest of the universes affected by Requirements A, B, or C). The next highest cost is $150 (costs of $100 from Requirement B and $50 from Requirement A), which affect 150 facilities, excluding those also affected by Requirement C. The last group would be affected only by Requirement C, with 250 facilities at a cost of $50 per facility. Such an allocation of costs creates an unlikely outcome with a high potential for market exits. Appendix K provides the detailed summary of this threshold calculation.

29 EPA also examined a sensitivity analysis that would specifically consider the effects of "front-loading" capital cost requirements, but this scenario would have no effect on the results of the "worst case" sensitivity analysis. The "worst case" scenario examined here already assumes simultaneous implementation of all requirements under the proposed rule, including several that actually have delayed implementation schedule (e.g., interstitial integrity tests). In addition, the analysis includes annualized costs for capital requirements for Indian country systems (e.g., secondary containment). The “worst case” scenario does not address the replacement of closure of lined tanks that cannot be repaired according to a code of practice, and does not assume that full capital costs are incurred in a single year for affected tanks, but the facilities that would be affected by these changes are already among the highest cost facilities identified, and are already therefore included in the number of facilities potentially affected under this worst-case assumption.
One possible concern is whether facilities that are likely to face high costs are geographically concentrated in certain states or regions. To assess this, we examined the distribution of the five percent of facilities incurring the highest costs if costs were concentrated (specifically, 8,135 facilities incurring costs greater than $1,800). The proportion of highest-cost facilities does not vary substantially by state. The highest concentration of high-cost facilities would be 6.4 percent (in Guam); 53 of the remaining 56 states and territories (accounting for 91 percent of retail motor fuel facilities) have roughly 5.0 percent to 6.5 percent of their facilities with this cost (OR, CA, and MS have fewer than four percent high-cost facilities). Differential economic impacts across states are not likely to occur as a result of disproportionate state-level impacts from this rule, even in a scenario of maximum concentration of costs across the fewest firms.

To assess economic impacts in this worst case scenario, EPA pairs the distributions of facility size and costs to identify situations in which estimated costs would exceed 1.5 percent of gross sales (the average reported retail motor fuel facility profit). Facilities with costs exceeding 1.5 percent of revenues may face a significant economic impact under worst case assumptions.
Market Exits

Even under the adverse scenario presented above, economic impacts to affected entities are relatively small. The least compliant facilities in the least regulated states would incur costs of $3,415 in the worst case. This represents less than 1.5 percent of revenues for facilities earning more than $228,000 per year. To assess the worst-case potential impact, EPA assumed that the facilities with the highest costs (those in the right-hand tail of the distribution in Exhibit 5-1) are also the facilities with the lowest revenues and allocated costs to those facilities to maximize the number of potential exits. EPA estimates that 6,100 facilities earning less than $250,000 per year in the U.S. (in 2002 dollars) would be subject to costs exceeding 1.5 percent of revenues in the worst case scenario. To the extent that those facilities could not increase prices to offset higher costs, it is likely that at least some of them would exit the market. If all of these facilities exited the market, the closures would constitute roughly four percent of existing facilities. Note that this scenario relies on a highly unlikely confluence of assumptions, including:

- **All facilities with income less than $250,000 have average configurations of three UST systems.** In fact, it is likely that small facilities have fewer than three tanks and would therefore not be subject to the facility-level costs estimated here. It is likely that the smallest facilities also operate only a single UST system, which would reduce their compliance costs by approximately 67 percent. Under such circumstances, most small operators would not be subject to a significant economic impact even in the worst-case scenario.

- **No facility has any option to increase prices on goods or services or to identify options for savings.** While gasoline prices are unlikely to rise in response to this proposed rule, consumers may be willing to pay marginal cost increases on other products and services. Moreover, in remote rural areas, retailers may be able to directly pass costs on to consumers.

30 Facility costs of roughly $3,400 or less are representative of approximately 99 percent of worst-case, high-end cost outcomes. Facilities in Indian country are the only exception, as they will also be required to comply with additional regulations for operator training and secondary containment. Because this group of facilities represents only roughly one percent of facilities with costs at or above $3,400, we do not present them as the main highest-cost scenario.

31 The U.S. Census identified 5,142 facilities that earned less than $250,000 in 2002. For the purposes of its SBA analysis, EPA revised this estimate upward by 46 percent to reconcile disparities between Census gas stations counts from 2002 and NACS gas station counts from 2008. Of the estimated 7,520 facilities earning less than $250,000 per year in 2002, we arrayed the highest cost facilities with the highest revenue facilities, to ensure an estimate of as many exits as possible. See Appendix K for a detailed explanation of our methods.

32 According to the 2009 NACS Convenience Store Industry Fact Book, the average motor fuel retailing facility has monthly throughput of approximately 118,500 gallons. As discussed in Chapter 2, we believe that the average motor fuel retailer operates approximately 3 UST systems. This equates to roughly 39,500 gallons of monthly throughput per system. In addition, based on information from a mid-size retail fuel marketer, EPA believes that a facility requires a minimum throughput of approximately 30,000 gallons per month to remain economically viable, which equates to upward of $50,000 in revenues per month given gasoline prices in excess of $2.00 since 2005. See http://www.eia.gov/dnav/pet/pet_pri_gnd_a_epmr_pte_dpgal_a.htm.
• **A profit margin of 1.5 percent is standard.** Companies have a clear incentive to minimize taxable profits when filing income taxes with the IRS. Because net income (profit) is taxable, corporations that are not publicly traded typically take legitimate steps (e.g., year-end investments in equipment, employee bonuses) to reduce both net income and tax burdens. As a result, a 1.5 percent after-tax profit estimate based on IRS data is likely to understate average profitability.

Finally, this analysis does not adjust the Census data on facility revenues for inflation, though costs are presented in 2008 dollars. Due to the variability of gasoline pricing, we adopt a conservative assumption that revenues have remained static in nominal terms since 2002.

While our sensitivity analysis suggests that just over 6,100 facilities may be at risk of significant economic impacts in a worst case scenario, it is unlikely that a significant number of actual market exits would result from the proposed regulation. A plausible exception to this finding exists in cases where a facility with high upgrade costs faces high levels of local competition. Even in these cases, closures would likely be consistent with the recent rate of industry consolidation of 1.4 percent per year.

Price Impacts

The high sensitivity of local demand to changes in retail motor fuel prices makes it unlikely that firms will react to the proposed rule by raising gasoline prices. However, the cost of other goods and services could potentially increase as firms seek to offset regulatory costs through sales of other products. Retailers will likely increase the prices of goods that are relatively price inelastic, such as tobacco products, auto service charges, or snack food and other convenience items.

Employment Impacts

The increased operating costs incurred by facilities to comply with this proposed rule may result in very slightly increased prices for their goods and services, as previously discussed. These potential price increases may result in reduced demand and thus reduced output of the facilities' goods and services. This could translate into lower demand for labor, a result commonly referred to as the demand effect. As discussed earlier, the price effect is expected to be small though, and given the relatively inelastic demand for gasoline, the demand effect is likely to be small as well. There is also the potential for the proposed rule to result in a small number of facilities exiting the market, which could result in a temporary negative employment effect as these workers look for other positions. However, as noted earlier and in the next section below, these exits may coincide with exits that would already occur in the baseline. In addition, given the competitive nature of the retail motor fuel sector and the similar regulatory costs faced by each facility, many of these facilities may be able to pass through at least a portion

33 See footnote 25.
of these costs (see Price Impacts section above).\(^{34}\) As a result, the potential employment effect of market exits from the proposed rule is likely small.

Furthermore, some of the requirements of the proposed rule may have a positive impact on employment. For example, walkthrough inspections require labor as a primary input which may lead to small increases in employment at regulated facilities.\(^ {35}\) In addition, the increased demand for testing services and training under the proposed rule may also lead to increased demand for labor. Since the proposed rule could potentially affect the demand for labor both positively and negatively, the overall direction of net employment impacts is unclear, but is most likely very small relative to the size of the industry.

Long-run Economic Impacts

The proposed rule is unlikely to generate substantial additional impacts in the long run, but in a worst-case scenario it could accelerate ongoing consolidation trends in the retail motor fuel sector if market exits result. NPN reports that 168,987 motor fuel stations operated in the United States in 2005. By 2008, this number had fallen to 161,768, a decrease of 4.3 percent compared with 2005, or approximately 1.4 percent per year.\(^ {36}\) While broader market consolidation is related to ownership strategies among oil companies and general economic patterns, facilities facing significant periodic costs (e.g. UST system replacement) may be most likely to close. Similarly, facilities with higher operating costs as a result of the rule may opt to close. In such cases, exits caused by the rule are likely to affect the most marginal firms and would likely coincide to some extent with exits that would have occurred in the absence of the proposed rule. These closures will occur in the context of the national decline in the number of facilities, such that the rule is unlikely to cause a significant number of closures beyond those that will occur as part of the existing trend.

5.2.4 Assessment of Public Sector Cost Savings Related to Avoided Releases

A significant positive effect of the proposed rule derives from its impact on state funds created for the purpose of providing a financial responsibility mechanism to UST owners and operators. Among 56 state and territory governments, 43 have an existing fund created for the purpose of remediating releases; of these, 36 are active and continue to accept claims.\(^ {37}\) In many of these states, owners and operators are required to pay for a portion of remedial actions through

\(^{34}\) Note that small marginal facilities are also likely to have fewer than three UST systems and thus face lower than average facility-level compliance costs.

\(^{35}\) For example, EPA estimates that monthly walkthrough inspections of a facility will take nearly an hour to complete, on average. A compliant owner or operator in a state that does not currently have this requirement will need to allocate 12 man-hours of incremental effort per year to satisfy this portion of the proposed rule.

\(^{36}\) See footnote 25.

deductibles that generally range from zero to $100,000. Given an average cost of remediation of $127,216 in 2009, however, state funds are frequently required to finance some portion of remediation costs. These state funds are created by state legislation and must be submitted to EPA for approval before they can be used as financial responsibility mechanisms. In most cases, states generate money for their funds by levying tank registration and petroleum fees, which are then used to provide payments for remediation of releases beyond the deductibles paid by responsible parties. In states where funds rely on gas taxes and accept claims related to releases, these expenditures represent subsidies from the public to owners or operators responsible for releases.

The extent to which the proposed regulations reduce the occurrence of new releases produces two welcome effects:

- **Assignment of costs.** Fewer releases implies lower expenditures from state funds. This represents a reduction in this public subsidy and a reassignment of costs from the public remediation costs to private entity prevention costs. This improves market signaling and efficiency by requiring owners and operators to focus on release prevention.

- **Competitive effects.** High-performing owners or operators are less likely to incur significant regulatory costs than low-performing owners or operators. As a result, the regulatory costs and cost savings improve the alignment of incentives to focus on private-sector prevention costs and reduce public-sector remediation costs.

To illustrate the potential magnitude of the public expenditures that could be affected by the regulation (i.e., distributional effects), we examine states that have active state funds and categorize them into those that finance their funds via petroleum and tank fees (“Tier 1”), or via only a tank fee (“Tier 2”).

We assume that states that are required to comply with a larger number of the new requirements will experience a greater reduction of releases, all other things equal. To estimate the distribution of avoided releases, we calculate the average number of requirements with which

39 Association of State and Territorial Solid Waste Management Officials, *State Fund Survey Results 2009*, Summary of State Fund Survey Results, accessed at: http://astswmo.org/files/publications/tanks/2009StateFundSurvey/2009-Summary.pdf. For example, representatives of the state of New Hampshire indicated that in most cases, the State Fund incurs remediation costs, except that the owner or operator typically bears the cost of immediately stopping the leak. In addition, New Hampshire indicated the owner or operator typically pays a $5,000 deductible towards the final remediation cost, and in New Mexico, the owner or operator typically pays a deductible between $0 and $10,000.

40 States with active financial assurance funds can be found at http://www.epa.gov/OUST/states/findstatus.htm
the systems in each state will need to comply. We assign avoided releases based on both the number of systems in a state and the average number of requirements on each system, and we value releases based on the national profile of avoided releases and avoided groundwater incidents. Using ASTSWMO data, we subtract from our estimate of the potential cost borne by the public the deductible that owners or operators would be expected to pay. See Appendix N for a discussion of the methodology used.

Exhibit 5-2 presents the results of our screening-level assessment. Among the 36 states with active state funds that fall into Tier 1 or Tier 2, we find that the potential reduction in public expenditures could reach $191 million to $431 under the Preferred Option, with $150 million to $338 million in Tier 1 and $41 million to $94 million in Tier 2. Reductions in public expenditures would equal approximately $198 million to $457 million under Alternative 1 and $80 million to $340 million under Alternative 2. These savings would be slightly lower in a scenario where deductibles are in the upper end of their ranges. We note that, to realize the savings in public expenditures, state government action would be required to lower petroleum fees. Alternatively, the extent that funds are not constrained in their use, a redistribution of funds (e.g., to backlog sites awaiting cleanup) could also represent a significant public benefit. The values presented in this table do not reflect discounting to account for regulatory compliance schedules.

Note that this screening-level analysis is intended only to identify the potential magnitude of impacts on state fund liabilities. A more detailed analysis of specific state program costs and the likely distribution of avoided releases would be necessary to precisely measure potential savings. Overall, the values in Exhibit 5-2 suggest that requiring owners and operators to focus on prevention reduces costs to state financial assurance funds by over $150 million under the Preferred Option and Alternative 1 and upward of $50 million for Alternative 2.

41 We use the number of times a system is affected rather than the actual number of systems affected because we lack the data to determine which units are affected by each requirement. For example, if two requirements each affect 1,000 and 500 units, respectively, they may ultimately affect between 1,000 and 1,500 units, depending upon whether any overlap exists among the two regulated universes.

42 We calculate this as avoided costs due to avoided releases divided by number of releases avoided. The procedure is similar for avoided groundwater remediation costs.

43 We rely on the ASTSWMO Fund Survey Results 2008 for the data that underlie our construction of tiers. These data are available at http://www.astswmo.org/publications_tanks.htm.

44 Due to our calculation methods, two states with very high deductibles (Minnesota and Virginia) showed deductible amounts and avoided releases that exceed their estimated avoided release costs. We exclude them from our calculations, such that our estimates for likely underestimate the potential for redistributive effects.
5.2.5 Economic Impact Summary

This set of analyses shows that it is unlikely that the proposed rule will have substantial negative economic impacts on the regulated community, in part because the costs of the rule appear to be evenly distributed across a large population of facilities, and remain modest at the facility level. Even under a highly improbable worst case scenario in which the highest costs are incurred by the smallest facilities, roughly four percent of the universe of retail motor fuel facilities would potentially incur costs greater than publicly reported industry average profit margins. Market exits of roughly 2,400 facilities annually represent the current market trend. It is likely, therefore, that most or all market exits under this proposed rule would coincide with exits of specific out-of-date facilities that are on the brink of exiting, and would not create a significant additional contraction of the total market.

A more likely response by many affected firms will be to adapt by increasing prices on higher margin products and services. While overall employment impacts are unclear, it is possible that there may be an increase in labor demand due to the additional requirements placed on owners and operators, and additional demand for third-party testing services.

In addition, it appears that the proposed rule could have a positive impact on state governments that currently fund a portion of UST-related remediation costs through gasoline taxes and fees. A decrease in the number and severity of releases represents cost savings to states due to decreased demand on state financial assurance funds. Our initial screening assessment suggests that annual costs to states could be reduced by over $150 million. This represents a reduction in a public subsidy and an improvement in market signaling.

5.3 Energy Impact Analysis

Executive Order 13211, "Actions Concerning Regulations that Affect Energy Supply, Distribution, or Use" (May 18, 2001), addresses the need for regulators to consider the potential energy impacts of the proposed rule and resulting actions. Under Executive Order 13211, agencies are required to prepare a Statement of Energy Effects when a regulatory action may
have significant adverse effects on energy supply, distribution, or use, including impacts on price and foreign supplies. Additionally, the requirements obligate agencies to consider reasonable alternatives to regulatory actions with adverse effects and the impacts that such alternatives might have on energy supply, distribution, or use.

The proposed rule affects underground storage tanks used in the storage of motor fuel or emergency generator fuel. However, it is not likely that this proposed rule will have significant impacts on energy supply, distribution, or use. To assess the energy impacts of the proposed rule, EPA considers potential changes in energy supply and use associated with the total costs estimated in Chapter 3. The following summarizes EPA’s assessment of the energy impacts that the proposed rule will have in energy supply, distribution, and use.

Energy Supply and Distribution

The proposed rule consists of additional regulatory requirements that apply to the owners and operators of underground storage tanks. To the extent that the proposed rule affects the motor fuel sector, it does so at the retail motor fuel sales level, rather than the level of refineries or distributors who supply the retail stations with motor fuel. Correspondingly, we do not expect the proposed rule to have any impacts on energy supply or distribution.

In terms of local motor fuel availability, we believe two outcomes are possible. If a motor fuel station is located in an area where competition from other stations exists, we do not believe fuel prices will be affected. Rather, owners and operators will seek to recover the costs of the proposed rule by increasing the prices of convenience items. If a station does not also operate a convenience store through which it can recover these costs, it may become subject to a significant economic impact and exit the market. In such a case, however, supply will not be disrupted, as other competitors fill the void left by the former market participant.

We do not expect market exits to occur in low-competition environments due to the market power of stations and the marginal nature of the increase in cost. If a motor fuel station is located in an area where competition is not intense (e.g., a rural setting), it may opt to directly pass on higher costs through increases in fuel or convenience goods prices. As we discuss below, even if the entire cost of the rule is priced through to consumers, the change in fuel prices is not likely to be measurable.
Energy Use

The additional regulatory requirements contained in the proposed rule may increase compliance costs for owners and operators of retail motor fuel stations. If the owners and operators of retail motor fuel stations affected by the proposed rule can successfully pass through their increased compliance costs, energy use may be affected through higher energy prices caused by the proposed rule. However, we do not expect a significant change in retail gasoline prices to result from this proposed rule for the follow reasons:

- Economic analyses of retail fuel prices have revealed that demand for gasoline is highly sensitive to price (elastic) within localized geographic areas.

- As a result, if one motor fuel retailer in an area passes through increases in compliance costs by increasing gasoline prices, while another does not, the one with higher prices is at a significant competitive disadvantage.

- Retail motor fuel stations often have associated stores and/or services, such as car washes, repair operations, and convenience outlets, on which they can more successfully pass through increases in compliance costs.

When considered in the context of total fuel consumption in the United States, the proposed rule would represent only a very small fraction of motor fuel prices even if it was fully passed through to consumers. According to the Bureau of Transportation Statistics, the United States consumed 170,765,000,000 gallons of motor fuel (including gasoline and diesel) in 2008 at an average price of $3.27. This implies that U.S. consumers spent $558 billion in 2008 on motor fuel. The overall cost of the proposed rule is roughly $210 million, less than one-tenth of one percent of the amount spent by end-users on motor fuel in 2008. In comparison, an increase of $0.01 in the average price of motor fuel in 2008 would have increased the total cost to consumers by approximately $1.7 billion. Given these circumstances, the proposed rule should not have a measurable impact on retail prices.

5.4 Regulatory Flexibility Analysis

The Regulatory Flexibility Act (RFA) as amended by the Small Business Regulatory Enforcement Fairness Act of 1996 (SBREFA), 5 USC 601 et seq., generally requires EPA to prepare a regulatory flexibility analysis of any rule subject to notice and comment rulemaking requirements under the Administrative Procedure Act or any other statute. This analysis must be completed unless the agency certifies that the rule will not have a significant economic impact on a substantial number of small entities. If a regulation is found to have a significant impact on a

45 The 2008 prices per gallon for all grades of retail motor gasoline and No. 2 diesel fuel (all concentrations of sulfur) were $3.32 and $3.15, respectively, as reported by the Bureau of Transportation Statistics in Table 3-8: Sales Price of Transportation Fuel to End-Users in National Transportation Statistics 2010 (at http://www.bts.gov/publications/national_transportation_statistics/pdf/entire.pdf). We weight these prices according to prime supplier sales volumes in 2009 published by the Energy Information Administration, which summed to 362,798.5 thousands of gallons per day for gasoline and 132,489.3 thousands of gallons per day for all grades of diesel fuel (at http://www.eia.gov/dnav/pet/pet_cons_prim_dcu_nus_a.htm).
substantial number of small entities, further analysis must be performed to determine what can be done to lessen the impact. Small entities include small businesses, small organizations, and small governmental jurisdictions. EPA developed a screening analysis and supplemental analysis consistent with the requirements under RFA; this section presents a summary of these findings, and Appendix L provides the detailed screening analysis.46

For purposes of assessing the impacts of this rule on small entities, a small entity is defined as: (1) a small business as defined by the Small Business Administration’s (SBA) regulations at 13 CFR Part 121.201; (2) a small governmental jurisdiction that is a government of a city, county, town, school district or special district with a population of less than 50,000; and (3) a small organization that is any not-for-profit enterprise which is independently owned and operated and is not dominant in its field. For the purposes of this analysis, EPA considered costs in excess of one percent and three percent of revenues as indications that the proposed rule may have a significant impact on a given small entity, and estimates of greater than 20 percent of total small firms or 1,000 total small firms affected as indications that a substantial number of small entities may be affected by the proposed rule.

5.4.1 Small Business Screening Analysis

We estimate that there are approximately 83,900 firms operating 162,000 facilities in the U.S. retail motor fuel sales sector.47 This analysis assumes that all retail motor fuels firms operate underground storage tanks (UST systems) at all of their facilities. Based on the distribution of firms across revenue categories published by the 2002 Census, and SBA’s revenue thresholds for NAICS 447110 and 447190, approximately 82,500 (98 percent) of these firms meet SBA’s definition of a small entity.48 Approximately 7,520 of these firms report revenues between $0 and $250,000 (the smallest revenue range published by the 2002 Census), with average sales of approximately $149,000.49

46 This section focuses on the retail motor fuel sector. As discussed in Appendix L, EPA’s screening assessment indicates that the proposed rule will not have a significant impact on a substantial number of small entities (SISNOSE) across all affected sectors. However, because 80 percent of all UST systems are in the retail motor fuel sector, we refined the screening assessment to further examine the potential impacts of the proposed rule on this sector.

47 NAICS code 447 is comprised of 447110 (Gasoline stations with convenience stores) and 447190 (Other gasoline stations). To reconcile differing estimates of the number of retail fuel facilities (roughly 162,000 estimated by NPN, and 110,600 estimated by the Census), a 1.46 adjustment factor was applied to the Census data to inflate the number of retail motor fuel facilities to 162,000, distributed proportionately across revenue ranges. This approach preserves the distribution of firms by size according to Census data. As a result of this approach, we estimate that there are a total of approximately 83,900 firms and 481,000 tanks in the retail motor fuel sector.

48 For 447110, the SBA revenue threshold is $27 million; for 447190, the SBA revenue threshold is $9 million. To ensure that we do not underestimate the number of small entities, we assume that all firms within a revenue bin that contains a specific SBA revenue threshold value are small. For example, if the SBA small business size threshold for a sector is $7 million, we assume that all firms in the revenue range of $5 to $10 million are small.

49 Note that for simplicity we identify size categories in this document as described by the 2002 Census (e.g., revenues up to $250,000 in 2002 dollars), and identify compliance costs in 2008 dollars. However, in the actual screening analysis, compliance costs have been adjusted from 2008 dollars to 2002 dollars using the GDP implicit deflator. The estimated compliance cost is $300 per system in 2008 dollars, or $255 per tank in 2002.
To determine whether firms reporting revenues within a given revenue range would incur costs exceeding one percent or three percent of total revenue, EPA compares the average total compliance cost per firm with the average revenue reported by firms in the revenue range. Based on a compliance cost per system of $300 (in 2008 dollars), and assuming that firms in the smallest revenue range own one facility with three UST systems, we estimate that the 7,520 small firms in the $0-$250,000 revenue range would face total compliance costs of $892 per firm (or $757 in 2002 dollars).\footnote{Census data on number of facilities per firm indicate that virtually all firms earning less than $250,000 per year in 2002 had only one facility. We therefore use “firm” and “facility” interchangeably in this context.} Any firm with annual revenues above approximately $75,700 (in 2002 dollars) (i.e., the revenue threshold at which compliance costs would exceed one percent of the firm’s revenue) is not expected to experience a significant impact. The average revenue for the 7,520 firms in the $0-$250,000 revenue bin is $149,000, suggesting that on average, firms in this category will not experience significant impacts due to estimated compliance costs.

However, because the lowest range reported by the U.S. Census reflects a distribution of firms with revenues between $0 and $250,000, it is still possible that some of the 7,520 firms in this category may be significantly affected. As mentioned above, EPA also considered estimates of greater than 20 percent of total small firms or 1,000 total small firms affected as indications that a substantial number of small entities may be affected by the proposed rule. While the 7,520 small firms in the lowest revenue range represent only nine percent of all potentially affected small firms, EPA conducted a supplemental analysis that focuses on this group of small firms in an attempt to refine the estimated number of small firms potentially affected by the proposed rule.

\subsection*{5.4.2 Small Business Supplemental Analysis}

The purpose of this supplemental analysis is to refine the results of the small business screening analysis. The Census Bureau provided additional data on firms in the lowest revenue bins for NAICS sectors 447110 (gasoline stations with convenience stores) and 447190 (other gasoline stations), identifying the percentage of firms with revenues in three ranges: (1) $0-$50,000; (2) $50,000-$150,000; and (3) $150,000-$250,000.\footnote{The information provided by the U.S. Census Bureau is considered an “unpublished data request.” As such, while the Census Bureau provided the data we requested, they also included a letter noting that “these are not ‘official data’ from the Census Bureau, since they do not meet the Census Bureau’s quality standards. These data should be used with extreme caution, realizing the severe quality limitations that may exist.” However, given that we do not have another source of information, we use this as the best data available.} Based on this information, we estimate the number of firms in the retail motor fuel sales sector (i.e., NAICS 447) for these three

\begin{itemize}
\item \textbf{50} Census data on number of facilities per firm indicate that virtually all firms earning less than $250,000 per year in 2002 had only one facility. We therefore use “firm” and “facility” interchangeably in this context.
\item \textbf{51} The information provided by the U.S. Census Bureau is considered an “unpublished data request.” As such, while the Census Bureau provided the data we requested, they also included a letter noting that “these are not ‘official data’ from the Census Bureau, since they do not meet the Census Bureau’s quality standards. These data should be used with extreme caution, realizing the severe quality limitations that may exist.” However, given that we do not have another source of information, we use this as the best data available.
\end{itemize}
revenue groups at approximately 550, 3,120, and 3,860, respectively and use these data to refine our estimate of the number of significantly affected facilities.\footnote{52}

Given compliance costs of $892 per firm ($757 in 2002 dollars), any firm making less than $75,700 and $30,000 would be considered significantly affected at the one percent and three percent revenue thresholds, respectively. EPA estimates that 1,348 firms are affected at the one percent threshold, and no firms are affected at the three percent threshold.

The number of firms that will be significantly affected at the one percent threshold exceeds the one thousand-firm substantial effect benchmark by 348 firms. However, it is likely that this proposed rule will have no SISNOSE for three reasons. First, 1,348 firms represent roughly one percent of potentially affected small firms, which is significantly lower than the 20 percent threshold (the other parameter considered in this analysis to determine a “substantial number”).\footnote{53} Second, although the U.S. Census Bureau reports several hundred facilities with annual revenues less that $100,000, market economics suggest that it would be difficult for a firm that relies solely on gasoline sales to be viable if earning less than $100,000 in annual revenues, suggesting that some of these facilities may not be standalone entities.\footnote{54} Finally, at least some of the smallest facilities are likely to have fewer than the three tanks used as a basis for facility-level costs. EPA thus finds that the proposed rule does not appear likely to have a significant economic impact on a substantial number of small businesses.

\section*{5.4.3 Impacts to Small Governments}

The 1992 Local Government Economic Impact Analysis provides the best readily-available data on the number of governments owning UST systems, total UST systems owned by governments, average UST systems per government, and UST systems per owning government. The data include size and revenue for both general purpose (i.e., counties, municipalities, and townships) and special district governments (i.e., school districts and other special districts), dividing these governments into four size categories: very large, large, medium and small. The 1992 analysis defines a “very large” government as one that serves over 50,000 people.

\footnote{52} The analysis interpolates between the lower and upper bounds of each range and assumes a uniform distribution of facilities within each range. The lowest revenue interval is bounded at $35,750, which EPA obtains from estimating the linear trend between the zero and $250,000 in revenues. The implicit assumption is that no facilities earn less than that level of revenue

\footnote{53} EPA estimates a total of roughly 116,000 small firms with USTs across all affected sectors; 1,348 is roughly 1.2 percent of these. In NAICS 447, the 1,348 affected facilities represent 1.6 percent of facilities.

\footnote{54} Assuming $2 per gallon in sales, a facility earning $100,000 would sell less than 4,200 gallons of gasoline per month, compared with the monthly industry average throughput of approximately 130,000 gallons. Based on information from a mid-size retail fuel marketer, EPA believes that a facility requires a minimum throughput of approximately 30,000 gallons per month to remain economically viable. In addition, a facility would need $108,000 to generate enough gross profit to cover the direct cost of the wages of one full-time employee at minimum wage ($15,080 at $7.25 per hour and 2080 hours, before accounting for employment taxes). This does not consider other costs, such as electricity, property taxes, or franchise fees. As a result, while the supplemental analysis indicates that 1,348 firms will face costs that exceed the one percent revenue threshold, it is not clear whether all of these facilities represent average motor fuel retailers with full scale operations, three UST systems, and no other income.
therefore, all other entities are considered to be small governmental jurisdictions according to the RFA/SBREFA definition. Using the data from the 1992 analysis, we estimate the number of small governments that own UST systems based on the total universe of UST systems today. See Appendix L for additional detail.

EPA assumes that local governments collectively own four percent of active tanks. This equates to 24,458 tanks, based on the fiscal year 2009 universe of 611,449 tanks. These 24,458 tanks are distributed among all local governments, based upon the percentage of tanks owned in 1992 by local governments in each size category (the average number of tanks owned by a government varies with the size of the government from one tank for small governments to 10 or more tanks for the largest governments).

EPA then calculates, using the 1992 data on government ownership of UST systems, the average compliance cost per government entity. This is done by multiplying the cost per tank by the number of UST systems per government by size category. The average annual revenue for each size of general purpose government is calculated using 2002 Census Data and weighted-average contributions that depend on type of entity (i.e., towns, municipalities, and counties). EPA extrapolates Census data on revenues for 4,128 townships to the 16,504 townships in the country. These weighted averages are combined to obtain annual revenues in 2002 dollars for general purpose governments, then inflated to 2008 dollars. Detailed information at the special district level is not available for later years, so budget expenditures from the 1992 analysis were inflated into 2008 dollars.

To calculate how many small governments face significant compliance costs exceeding one or three percent of their revenues, we compared the average compliance cost per government with the average annual revenues to determine how many exceed either threshold. At a cost of $300 (2008 dollars) per UST system, no small governments are affected under either the one percent or three percent revenue threshold (see Exhibit 5-3). Correspondingly, EPA does not find that the proposed rule has any significant impact on a substantial number of small governments.

\[55\] Estimates of local government UST systems adjusted from 1992 ICF Analysis using The 1987 Census of Governments. See “Economic Impact Analysis of Additional Mechanisms for Local Government Entities to Demonstrate Financial Responsibility for Underground Storage Tanks,” December 1992, Exhibit 3-1. Consistent with this analysis, the number of government UST systems is assumed to be one percent of all 2009 UST systems for state and federal governments and four percent of all 2009 UST systems for local governments.

\[56\] Typically, a RFA/SBREFA screening assessment uses revenues to assess economic impact measures for small governments. In the absence of detailed 2002 data, we use 1992 budget expenditures as a proxy for revenues.
Exhibit 5-3

<table>
<thead>
<tr>
<th>Type of Gov’t</th>
<th>Size of Gov’t</th>
<th>UST Systems Per Owning Gov’t</th>
<th>Number of Gov’ts Owning Tanks</th>
<th>2002 Est. Number of Gov’ts</th>
<th>Average Annual Revenue ($2008)</th>
<th>Average Cost Per Gov’t ($)</th>
<th>Gov’ts Exceeding 1% of Revenue</th>
<th>Gov’ts Exceeding 3% of Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Large</td>
<td>10.2</td>
<td>534</td>
<td>1,461</td>
<td>$316,129,836</td>
<td>$2,597</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>2.5</td>
<td>1,512</td>
<td>4,040</td>
<td>$35,687,794</td>
<td>$637</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>1.4</td>
<td>1,444</td>
<td>7,822</td>
<td>$8,712,804</td>
<td>$356</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>1.1</td>
<td>1,048</td>
<td>25,644</td>
<td>$1,779,216</td>
<td>$280</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>2.7</td>
<td>4,538</td>
<td>38,967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Purpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Large</td>
<td>3.7</td>
<td>336</td>
<td>934</td>
<td>$431,319,166</td>
<td>$942</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>3.6</td>
<td>1,902</td>
<td>5,340</td>
<td>$52,806,696</td>
<td>$917</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>1.4</td>
<td>2,648</td>
<td>13,602</td>
<td>$2,533,231</td>
<td>$356</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>1.0</td>
<td>258</td>
<td>28,682</td>
<td>$128,013</td>
<td>$255</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>2.4</td>
<td>5,144</td>
<td>48,558</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>2.5</td>
<td>9,682</td>
<td>87,525</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a General Purpose governments include counties, municipalities and townships. Special Purpose governments include public school systems and special districts.
b Very large governments are considered to serve more than 50,000 people. Large governments are considered to be those that serve between 10,000 and 50,000 people, medium governments as those that serve between 2,500 and 10,000 people, and small governments as those that serve 2,500 or fewer people. According to RFA/SBREFA, small governmental jurisdictions have populations under 50,000. Therefore, all sizes of governments except for “very large” are considered to be small.
c From 1992 Local Government Impact Analysis data.
d Calculated as number of tanks (adjusted 1992 distribution in each size category to reflect FY 2009 tank numbers) divided by UST systems per owning government (c).
e General purpose and Special Purpose total number of entities from 2002 Census of Governments, size distribution extrapolated from 1992 Local Government Impact Analysis data.
f General purpose estimates from 2002 Census of Governments; Special Purpose estimates inflated from 1992 Local Government Impact Analysis data.
g Calculated as number of systems per government (c) * estimated cost per tank ($255 in 2002$; $300 in 2008$).

5.5 Screening Analysis to Inform Impacts on Minority and Low-Income Populations

Executive Order 12898 (Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations) (59 FR 7629, Feb. 16, 1994) directs federal agencies, to the greatest extent practicable and permitted by law, to identify and address, as appropriate, disproportionately high and adverse human health or environmental effects of their programs, policies, and activities on minority populations and low-income populations in the United States.

To inform us about the socioeconomic characteristics of communities potentially affected by the rule, EPA conducted a screening analysis to examine whether there is a statistically significant disparity between socioeconomic characteristics of populations located near UST facilities and those that are not.\(^{57}\) The results indicate that minority and low-income populations

\(^{57}\) Note that the affected populations identified in the screening analysis summarized here are simply defined by specific demographics surrounding UST locations. These affected populations are not necessarily equivalent to communities that others have specifically identified as “environmental justice communities.”
are slightly more likely to be located near UST facilities. An environmental justice analysis would then require an assessment of whether there would be disproportionate and adverse impacts on these populations. However, because all regulatory options considered in this proposed rule would increase regulatory stringency and reduce the number and size of releases, EPA does not anticipate that the proposed rule will have any disproportionately high and adverse human health or environmental effects on these minority or low income communities, or on any community.

5.5.1 Risk Assessment Population Analysis

To characterize the extent of human health risk reductions anticipated under the proposed regulation, EPA conducted a screening-level analysis of the likely impact of the rule on benzene-related cancer incidence. This analysis used location data for nearly 60,000 U.S. gas stations with UST systems using an ESRI Business Analyst database, and examined populations within a buffer distance of 1,000 feet of facilities with UST systems. The ESRI gas station location data are supplemented with 1,600 UST systems in Indian country, based on location information compiled from EPA regional Indian country databases. After elimination of duplicates, the data set contains 59,945 UST facilities (including 727 in Indian country) (see Exhibit 5-4). The total data set represents over 25 percent of the roughly 220,000 active facilities with UST systems.58

To estimate populations near sample facilities, the analysis uses a “synthetic population” dataset developed by the Modeling of Infection Diseases Agents Study (MIDAS) to provide population estimates at a finer spatial resolution than Census blocks, while maintaining the accuracy of aggregate demographic data at the Census block group level. For more detail on this method, see Appendix M.

The modeled fate and transport of pollutants under a range of scenarios indicates that the contamination from UST releases do not typically exceed 1,000 feet.59 The risk assessment considered population density within 1,000 feet of each UST, and incorporated estimates of the use of groundwater for drinking and bathing, along with typical exposure scenarios, to characterize the change in population risk likely to be associated with the reduction of 2,821 releases and groundwater incidents (i.e., the total estimated number of avoided releases and groundwater incidents resulting from the proposed regulations). The risk assessment concluded that the proposed regulations will result in a very small reduction in population risk related to cancer from benzene exposure, based on the estimated number and volume of avoided releases and groundwater incidents.

58 2009 Methodology Statement: ESRI Data—Business Locations and Business Summary. ESRI, Redlands, CA. available at http://www.esri.com/library/whitepapers/pdfs/infousa-business-database.pdf. ESRI data are derived from an infoUSA database. The approach for compiling business data for this database is documented on the infoUSA website (http://www.infousa.com), and includes systematic compilation of public record, phone books, business directories, and includes frequent review for new, updated, and relocated businesses. While this methodology does not capture all locations, it is not differentially focused on any specific region or information source, and therefore likely represents a reasonable spatial distribution of facilities.

5.5.2 Demographic Analysis

The demographic analysis expands on the population data near the 59,945 gas stations in the risk assessment by characterizing demographic features of populations at each site and comparing these populations to larger (county-level) reference populations. Specifically, the analysis examines the following demographic variables: percent in poverty, percent minority, and, as a verification step, percent white alone (the percentage of the population that specified their race as “white” and did not specify “Hispanic”). The analysis also identifies percent under five years old, percent under 18 years old to support the analysis required under Executive Order 13045, “Protection of Children from Environmental Health Risks and Safety Risks” (see section 60 County-level statistics provide a useful comparative measure for the populations at the local facility level. Given that the area of interest is small (i.e., 1000 feet of a facility), the county-level provides an appropriate scale for comparison.
The analysis considers the significance of the “difference in means” and “difference in median” values for each census parameter and each community. That is, the analysis identifies the differences between mean and median concentrations of each demographic group for the affected and reference populations at each of the 59,945 sites, and examines whether the differences identified across all sites are statistically different from what would be expected in a random distribution.

The analysis considers the differences in demographics in two ways: unweighted (each site is given equal weight) and population weighted (results are weighted by affected persons, giving sites with larger populations more weight). A statistically significant positive difference indicates a greater percentage of target demographic in the affected population than in the larger reference population. A statistically significant negative difference indicates a smaller percentage of the target demographic in the affected population. Exhibit 5-5 provides the unweighted results of the analysis and generally finds that minority and low-income demographics constitute a slightly larger proportion of the population surrounding UST facilities. For example, poor populations account for 13.3 percent of the population near an UST, compared with 12.2 percent of the reference (county) population. As Exhibit 5-6 shows, although the difference is small, it is also highly statistically significant (with a p-value below .001), which suggests that the difference between the values is not a random occurrence. Exhibits 5-7 and 5-8 summarize the results of the population-weighted analysis, and generally find slightly larger (but still small) effects.

61 See Appendix M for the complete demographic screening analysis.
Exhibit 5-5

Summary Results For Census Parameters – Unweighted

<table>
<thead>
<tr>
<th>Census Parameter</th>
<th>1000 ft Buffer around Facility</th>
<th>County where Facility is Located</th>
<th>Difference</th>
<th>95% Confidence Interval of Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Percent White Alone</td>
<td>70.3</td>
<td>81.3</td>
<td>70.8</td>
<td>74.8</td>
</tr>
<tr>
<td>Percent Under Age 5</td>
<td>6.7</td>
<td>6.5</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Percent Under Age 18</td>
<td>24.7</td>
<td>24.9</td>
<td>25.6</td>
<td>25.5</td>
</tr>
<tr>
<td>Percent in Poverty</td>
<td>13.3</td>
<td>10.3</td>
<td>12.2</td>
<td>11.5</td>
</tr>
<tr>
<td>Percent Minority</td>
<td>24.0</td>
<td>14.6</td>
<td>23.8</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Note: Difference summary statistics (mean and median) were calculated from the distribution of difference values (i.e., one result per facility, yielding a distribution of about 60,000 results). Mean values reflect the entire distribution, whereas the median values are based only on the 50th percentile result. For this reason, the mean difference results could also be calculated simply by subtracting the reference community mean from the potentially affected community mean (e.g., for mean percent poverty 13.3 – 12.2 = 1.1). In contrast, the median difference values do not necessarily match values derived by subtracting the median values from the underlying distributions (e.g., for median percent poverty 10.3 – 11.5 ≠ -0.64). Although the primary results of the analysis are based on mean values, median results are provided for completeness and as an alternative indicator of the distributions’ central tendency.

Exhibit 5-6

Standard Error, T Test, And Risk Ratio Results – Unweighted

<table>
<thead>
<tr>
<th>Census Parameter</th>
<th>1000 ft Buffer around Facility</th>
<th>County where Facility is Located</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE of Mean</td>
<td>SE of Mean</td>
<td>SE of Mean</td>
</tr>
<tr>
<td>Percent White Alone</td>
<td>0.120</td>
<td>0.088</td>
<td>0.085</td>
</tr>
<tr>
<td>Percent Under Age 5</td>
<td>0.010</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>Percent Under Age 18</td>
<td>0.104</td>
<td>0.071</td>
<td>0.079</td>
</tr>
<tr>
<td>Percent in Poverty</td>
<td>0.045</td>
<td>0.023</td>
<td>0.038</td>
</tr>
<tr>
<td>Percent Minority</td>
<td>0.104</td>
<td>0.071</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Note: There are >56,033 degrees of freedom for this test (i.e. number of facilities). Note that the total number of facilities in the dataset (59,945) differs from the degrees of freedom, because a fraction of facilities have no people living within the 1000 foot buffer.
Exhibit 5-7

Summary Results For Census Parameters – Weighted By Population

<table>
<thead>
<tr>
<th>Census Parameter</th>
<th>1000 ft Buffer around Facility</th>
<th>County where Facility is Located</th>
<th>Difference</th>
<th>95% Confidence Interval of Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Percent White Alone</td>
<td>53.88</td>
<td>59.63</td>
<td>58.79</td>
<td>57.70</td>
</tr>
<tr>
<td>Percent Under Age 5</td>
<td>6.91</td>
<td>6.78</td>
<td>6.80</td>
<td>6.85</td>
</tr>
<tr>
<td>Percent Under Age 18</td>
<td>24.74</td>
<td>24.91</td>
<td>25.36</td>
<td>25.53</td>
</tr>
<tr>
<td>Percent in Poverty</td>
<td>16.22</td>
<td>13.34</td>
<td>13.33</td>
<td>12.83</td>
</tr>
<tr>
<td>Percent Minority</td>
<td>36.61</td>
<td>29.54</td>
<td>33.16</td>
<td>31.92</td>
</tr>
</tbody>
</table>

Note: Difference summary statistics (mean and median) were calculated from the distribution of difference values (i.e., one result per facility, yielding a distribution of about 60,000 results). Mean values reflect the entire distribution, whereas the median values are based only on the 50th percentile result. For this reason, the mean difference results could also be calculated simply by subtracting the reference community mean from the potentially affected community mean (e.g., for mean percent poverty 16.2 – 13.3 = 2.9). In contrast, the median difference values do not necessarily match values derived by subtracting the median values from the underlying distributions (e.g., for median percent poverty 13.3 – 12.8 ≠ -0.96). Although the primary results of the analysis are based on mean values, median results are provided for completeness and as an alternative indicator of the distributions’ central tendency.

Exhibit 5-8

Standard Error, T Test, And Risk Ratio Results – Weighted By Population

<table>
<thead>
<tr>
<th></th>
<th>1000 ft Buffer around Facility</th>
<th>County where Facility is Located</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE of Mean</td>
<td>SE of Mean</td>
<td>SE of Mean</td>
</tr>
<tr>
<td>Percent White Alone</td>
<td>0.288</td>
<td>0.193</td>
<td>0.205</td>
</tr>
<tr>
<td>Percent Under Age 5</td>
<td>0.020</td>
<td>0.008</td>
<td>0.017</td>
</tr>
<tr>
<td>Percent Under Age 18</td>
<td>0.065</td>
<td>0.033</td>
<td>0.058</td>
</tr>
<tr>
<td>Percent in Poverty</td>
<td>0.108</td>
<td>0.063</td>
<td>0.085</td>
</tr>
<tr>
<td>Percent Minority</td>
<td>0.255</td>
<td>0.165</td>
<td>0.191</td>
</tr>
</tbody>
</table>

Note: There are >56,033 degrees of freedom for this test (i.e. number of facilities). Note that the total number of facilities in the dataset (59,945) differs from the degrees of freedom, because a fraction of facilities have no people living within the 1000 foot buffer.

Overall, the demographic analysis identifies a small but statistically significant difference between minority and low-income populations near UST systems and in the reference communities. Minority and poverty-level demographics are present at greater percentages in the vicinity of UST facilities. In contrast, a small negative relationship suggests that “white alone”
populations are less likely to be near UST systems, i.e., minority populations are marginally more likely to reside near UST facilities. Moreover, while the unweighted analysis does not find clear patterns related to children under 18 and children under five, the population-weighted analysis finds that the distribution of all target demographics around UST facilities reflects small but significant differences from county-level populations. The population-weighted results show greater differences, suggesting that facilities in higher population areas tend to have more pronounced disparities between local, potentially affected communities and reference (county-level) communities. These differences, while small, are statistically significant with p-values less than 0.01 in all cases. This result implies that any risk reductions associated with the proposed rule will occur in the context of a baseline condition in which minority and low-income populations are disproportionately located near USTs.

5.5.3 Summary and Limitations of the Analysis

This section summarizes a screening assessment and does not present a complete environmental justice analysis. The assessment is limited by the fact that demographic data from the U.S. Census are at the block group level, and are not as precise as the spatial distribution of population. As a result, if the demographic distribution of populations within block groups is uneven, the block group-level data may not accurately characterize populations living nearest to UST locations. The large sample of 59,945 sites, however, reduces the potential that this uncertainty could skew the results of the analysis.

Given the results of the screening analysis, because all regulatory options considered in this proposed rule would increase regulatory stringency and reduce the number and size of releases, EPA does not anticipate the proposed rule to have any disproportionately high and adverse human health or environmental effects on these minority or low income communities, or on any community. Since the proposed rule is not anticipated to create any new adverse human health or environmental impacts, EPA did not conduct a complete environmental justice analysis.

5.6 Children’s Health Protection Analysis

Executive Order 13045, “Protection of Children from Environmental Health Risks and Safety Risks” (62 FR 19885, April 23, 1997), applies to any rule that: (1) is determined to be “economically significant” as defined under E.O. 12866, and (2) concerns an environmental health or safety risk that EPA has reason to believe may have a disproportionate effect on children. If the regulatory action meets both criteria, the Agency must evaluate the environmental health or safety effects of the planned rule on children, and explain why the planned regulation is preferable to other potentially effective and reasonably feasible alternatives considered by the Agency.

This action may be subject to Executive Order 13045 because it is economically significant as defined in Executive Order 12866. EPA’s screening-level risk assessment examines potential impacts to groundwater and subsequent chemical transport, exposure and risk. While the risk assessment did not specifically measure exposure to children, the general
exposure scenarios reflect four exposure pathways that have the most significant potential for human health impacts. These are:

- ingestion of chemicals in groundwater that have migrated from the source area to residential drinking water wells
- inhalation of volatile chemicals when showering with contaminated groundwater
- dermal contact with chemicals while bathing or showering with contaminated groundwater
- inhalation of vapors that may migrate upward from contaminated groundwater into overlying buildings

Adults and children can potentially be exposed through all four exposure pathways considered. For adults, inhalation of vapors while showering is the most significant adult exposure pathway; for children, ingestion is the most significant pathway, because children are assumed to take baths and are therefore not exposed via shower vapor inhalation. As a result of the longer exposure from showering, adults are the more sensitive receptor for cancer effects compared to children, particularly those under five who are assumed to take more baths and fewer showers.\(^{62}\)

While the screening level risk assessment is limited in that it only examines benzene impacts, the proposed rule would likely reduce other contaminant exposures to children in a similar pattern, and would not create significant adverse impacts on children’s health.

The screening-level demographic analysis described in section 5.5 finds a statistically significant result that children under the age of 18 and children under the age of five are slightly less likely to be found in the vicinity of UST facilities. This suggests that the impacts of the proposed rule will not have a disproportionate impact on children’s health. Moreover, because all regulatory options proposed today would increase regulatory stringency and reduce the number and size of releases, EPA does not expect the proposed rule to have any disproportionate adverse impact on children.

Chapter 6. Other Statutory and Executive Order Analyses

As required by applicable statutes and executive orders, this chapter summarizes our analysis of equity considerations and other regulatory concerns associated with the proposed rule. This chapter assesses potential impacts, with respect to the following issues:

- **Regulatory planning and review**: requires examination and quantification of costs and benefits of regulating with and without the proposed rule.

- **Unfunded mandates**: examines the implications of the proposed rule with respect to unfunded mandates.

- **Federalism**: considers potential issues related to state sovereignty.

- **Tribal governments**: extends the discussion of federal unfunded mandates to include impacts on Native American tribal governments and their communities.

- **Joint impacts of rules**: discusses how other rules, together with the proposed rule, will likely affect the universe of facilities regulated by the proposed rule.

6.1 Regulatory Planning and Review

Under Executive Order 12866 [58 FR 51735 (October 4, 1993)], EPA, in conjunction with the Office of Management and Budget’s (OMB’s) Office of Information and Regulatory Affairs (OIRA), must determine whether a regulatory action is “significant” and therefore subject to OMB review and the full requirements of the Executive Order. The Order defines “significant regulatory action” as one that is likely to result in a rule that may:

1. Have an annual effect on the economy of $100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities;

2. Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency;

3. Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or

4. Raise novel legal or policy issues arising out of legal mandates, the President’s priorities, or the principles set forth in the Executive Order.

Pursuant to the terms of Executive Order 12866, the Agency has determined that this proposed rule is an economically significant regulatory action because it may have an annual
effect on the economy of $100 million or more, as defined under part 3(f)(1) of the Order. Findings of the regulatory cost analysis (Chapter 3) indicate that the rule, as proposed, is projected to result in aggregate annual compliance costs of approximately $210 million under the Preferred Option, $520 million under Alternative 1, and $130 million under Alternative 2. Separately, this analysis concludes that the proposed rule is expected to have cost savings related to avoided costs of $300 million to $740 million under the Preferred Option, $310 million to $770 million under Alternative 1, and $110 million to $590 million under Alternative 2, but for the purposes of addressing Executive Order 12866, these cost savings are considered to be separate impacts rather than direct reductions in the total cost of the rule.

6.2 Unfunded Mandates Analysis

Signed into law on March 22, 1995, the Unfunded Mandates Reform Act (UMRA) calls on all federal agencies to provide a statement supporting the need to issue any regulation containing an unfunded federal mandate and describing prior consultation with representatives of affected state, local, and tribal governments.

The proposed rule is subject to the requirements of sections 202 and 205 of UMRA. In general, a rule is subject to the requirements of these sections if it contains “Federal mandates” that may result in the expenditure by State, local, and tribal governments, in the aggregate, or by the private sector, of $100 million or more in any one year. The proposed rule results in approximately $180 million of costs to the private sector under the Preferred Option, $350 million under Alternative 1, and $120 million under Alternative 2 in expenditures for the private sector and is thus subject to the following requirements of these sections.1

- An identification of the provision of Federal law under which the proposed rule is being promulgated.
- A qualitative and quantitative assessment of the anticipated costs and benefits of the Federal mandate;
 - Costs and benefits to State, local, and tribal governments and the private sector
 - Effect on health, safety, and the natural environment
 - Analysis of extent to which such costs may be paid with Federal financial assistance (or otherwise paid for by the Federal government)
 - Analysis of the extent to which there are available Federal resources to carry out this mandate
- Estimates of future compliance costs with the mandate.

1 Calculated as total compliance costs for conventional UST systems and EGTs (including costs to read regulations), documented in Exhibit 3-9, net of local and state government compliance costs identified in Exhibit 6-2 below.
• Estimates of disproportionate budgetary effects on any type of government or segment of the private sector.

• Estimates of the effect on the national economy (if relevant and possible).

Exhibit 6-1 provides references for the analyses that EPA has performed that respond to these requirements.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Location Of Analyses Responding To UMRA Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of provision of Federal law under which proposed rule is being promulgated</td>
<td>Chapter 1 of this document</td>
</tr>
<tr>
<td>Assessment of costs and benefits to State, local, and tribal governments and the private sector</td>
<td>Chapters 3 and 4 of this document</td>
</tr>
<tr>
<td>Assessment of the effect on health, safety, and the natural environment</td>
<td>Chapter 4 of this document</td>
</tr>
<tr>
<td>Assessment of the extent to which such costs may be paid with Federal financial assistance</td>
<td>Chapter 3 of this document; no Federal assistance is anticipated</td>
</tr>
<tr>
<td>Assessment of the extent to which there are available Federal resources to carry out this mandate</td>
<td>Chapter 3 of this document; no Federal resources are anticipated</td>
</tr>
<tr>
<td>Estimates of future compliance costs</td>
<td>Chapter 3 of this document</td>
</tr>
<tr>
<td>Estimates of disproportionate budgetary effects on any type of government or private sector segment</td>
<td>Chapter 5 of this document</td>
</tr>
<tr>
<td>Estimates of the effect on the national economy</td>
<td>Chapters 3 and 5 of this document</td>
</tr>
</tbody>
</table>

6.3 Federalism Analysis

Executive Order 13132, entitled “Federalism” (64 FR 43255, August 10, 1999), requires EPA to develop an accountable process to ensure “meaningful and timely input by state and local officials in the development of regulatory policies that have federalism implications.” “Policies that have federalism implications” is defined in the Executive Order to include regulations that have “substantial direct effects on the states, on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government.” EPA typically considers a policy to have federalism implications if it results in the expenditure by State and/or local governments in the aggregate of $25 million or more in any one year.

Under Executive Order 13132, EPA may not issue a regulation that has federalism implications, that imposes substantial direct compliance costs, and that is not required by statute, unless the Federal government provides the funds necessary to pay the direct compliance costs incurred by State and local governments, or EPA consults with State and local officials early in the process of developing the regulation.

Exhibit 6-2 summarizes annual government costs. Direct compliance costs for local and State governments reflect average costs per UST system; the analysis assumes that states collectively own one percent of total UST systems (6,114), and local governments own 24,458 UST systems (four percent).
In addition, under the proposed rule, each state will incur labor costs for reading the new regulations, applying for State Program Approval (SPA), and processing one-time notification of existence for EGTs, AHFDSs, and FCTs. States that do not already require notification of UST ownership change will also incur costs to process and review all ownership change notifications of UST system ownership change.

In this scenario, total costs to all affected state and local governments (including direct compliance costs, notification costs, and state program costs) are approximately $9.3 million under the Preferred Option, $19 million under Alternative 1, and $6.5 million under Alternative 2 in 2008 dollars; this is not considered to be a substantial compliance cost under federalism requirements.

Exhibit 6-2

Summary Of Annual State And Local Government Costs

<table>
<thead>
<tr>
<th>Element</th>
<th>Preferred Option ($ millions)</th>
<th>Alternative 1 ($ millions)</th>
<th>Alternative 2 ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Compliance Costs*</td>
<td>$7.3</td>
<td>$15.0</td>
<td>$5.0</td>
</tr>
<tr>
<td>State Compliance Costs*</td>
<td>$1.8</td>
<td>$3.7</td>
<td>$1.3</td>
</tr>
<tr>
<td>State Government Administrative Costs</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Total State and Local Governments Costs</td>
<td>$9.3</td>
<td>$19.0</td>
<td>$6.5</td>
</tr>
</tbody>
</table>

* State and local government compliance costs are included in the total compliance costs presented in Exhibit 3-9.

b Cost estimates were derived using a seven percent discount rate.

6.4 Tribal Governments Analysis

Executive Order 13175, entitled “Consultation and Coordination with Indian Tribal Governments” (65 FR 67249, November 9, 2000), requires EPA to develop an accountable process to ensure “meaningful and timely input by tribal officials in the development of regulatory policies that have tribal implications.” EPA has concluded that this action will have tribal implications to the extent that tribally-owned entities with UST systems on Indian country would be affected. However, it will neither impose substantial direct compliance costs on tribal governments, nor preempt Tribal law.

The data sources for the Indian country analysis are the same as those used in the small business analysis. Based on a review of information available about the types of business entities in Indian country, it is assumed that UST systems in Indian country represent a subset of the rest of the universe and are distributed similarly across the same sectors.\(^2\) The total number of UST systems in Indian country is distributed proportionally among the NAICS sectors.

The cost per UST system is higher in Indian country, as the universe is smaller, and all UST systems are assumed to incur costs associated with all the requirements of the proposed rule. At a 2008 cost of $795 per UST system, the total cost for UST systems in Indian country is $6.5 million.\(^2\)

\(^2\) For more detail, see Industrial Economics, Inc., "Detailed Assessment of UST Universe by Tank Purpose and Design," WA 1-25, Task 6, March 24, 2009. Note that because tribal ownership and operation is defined differently than other types of government ownership, no attempts are made to isolate or identify “government” UST systems in Indian country.
approximately $2.1 million. EPA data indicates that 35 percent of all UST systems in Indian country are tribally-owned; correspondingly, the total cost to owners and operators of tribally-owned UST systems is $0.7 million.

EPA consulted with tribal officials early in the process of developing this regulation to permit them to have meaningful and timely input into its development. EPA began its consultation with tribes on possible changes to the UST regulations shortly after the passage of the Energy Policy Act of 2005 (EPAct). EPAct directed EPA to coordinate with tribes to develop and implement an UST program strategy in Indian country to supplement the program’s existing approach. EPA and the tribes worked collaboratively to develop this tribal strategy.

EPAct also included key provisions that apply to states receiving federal funding but the Act did not specify Indian country. Nonetheless, EPA’s goal is to implement the objectives of these provisions in Indian country as an important step in achieving more consistent program results in release prevention. Both EPA and tribes recognize the importance of having policies that can help to ensure parity in program implementation between states and in Indian country. EPA committed to the tribes that we would fully implement the new provisions of the EPAct, and the proposed regulations will realize that commitment.

In addition to our early consultation with the tribes, EPA also reached out again to the tribes as we started the official regulatory process and throughout the development of these proposed regulations. EPA sent letters to leaders of over 500 tribes as well as to tribal regulatory staff to invite their participation in the development of the regulations. EPA heard from both tribal officials who work as regulators as well as representatives of owners and operators of UST systems in Indian country. The tribal regulators raised concerns about ensuring parity of environmental protection between states and Indian country.

The proposed changes to the UST regulations are needed to ensure parity between sites in states and in Indian country. These regulations are also needed to ensure equipment is not just installed but is working properly to protect the environment from potential releases.

6.5 Joint Impacts of Rules

Executive Order 12866 requires that the Agency review whether the proposed rule creates “a serious inconsistency” or otherwise interferes “with an action taken or planned by another agency.” We do not believe that the proposed rule creates a serious inconsistency or interferes with any other actions planned or undertaken by other agencies. The following are the existing regulations that currently affect UST systems:

- **State UST Regulations:** A number of states have existing UST regulations that are more demanding than existing regulations under 40 CFR Part 280. To the extent that these policies are at least as demanding as the regulations under consideration, the systems in these states may already be in partial or full compliance with portions of the proposed rule. Chapter 2 identifies the number of UST systems in states with existing (baseline) regulations; cost estimates in Chapter 3 reflect the state regulatory programs that exist in the baseline.
SPCC Regulations: Currently, a subset of UST systems in the universe is regulated by Spill Prevention, Control, and Countermeasure rules (SPCC); these include emergency generator tanks, airport hydrant fuel distribution systems and UST systems with field-constructed tanks. Specifically, SPCC rules in 40 CFR Part 112 apply to above-ground containers and completely buried tanks that are not otherwise covered by the regulations of 40 CFR Part 280. SPCC rules do not specify particular leak detection protocols, but require that plans conform to industry standards, which can often be consistent with the requirements of the proposed rule. To the extent that the requirements imposed on these UST systems via the proposed rule are more or less stringent than the SPCC rules currently governing them, the proposed rule may cause an increase or a reduction in overall inspection and monitoring requirements (and costs) for these UST systems. To account for this, EPA has generated baseline assumptions for these systems using information from the Department of Defense (the owner of the majority of all FCTs and AHFDSs). EGTs are assumed to incur all incremental costs beyond state regulatory baseline costs; to the extent that these systems are regulated under SPCC, this may overstate costs.
Chapter 7. Comparison of Costs, Benefits, and Other Impacts

This chapter provides several analyses that compare the costs and beneficial impacts of the proposed rule. Cost-benefit analysis is a central feature of virtually all economic assessments and evaluates the economic efficiency of environmental policies by measuring their costs and benefits, and hence their net impacts on society. From an economic viewpoint, the proposed rule would enhance economic efficiency if beneficial impacts exceed costs.

A traditional cost-benefit comparison weighs society’s willingness to pay for the benefits of a regulation against the opportunity costs of the rule. Analyses of this type typically do not consider distributional issues, although they can be adapted to do so. Adherence to a strict benefit-cost approach provides an incomplete assessment of the effects of this proposed rule for two reasons:

- The majority of positive effects from new requirements occur as avoided remediation costs, not social benefits such as improved water quality. Monetizable social benefits occur only in the form of avoided cancer cases and constitute only a very small part of overall effects. Nevertheless, as discussed in Chapter 4, avoided costs provide a reasonable measure of the positive effects of the proposed rule.

- A key effect of the proposed rule is to reallocate costs from the public to responsible parties. This is likely to improve behavioral incentives, as the parties most likely to cause releases will also be responsible for preventing them. As we discussed in Chapter 5, savings to state financial assurance funds could exceed $150 million per year.

While this chapter presents a comparison of costs and benefits, the principal comparison is between avoided remediation costs and the cost of the proposed rule. This chapter uses two approaches to assess the effectiveness of the proposed requirements. First, we compare the compliance costs of the proposed rule with its total monetized avoided costs and benefits. We then consider cost-effectiveness measures which provide estimates of expenditures per unit reduction of releases and estimates of the cost per unit of benefit achieved by the proposed rule.

Cost-benefit and cost-effectiveness analyses, however, should not be the only tools used in the establishment of any final regulatory action. The proposed rule is expected to provide other benefits that are not expressed in monetary terms. When these benefits are taken into account, along with equity-enhancing effects such as reduction in demand for publicly-funded remediation, the benefit-cost comparison becomes more complex. Consequently, the final regulatory decision becomes a policy judgment that takes into account efficiency as well as equity concerns.

In addition, the selection of a discount rate for estimating the present value of future costs and benefits is a complex issue. To reflect a range of possible future costs and benefits, we present two estimates of discounted costs and benefits; one based on a seven percent discount rate, and one based on a three percent discount rate.
7.1 Cost Benefit Comparison

In this section, we compare the total costs of the rule with its total monetized and non-monetized benefits and avoided costs. The total costs and monetized avoided costs of the proposed rule are summarized in Exhibit 7-1. The costs in the exhibit represent the compliance costs of the proposed rule, including state government administrative costs.

The exhibit also shows the social benefits of the proposed requirements that are not captured in avoided costs. Monetized social benefits are calculated only for avoided cancer risks related to benzene due to the difficulty in measuring other types of benefits. Avoided cancer risks are estimated to be minimal, as they address only the uncontrolled human health risks that occur before discovery and remediation of a release under existing programs. EPA estimates less than $5,000 in measurable, monetized social benefits per year, regardless of the option. However, as Exhibit 7-1 notes and discussed in Chapter 4, a number of benefits could not be monetized, including groundwater protection, mitigation and avoidance of acute events, ecological benefits, and non-benzene human health risks.

Exhibit 7-1 demonstrates that the proposed rule may avoid more costs than it creates, potentially generating cost savings to society. EPA estimates that the Preferred Option could generate $90 million to $530 million per year in savings to society. Alternative 1 could have a net benefit of $250 million to a net cost of $210 million, while Alternative 2 could generate savings of $460 million to costs of $20 million.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Monetized Benefits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided cancer risks(^{a,d})</td>
<td>$0.001 -$0.005</td>
<td>$0.002 - $0.005</td>
<td>$0.001 - $0.003</td>
</tr>
<tr>
<td>Annual Avoided Costs(^d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents</td>
<td>$300 - $700</td>
<td>$300 - $740</td>
<td>$110 - $570</td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$0.4 - $26</td>
<td>$0.5 - $28</td>
<td>$0.2 - $19</td>
</tr>
<tr>
<td>Product loss</td>
<td>$2.0 - $7.2</td>
<td>$2.6 - $7.6</td>
<td>$0.4 - $5.3</td>
</tr>
<tr>
<td>Annual Compliance Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional UST systems(^b)</td>
<td>$180</td>
<td>$360</td>
<td>$120</td>
</tr>
<tr>
<td>Emergency generator tanks (EGTs)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
</tr>
<tr>
<td>Airport hydrant fuels distribution systems (AHFDSs)</td>
<td>$18</td>
<td>$120</td>
<td>N/A</td>
</tr>
<tr>
<td>UST systems with field-constructed tanks (FCTs)</td>
<td>$5</td>
<td>$33</td>
<td>N/A</td>
</tr>
<tr>
<td>Cost to owners/operators to read regulations</td>
<td>$5</td>
<td>$5</td>
<td>$5</td>
</tr>
<tr>
<td>State government administrative costs(^c)</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td>Total Annual Benefits and Avoided Costs</td>
<td>$300 - $740</td>
<td>$310 - $770</td>
<td>$110 - $590</td>
</tr>
<tr>
<td>Total Annual Compliance Costs(^g)</td>
<td>$210</td>
<td>$520</td>
<td>$130</td>
</tr>
<tr>
<td>Net Cost (Savings) to Society(^g)</td>
<td>($530) - ($90)</td>
<td>($250) - ($210)</td>
<td>($460) - $20</td>
</tr>
<tr>
<td>[Total Compliance Costs less Total Benefits and Avoided Costs]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmonetized Benefits(^e)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater protected (billion gallons)</td>
<td>110 - 350</td>
<td>120 - 370</td>
<td>41 - 250</td>
</tr>
<tr>
<td>Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Ecological benefits</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
<tr>
<td>Non-benzene human health risks</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
</tr>
</tbody>
</table>

\(^a\) The pathway assessed to evaluate avoided cancer risk is benzene exposure through contaminated groundwater.

\(^b\) Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.

\(^c\) The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.

\(^d\) Avoided cancer risks and avoided costs are separate and additive (i.e., these estimates do not overlap). Avoided cancer risks are the benefits associated with reducing cancer cases prior to discovery of the release. Avoided remediation costs from releases and groundwater incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.

\(^e\) Due to data and resource constraints, EPA is unable to monetize some of the positive impacts of the proposed rule. Chapter 4 of this document provides a qualitative discussion of these benefits.

\(^f\) Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

\(^g\) Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.
7.1.1 Cost-Benefit Comparison under the Alternative Baseline Scenario

Exhibit 7-2 depicts the comparison of costs and benefits of the proposed rule in the alternative baseline scenario, where the universes of releases and UST systems decline over time in accordance with historical trends. In this alternative baseline, the universe of releases is smaller relative to the original baseline than the universe of UST systems; however, Exhibit 7-2 demonstrates that even in this case, the proposed rule may avoid more costs than it creates, potentially generating cost savings to society. EPA estimates that the Preferred Option in the alternative baseline could generate between $240 million per year in savings to $20 million per year in costs to society. Alternative 1 could have a net cost of $50 million to $330 million, while Alternative 2 could generate savings of $240 million to costs of $56 million.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Monetized Benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided cancer risks</td>
<td>$0.001 - $0.003</td>
<td>$0.001 - $0.003</td>
<td>$0.0003 - $0.002</td>
<td></td>
</tr>
<tr>
<td>Annual Avoided Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Releases and groundwater incidents</td>
<td>$180 - $420</td>
<td>$180 - $440</td>
<td>$64 - $340</td>
<td></td>
</tr>
<tr>
<td>Vapor intrusion</td>
<td>$0.3 - $16</td>
<td>$0.3 - $17</td>
<td>$0.1 - $11</td>
<td></td>
</tr>
<tr>
<td>Product loss</td>
<td>$1.2 - $4.3</td>
<td>$1.6 - $4.6</td>
<td>$0.2 - $3.2</td>
<td></td>
</tr>
<tr>
<td>Annual Compliance Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional UST systems</td>
<td>$170</td>
<td>$350</td>
<td>$110</td>
<td></td>
</tr>
<tr>
<td>Emergency generator tanks (EGT)</td>
<td>$2.2</td>
<td>$2.2</td>
<td>$2.1</td>
<td></td>
</tr>
<tr>
<td>Airport hydrant fuels distribution systems (AHFDSs)</td>
<td>$18</td>
<td>$120</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>UST systems with field-constructed tanks (FCTs)</td>
<td>$4.6</td>
<td>$33</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Cost to owners/operators to read regulations</td>
<td>$5.1</td>
<td>$5.1</td>
<td>$5.1</td>
<td></td>
</tr>
<tr>
<td>State government administrative costs</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td></td>
</tr>
<tr>
<td>Total Annual Benefits and Avoided Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$180 - $440</td>
<td>$180 - $460</td>
<td>$64 - $360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Annual Compliance Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$200</td>
<td>$510</td>
<td>$120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Cost (Savings) to Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Total Compliance Costs less Total Benefits and Avoided Costs]</td>
<td>($240) - $20</td>
<td>$50 - $330</td>
<td>($240) - $56</td>
<td></td>
</tr>
<tr>
<td>Nonmonetized Benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater protected (billion gallons)</td>
<td>65 - 210</td>
<td>71 - 220</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>Acute events and large-scale releases (e.g., releases from AHFDSs and FCTs)</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td></td>
</tr>
<tr>
<td>Ecological benefits</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td></td>
</tr>
<tr>
<td>Non-benzene human health risks</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td></td>
</tr>
</tbody>
</table>

* The pathway assessed to evaluate avoided cancer risk is benzene exposure through contaminated groundwater.
* Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.
* The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulation, apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.
* Avoided cancer risks and avoided costs are separate and additive (i.e., these estimates do not overlap). Avoided cancer risks are the benefits associated with reducing cancer cases prior to discovery of the release. Avoided remediation costs from releases and groundwater
incidents are the costs related to site remediation. Avoided vapor intrusion costs include additional avoided costs associated with the remediation of vapor intrusion cases; the RIA does not address human health risk associated with vapor intrusion. Avoided product loss costs are also separate and additive.

* Due to data and resource constraints, EPA is unable to monetize some of the positive impacts of the proposed rule. Chapter 4 of this document provides a qualitative discussion of these benefits.

1 Totals may not add up due to rounding. Cost estimates were derived using a seven percent discount rate.

8 Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.

7.2 Cost-Effectiveness Analysis

We measure cost-effectiveness by considering the expected cost per release avoided. This cost-effectiveness measure is useful for comparing the resources required to eliminate a single release under each alternative. For the purpose of this analysis, we consider avoided releases to be both releases altogether avoided and groundwater incidents averted due to the proposed rule. As presented in Exhibit 7-3, we find that the cost per release avoided is approximately $38,000 to $120,000 under the Preferred Option, compared with $90,000 to $290,000 under Alternative 1 and $33,000 to $200,000 under Alternative 2. This compares favorably with average release remediation costs presented in Exhibit 4-2 in Chapter 4, which range between $92,000 and $194,000. This regulatory impact analysis suggests that, in addition to improving the alignment of incentives, release prevention is likely to be less costly than release remediation under the Preferred Option and Alternative 2 and in some instances under Alternative 1.

<table>
<thead>
<tr>
<th>Cost-Efffectiveness: Number Of Avoided Releases And Groundwater Incidentsa</th>
<th>Preferred Option</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoided releases and groundwater incidents</td>
<td>1,680 - 5,370</td>
<td>1,820 - 5,780</td>
<td>630 - 3,860</td>
</tr>
<tr>
<td>Compliance costb ($ million)</td>
<td>$210</td>
<td>$520</td>
<td>$130</td>
</tr>
<tr>
<td>Cost per release avoided ($ million)</td>
<td>$0.038 - $0.12</td>
<td>$0.09 - $0.29</td>
<td>$0.033 - $0.20</td>
</tr>
</tbody>
</table>

a Cost estimates were derived using a seven percent discount rate.

b Compliance cost includes direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.

7.3 Costs and Beneficial Effects Under Alternative Discount Rates

The selection of the rate at which to discount future costs and benefits is complex. To assess the sensitivity of our results to our choice of discount rate, Exhibit 7-4 presents a summary of total compliance costs and avoided remediation costs considering alternate discount rates of three percent and zero percent (i.e., no discounting). Costs change little because a reduction in interest rates both reduces time value of money (TVM) costs and increases costs that have a delay before implementation.1 2 The net result of a change from a discount rate of seven

1 When amortizing a value over time, if all other factors are held constant, a reduction in the rate of interest decreases the annual payment.

2 The rate of discount enters into our calculation of time value of money costs. Higher discount rates increase these costs, while lower discount rates cause them to decrease. See Appendix D for details.
percent to a discount rate of zero percent is an overall increase in the cost of the rule of less than $10 million per year, indicating that TVM and delayed-implementation cost effects essentially offset each other.

Discount rates are also involved in our estimate of annual avoided costs. In particular, we use them only to obtain constant annual avoided costs for those requirements in which the affected universe grows over time and calculate the delay until positive impacts accrue. Here, the effect of lowering interest rate is more significant, as all requirements are discounted by at least one period. As Exhibit 7-4 shows, a change in the rate of discount from seven percent to zero percent increases avoided costs from a range of $300 million - $740 million to $340 million - $810 million. This increase is largely due to the fact that we discount all avoided costs by at least one year, as outlined in Exhibit 1-2.

We conclude that, while a reduction in the discount rate leaves annual compliance costs essentially unchanged at $210 million, avoided costs increase from by $40 million to $70 million per year. As such, annual savings to society would increase from a range of $90 million - $530 million to $130 million - $600 million if EPA relies on a zero rate of discount.

<table>
<thead>
<tr>
<th>Compliance Costs And Beneficial Impacts Under Alternative Discount Rates<sup>d,e</sup></th>
<th>Preferred Option 7 percent discount rate ($ millions)</th>
<th>Preferred Option 3 percent discount rate ($ millions)</th>
<th>Preferred Option Undiscounted ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoided Cost</td>
<td>Annual Monetized Benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avoided cancer risks<sup>a</sup></td>
<td>$0.001 - $0.005</td>
<td>$0.001 - $0.005</td>
</tr>
<tr>
<td></td>
<td>Releases and groundwater incidents</td>
<td>$300 - $700</td>
<td>$320 - $740</td>
</tr>
<tr>
<td></td>
<td>Vapor intrusion</td>
<td>$0.4 - $26</td>
<td>$0.4 - $27</td>
</tr>
<tr>
<td></td>
<td>Product loss</td>
<td>$2.0 - $7.2</td>
<td>$2.0 - $7.4</td>
</tr>
<tr>
<td></td>
<td>Annual Positive Impacts (Avoided Costs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conventional UST systems<sup>b</sup></td>
<td>$180</td>
<td>$180</td>
</tr>
<tr>
<td></td>
<td>Emergency generator tanks (EGT)</td>
<td>$2.2</td>
<td>$2.2</td>
</tr>
<tr>
<td></td>
<td>Hydrant fuels distribution systems (AHFDSs)</td>
<td>$18</td>
<td>$21</td>
</tr>
<tr>
<td></td>
<td>UST systems with field-constructed tanks (FCTs)</td>
<td>$4.6</td>
<td>$5.2</td>
</tr>
<tr>
<td></td>
<td>Cost to owners/operators to read regulations</td>
<td>$5.1</td>
<td>$3.7</td>
</tr>
<tr>
<td></td>
<td>State government administrative costs<sup>c</sup></td>
<td>$0.2</td>
<td>$0.2</td>
</tr>
<tr>
<td></td>
<td>Total Annual Avoided Costs</td>
<td>$300 - $740</td>
<td>$330 - $770</td>
</tr>
<tr>
<td></td>
<td>Total Annual Compliance Costs<sup>e</sup></td>
<td>$210</td>
<td>$210</td>
</tr>
<tr>
<td></td>
<td>Net Cost (Savings) to Society<sup>f</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Total Compliance Costs less Total Avoided Costs]</td>
<td>($530) - ($90)</td>
<td>($560) - ($120)</td>
</tr>
</tbody>
</table>

^a The pathway assessed to evaluate avoided cancer risk is benzene exposure through contaminated groundwater.
^b Conventional UST systems include all systems that are not AHFDSs, FCTs, or EGTs.
^c The costs for UST systems directly owned or operated by local, state, and federal government entities are included in the estimates of compliance costs within the other categories. Costs shown here reflect the administrative costs for state governments to read the regulation.

³ These requirements are the elimination of flow restrictors as overfill prevention for new tanks and when overfill devices are replaced, closure of lined tanks which cannot be repaired, and all Energy Policy Act requirements in Indian country, with the exception of operator training.
apply for state program approval, process notifications of ownership changes, and process one-time notifications of EGT, AHFDS, and FCT existence.

\(^d \) Totals may not add up due to rounding.

\(^e \) Compliance costs include direct compliance costs and state oversight costs. For this regulatory impact analysis, direct compliance costs and state oversight costs provide a reasonable proxy to assess the proposed rule’s social costs. See Chapter 3.1 for further discussion.
Sources Cited

40 CFR 280.10 Subpart A – Applicability.

Association of State and Territorial Solid Waste Management Officials. State Fund Survey Results 2009.

Rhode Island Department of Environmental Management. Underground Storage Tank Environmental Results Program, Final Report, Tables I-IV.

Testimony of Bill Douglass, CEO, Douglass Distributing Company, on behalf of the National Association of Convenience Stores, before the House Judiciary Committee, Anti-Trust Task Force Hearing to Examine the Consumer Effects of Rising Gas Prices. May 7, 2008

U.S. Census Bureau. 2002 Census of Governments.

U.S. Census Bureau. 2008 County Business Patterns.

U.S. Environmental Protection Agency. “ERP States Produce Results.” December 2007

U.S. Environmental Protection Agency. “ Summary of the updated Regulatory Impact Analysis (RIA) for the Reconsideration of the 2008 Ozone National Ambient Air Quality Standard (NAAQS).”

NOTICE OF PUBLIC HEARING
GUAM UNDERGROUND STORAGE TANK REGULATIONS

In accordance with 5 GCA §9301 (e), the Guam Environmental Protection Agency (Guam EPA) would like to notify the general public and owners/operators of Underground Storage Tanks (USTs) containing Regulated Substances of a Public Hearing for 22 GAR, Chapter 50, Guam EPA UST Regulations.

PUBLIC HEARING:
Wednesday • September 11, 2019 • 3:00 p.m.
at the Guam EPA Administration Building Conference Room located at 17-3304 Mariner Avenue, Tumon.

PUBLIC COMMENT & REVIEW PERIOD:
August 5, 2019 - September 19, 2019

Guam UST Regulations relevant to this public hearing can be viewed at the Agency's administration building in Tumon from 8:00 a.m. to 4:30 p.m. on business days, beginning on Monday, August 5, 2019. The proposed regulations are also available at epa.gov.guam.

Written comments are welcomed and must be received by the agency via hand delivery or mail and should be addressed to: Administrator, c/o Guam EPA: 17-3304 Mariner Avenue Tumon Barrigada, Guam 96913-1617
Written comments must be received, or postmarked no later than 5:00 p.m. on September 19, 2019. Facsimile and e-mail submittals will not be accepted.

Should you have any questions or require further clarification, please contact the Guam EPA Hazardous Waste Management Program at (671) 300-4751/2.

/\ Walter S. Leon Guerrero, Administrator
Individually requiring special accommodations, auxiliary aids or services should contact Guam EPA at 300.4751/2.

GUAM EPA 17-3304 Mariner Avenue Tumon Barrigada, Guam 96913-1617 | Tel: (671) 300.4751/2 | Fax: (671) 300.4531 | epa.guam.gov